quantum-espresso/HP/examples/example05/reference/LiCoO2.hp.out

1862 lines
73 KiB
Plaintext

Program HP v.6.3 starts on 6Sep2018 at 17:51:23
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 8 processors
MPI processes distributed on 1 nodes
R & G space division: proc/nbgrp/npool/nimage = 8
=--------------------------------------------------------------------------=
Calculation of Hubbard parameters from DFPT; please cite this program as
I. Timrov, N. Marzari, and M. Cococcioni, Phys. Rev. B 98, 085127 (2018)
=--------------------------------------------------------------------------=
Reading data from directory:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/tempdir/LiCoO2.save/
IMPORTANT: XC functional enforced from input :
Exchange-correlation = PBESOL ( 1 4 10 8 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
file Co.pbesol-spn-rrkjus_psl.0.3.1.UPF: wavefunction(s) 3P renormalized
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 189 94 28 3658 1285 218
Max 190 95 29 3660 1286 219
Sum 1517 755 229 29271 10281 1749
Check: negative core charge= -0.000097
--- in v_hubbard ---
Hubbard energy 0.2722
-------
bravais-lattice index = 5
lattice parameter (alat) = 9.3705 (a.u.)
unit-cell volume = 217.1091 (a.u.)^3
number of atoms/cell = 4
number of atomic types = 3
kinetic-energy cut-off = 50.00 (Ry)
charge density cut-off = 400.00 (Ry)
conv. thresh. for NSCF = 1.0E-11
conv. thresh. for chi = 1.0E-08
Input Hubbard parameters (in eV):
U ( 1) = 7.83000E+00
celldm(1) = 9.37050 celldm(2) = 0.00000 celldm(3) = 0.00000
celldm(4) = 0.83874 celldm(5) = 0.00000 celldm(6) = 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 0.2840 -0.1639 0.9447 )
a(2) = ( 0.0000 0.3279 0.9447 )
a(3) = ( -0.2840 -0.1639 0.9447 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.7608 -1.0166 0.3528 )
b(2) = ( 0.0000 2.0333 0.3528 )
b(3) = ( -1.7608 -1.0166 0.3528 )
Atoms inside the unit cell (Cartesian axes):
site n. atom mass positions (alat units)
1 Co 59.0000 tau( 1) = ( 0.00000 0.00000 0.00000 )
2 O 16.0000 tau( 2) = ( 0.00000 -0.00000 0.73827 )
3 O 16.0000 tau( 3) = ( 0.00000 -0.00000 2.09589 )
4 Li 7.0000 tau( 4) = ( 0.00000 -0.00000 1.41708 )
Atom which will be perturbed:
1 Co 59.0000 tau( 1) = ( 0.00000 0.00000 0.00000 )
=====================================================================
PERTURBED ATOM # 1
site n. atom mass positions (alat units)
1 Co 59.0000 tau( 1) = ( 0.00000 0.00000 0.00000 )
=====================================================================
The perturbed atom has a type which is unique!
The grid of q-points ( 2, 2, 2) ( 4 q-points ) :
N xq(1) xq(2) xq(3) wq
1 0.000000000 0.000000000 0.000000000 0.125000000
2 0.880423607 0.508312806 -0.176419367 0.375000000
3 0.880423607 -0.508312806 -0.352838734 0.375000000
4 0.000000000 0.000000000 -0.529258101 0.125000000
=-------------------------------------------------------------=
Calculation for q # 1 = ( 0.0000000 0.0000000 0.0000000 )
=-------------------------------------------------------------=
WRITING LINEAR-RESPONSE SUMMARY:
Number of symmetries in the small group of q, nsymq = 12
+ the symmetry q -> -q+G
Symmetry matrices (and vectors of fractional translations if f/=0):
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 180 deg rotation - cart. axis [1,0,0]
cryst. s( 2) = ( 0 0 -1 )
( 0 -1 0 )
( -1 0 0 )
cart. s( 2) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 3 120 deg rotation - cryst. axis [0,0,1]
cryst. s( 3) = ( 0 1 0 )
( 0 0 1 )
( 1 0 0 )
cart. s( 3) = ( -0.5000000 -0.8660254 -0.0000000 )
( 0.8660254 -0.5000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 4 120 deg rotation - cryst. axis [0,0,-1]
cryst. s( 4) = ( 0 0 1 )
( 1 0 0 )
( 0 1 0 )
cart. s( 4) = ( -0.5000000 0.8660254 0.0000000 )
( -0.8660254 -0.5000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 5 180 deg rotation - cryst. axis [0,1,0]
cryst. s( 5) = ( 0 -1 0 )
( -1 0 0 )
( 0 0 -1 )
cart. s( 5) = ( -0.5000000 -0.8660254 -0.0000000 )
( -0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 6 180 deg rotation - cryst. axis [1,1,0]
cryst. s( 6) = ( -1 0 0 )
( 0 0 -1 )
( 0 -1 0 )
cart. s( 6) = ( -0.5000000 0.8660254 0.0000000 )
( 0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 7 inversion
cryst. s( 7) = ( -1 0 0 )
( 0 -1 0 )
( 0 0 -1 )
cart. s( 7) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 8 inv. 180 deg rotation - cart. axis [1,0,0]
cryst. s( 8) = ( 0 0 1 )
( 0 1 0 )
( 1 0 0 )
cart. s( 8) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 9 inv. 120 deg rotation - cryst. axis [0,0,1]
cryst. s( 9) = ( 0 -1 0 )
( 0 0 -1 )
( -1 0 0 )
cart. s( 9) = ( 0.5000000 0.8660254 0.0000000 )
( -0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 10 inv. 120 deg rotation - cryst. axis [0,0,-1]
cryst. s(10) = ( 0 0 -1 )
( -1 0 0 )
( 0 -1 0 )
cart. s(10) = ( 0.5000000 -0.8660254 -0.0000000 )
( 0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 11 inv. 180 deg rotation - cryst. axis [0,1,0]
cryst. s(11) = ( 0 1 0 )
( 1 0 0 )
( 0 0 1 )
cart. s(11) = ( 0.5000000 0.8660254 0.0000000 )
( 0.8660254 -0.5000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 12 inv. 180 deg rotation - cryst. axis [1,1,0]
cryst. s(12) = ( 1 0 0 )
( 0 0 1 )
( 0 1 0 )
cart. s(12) = ( 0.5000000 -0.8660254 -0.0000000 )
( -0.8660254 -0.5000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
This transformation sends q -> -q+G
isym = 13 identity
cryst. s(13) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s(13) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
G cutoff = 889.6635 ( 3659 G-vectors) FFT grid: ( 60, 60, 60)
G cutoff = 444.8318 ( 1286 G-vectors) smooth grid: ( 45, 45, 45)
Number of k (and k+q if q/=0) points = 4
cart. coord. (in units 2pi/alat)
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.2500000
k ( 2) = ( 0.8804236 0.5083128 -0.1764194), wk = 0.7500000
k ( 3) = ( 0.8804236 -0.5083128 -0.3528387), wk = 0.7500000
k ( 4) = ( 0.0000000 0.0000000 -0.5292581), wk = 0.2500000
cryst. coord.
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.2500000
k ( 2) = ( -0.0000000 -0.0000000 -0.5000000), wk = 0.7500000
k ( 3) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.7500000
k ( 4) = ( -0.5000000 -0.5000000 -0.5000000), wk = 0.2500000
Atomic wfc used for the DFT+U projector are orthogonalized
Total time spent up to now is:
HP : 1.01s CPU 1.01s WALL
=--------------------------------------------=
START SOLVING THE LINEAR SYSTEM
=--------------------------------------------=
atom # 1 q point # 1 iter # 1
chi: 1 -0.2540419855
Average number of iter. to solve lin. system: 27.2
Total CPU time : 1.7 s
atom # 1 q point # 1 iter # 2
chi: 1 0.0814332737 residue: 0.3354752592
Average number of iter. to solve lin. system: 14.8
Total CPU time : 2.2 s
atom # 1 q point # 1 iter # 3
chi: 1 -0.0928363470 residue: 0.1742696207
Average number of iter. to solve lin. system: 14.8
Total CPU time : 2.7 s
atom # 1 q point # 1 iter # 4
chi: 1 -0.0886749973 residue: 0.0041613498
Average number of iter. to solve lin. system: 16.2
Total CPU time : 3.3 s
atom # 1 q point # 1 iter # 5
chi: 1 -0.0866157784 residue: 0.0020592188
Average number of iter. to solve lin. system: 16.5
Total CPU time : 3.9 s
atom # 1 q point # 1 iter # 6
chi: 1 -0.0868159103 residue: 0.0002001319
Average number of iter. to solve lin. system: 17.0
Total CPU time : 4.4 s
atom # 1 q point # 1 iter # 7
chi: 1 -0.0867862006 residue: 0.0000297097
Average number of iter. to solve lin. system: 17.8
Total CPU time : 5.0 s
atom # 1 q point # 1 iter # 8
chi: 1 -0.0867809041 residue: 0.0000052965
Average number of iter. to solve lin. system: 17.2
Total CPU time : 5.5 s
atom # 1 q point # 1 iter # 9
chi: 1 -0.0867856081 residue: 0.0000047040
Average number of iter. to solve lin. system: 17.2
Total CPU time : 6.1 s
atom # 1 q point # 1 iter # 10
chi: 1 -0.0867851103 residue: 0.0000004978
Average number of iter. to solve lin. system: 17.8
Total CPU time : 6.7 s
atom # 1 q point # 1 iter # 11
chi: 1 -0.0867856683 residue: 0.0000005581
Average number of iter. to solve lin. system: 17.5
Total CPU time : 7.3 s
atom # 1 q point # 1 iter # 12
chi: 1 -0.0867848821 residue: 0.0000007863
Average number of iter. to solve lin. system: 17.2
Total CPU time : 7.9 s
atom # 1 q point # 1 iter # 13
chi: 1 -0.0867850875 residue: 0.0000002055
Average number of iter. to solve lin. system: 16.5
Total CPU time : 8.5 s
atom # 1 q point # 1 iter # 14
chi: 1 -0.0867851263 residue: 0.0000000388
Average number of iter. to solve lin. system: 17.0
Total CPU time : 9.1 s
atom # 1 q point # 1 iter # 15
chi: 1 -0.0867851367 residue: 0.0000000104
Average number of iter. to solve lin. system: 17.0
Total CPU time : 9.8 s
atom # 1 q point # 1 iter # 16
chi: 1 -0.0867851213 residue: 0.0000000154
Average number of iter. to solve lin. system: 16.8
Total CPU time : 10.4 s
atom # 1 q point # 1 iter # 17
chi: 1 -0.0867851277 residue: 0.0000000065
Average number of iter. to solve lin. system: 17.5
Total CPU time : 11.1 s
=--------------------------------------------=
CONVERGENCE HAS BEEN REACHED
=--------------------------------------------=
=-------------------------------------------------------------=
Calculation for q # 2 = ( 0.8804236 0.5083128 -0.1764194 )
=-------------------------------------------------------------=
Performing NSCF calculation at all points k and k+q...
Subspace diagonalization in iterative solution of the eigenvalue problem:
a serial algorithm will be used
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 189 94 34 3658 1285 276
Max 190 95 35 3660 1286 277
Sum 1517 755 275 29271 10281 2213
bravais-lattice index = 5
lattice parameter (alat) = 9.3705 a.u.
unit-cell volume = 217.1091 (a.u.)^3
number of atoms/cell = 4
number of atomic types = 3
number of electrons = 32.00
number of Kohn-Sham states= 16
kinetic-energy cutoff = 50.0000 Ry
charge density cutoff = 400.0000 Ry
Exchange-correlation = PBESOL ( 1 4 10 8 0 0)
celldm(1)= 9.370500 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.838740 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 0.283954 -0.163941 0.944719 )
a(2) = ( 0.000000 0.327882 0.944719 )
a(3) = ( -0.283954 -0.163941 0.944719 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.760847 -1.016626 0.352839 )
b(2) = ( 0.000000 2.033251 0.352839 )
b(3) = ( -1.760847 -1.016626 0.352839 )
PseudoPot. # 1 for Co read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/Co.pbesol-spn-rrkjus_psl.0.3.1.UPF
MD5 check sum: be6bd9f12902551d80f7748aded6479c
Pseudo is Ultrasoft + core correction, Zval = 17.0
Generated using "atomic" code by A. Dal Corso v.6.3
Using radial grid of 1193 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
Q(r) pseudized with 0 coefficients
PseudoPot. # 2 for O read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/O.pbesol-n-rrkjus_psl.0.1.UPF
MD5 check sum: bd3a94f595980770d88934e89ba8e519
Pseudo is Ultrasoft + core correction, Zval = 6.0
Generated using "atomic" code by A. Dal Corso v.6.3MaX
Using radial grid of 1095 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
PseudoPot. # 3 for Li read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/Li.pbesol-s-rrkjus_psl.0.2.1.UPF
MD5 check sum: 7d78e5abfb8299c9ad50f6162b1076c3
Pseudo is Ultrasoft, Zval = 3.0
Generated using "atomic" code by A. Dal Corso v.5.0.2 svn rev. 9415
Using radial grid of 1017 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
atomic species valence mass pseudopotential
Co 17.00 59.00000 Co( 1.00)
O 6.00 16.00000 O ( 1.00)
Li 3.00 7.00000 Li( 1.00)
Simplified LDA+U calculation (l_max = 2) with parameters (eV):
atomic species L U alpha J0 beta
Co 2 7.8300 0.0000 0.0000 0.0000
12 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Co tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
2 O tau( 2) = ( 0.0000000 -0.0000000 0.7382650 )
3 O tau( 3) = ( 0.0000000 -0.0000000 2.0958909 )
4 Li tau( 4) = ( 0.0000000 -0.0000000 1.4170780 )
number of k points= 12
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.2500000
k( 2) = ( 0.8804236 0.5083128 -0.1764194), wk = 0.0000000
k( 3) = ( 0.8804236 0.5083128 -0.1764194), wk = 0.2500000
k( 4) = ( 1.7608472 1.0166256 -0.3528387), wk = 0.0000000
k( 5) = ( 0.8804236 -0.5083128 -0.3528387), wk = 0.5000000
k( 6) = ( 1.7608472 0.0000000 -0.5292581), wk = 0.0000000
k( 7) = ( 0.0000000 0.0000000 -0.5292581), wk = 0.2500000
k( 8) = ( 0.8804236 0.5083128 -0.7056775), wk = 0.0000000
k( 9) = ( 0.8804236 -0.5083128 0.1764194), wk = 0.5000000
k( 10) = ( 1.7608472 0.0000000 0.0000000), wk = 0.0000000
k( 11) = ( 0.8804236 0.5083128 0.3528387), wk = 0.2500000
k( 12) = ( 1.7608472 1.0166256 0.1764194), wk = 0.0000000
Dense grid: 29271 G-vectors FFT dimensions: ( 60, 60, 60)
Smooth grid: 10281 G-vectors FFT dimensions: ( 45, 45, 45)
Estimated max dynamical RAM per process > 20.65 MB
Estimated total dynamical RAM > 165.22 MB
Check: negative core charge= -0.000097
The potential is recalculated from file :
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/tempdir/HP/LiCoO2.save/charge-density
Number of +U iterations with fixed ns = 0
Starting occupations:
--- enter write_ns ---
LDA+U parameters:
U( 1) = 7.83000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 7.37170
eigenvalues:
0.352 0.352 0.994 0.994 0.994
eigenvectors:
0.000 0.000 0.000 0.000 1.000
0.436 0.197 0.019 0.349 0.000
0.197 0.436 0.349 0.019 0.000
0.114 0.253 0.600 0.033 0.000
0.253 0.114 0.033 0.600 0.000
occupations:
0.994 0.000 0.000 0.000 0.000
0.000 0.588 0.000 -0.000 -0.310
0.000 0.000 0.588 -0.310 0.000
0.000 -0.000 -0.310 0.758 -0.000
0.000 -0.310 0.000 -0.000 0.758
N of occupied +U levels = 7.371698
--- exit write_ns ---
Atomic wfc used for LDA+U Projector are orthogonalized
Starting wfcs are 20 atomic wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 1.00E-11, avg # of iterations = 14.7
total cpu time spent up to now is -1.0 secs
End of band structure calculation
k = 0.0000 0.0000 0.0000 ( 1273 PWs) bands (ev):
-84.3792 -47.8084 -47.8084 -47.6807 -33.3562 -9.2842 -7.4740 2.4743
4.6297 4.6297 6.8794 6.8794 7.7674 8.6229 8.7546 8.7546
k = 0.8804 0.5083-0.1764 ( 1296 PWs) bands (ev):
-84.3712 -47.8857 -47.8267 -47.6686 -33.3158 -7.5360 -7.4723 2.2538
4.3157 5.0646 5.2742 7.0662 7.0820 7.2077 7.4146 7.7035
k = 0.8804 0.5083-0.1764 ( 1296 PWs) bands (ev):
-84.3712 -47.8857 -47.8267 -47.6686 -33.3158 -7.5360 -7.4723 2.2538
4.3157 5.0646 5.2742 7.0662 7.0820 7.2077 7.4146 7.7035
k = 1.7608 1.0166-0.3528 ( 1273 PWs) bands (ev):
-84.3792 -47.8084 -47.8084 -47.6807 -33.3562 -9.2842 -7.4740 2.4743
4.6297 4.6297 6.8794 6.8794 7.7674 8.6229 8.7546 8.7546
k = 0.8804-0.5083-0.3528 ( 1284 PWs) bands (ev):
-84.3710 -47.8853 -47.8269 -47.6673 -33.3177 -7.5957 -7.4015 2.2051
4.3175 4.8427 5.3629 7.1466 7.1560 7.3352 7.3458 7.7114
k = 1.7608 0.0000-0.5293 ( 1296 PWs) bands (ev):
-84.3712 -47.8857 -47.8267 -47.6686 -33.3158 -7.5360 -7.4723 2.2538
4.3157 5.0646 5.2742 7.0662 7.0820 7.2077 7.4146 7.7035
k = 0.0000 0.0000-0.5293 ( 1268 PWs) bands (ev):
-84.3784 -47.8087 -47.8087 -47.6793 -33.3545 -9.1555 -7.6903 3.0875
4.6209 4.6209 6.9293 6.9293 7.0642 8.3444 8.6798 8.6798
k = 0.8804 0.5083-0.7057 ( 1284 PWs) bands (ev):
-84.3710 -47.8853 -47.8269 -47.6673 -33.3177 -7.5957 -7.4015 2.2051
4.3175 4.8427 5.3629 7.1466 7.1560 7.3352 7.3458 7.7114
k = 0.8804-0.5083 0.1764 ( 1296 PWs) bands (ev):
-84.3712 -47.8857 -47.8267 -47.6686 -33.3158 -7.5360 -7.4723 2.2538
4.3157 5.0646 5.2742 7.0662 7.0820 7.2077 7.4146 7.7035
k = 1.7608 0.0000 0.0000 ( 1284 PWs) bands (ev):
-84.3710 -47.8853 -47.8269 -47.6673 -33.3177 -7.5957 -7.4015 2.2051
4.3175 4.8427 5.3629 7.1466 7.1560 7.3352 7.3458 7.7114
k = 0.8804 0.5083 0.3528 ( 1284 PWs) bands (ev):
-84.3710 -47.8853 -47.8269 -47.6673 -33.3177 -7.5957 -7.4015 2.2051
4.3175 4.8427 5.3629 7.1466 7.1560 7.3352 7.3458 7.7114
k = 1.7608 1.0166 0.1764 ( 1268 PWs) bands (ev):
-84.3784 -47.8087 -47.8087 -47.6793 -33.3545 -9.1555 -7.6903 3.0875
4.6209 4.6209 6.9293 6.9293 7.0642 8.3444 8.6798 8.6798
highest occupied level (ev): 8.7546
Writing output data file LiCoO2.save/
Done!
WRITING LINEAR-RESPONSE SUMMARY:
Number of symmetries in the small group of q, nsymq = 4
+ the symmetry q -> -q+G
Symmetry matrices (and vectors of fractional translations if f/=0):
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 180 deg rotation - cryst. axis [0,1,0]
cryst. s( 2) = ( 0 -1 0 )
( -1 0 0 )
( 0 0 -1 )
cart. s( 2) = ( -0.5000000 -0.8660254 -0.0000000 )
( -0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 3 inversion
cryst. s( 3) = ( -1 0 0 )
( 0 -1 0 )
( 0 0 -1 )
cart. s( 3) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 4 inv. 180 deg rotation - cryst. axis [0,1,0]
cryst. s( 4) = ( 0 1 0 )
( 1 0 0 )
( 0 0 1 )
cart. s( 4) = ( 0.5000000 0.8660254 0.0000000 )
( 0.8660254 -0.5000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
This transformation sends q -> -q+G
isym = 5 identity
cryst. s( 5) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 5) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
G cutoff = 889.6635 ( 3659 G-vectors) FFT grid: ( 60, 60, 60)
G cutoff = 444.8318 ( 1286 G-vectors) smooth grid: ( 45, 45, 45)
Number of k (and k+q if q/=0) points = 12
cart. coord. (in units 2pi/alat)
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.2500000
k ( 2) = ( 0.8804236 0.5083128 -0.1764194), wk = 0.0000000
k ( 3) = ( 0.8804236 0.5083128 -0.1764194), wk = 0.2500000
k ( 4) = ( 1.7608472 1.0166256 -0.3528387), wk = 0.0000000
k ( 5) = ( 0.8804236 -0.5083128 -0.3528387), wk = 0.5000000
k ( 6) = ( 1.7608472 0.0000000 -0.5292581), wk = 0.0000000
k ( 7) = ( 0.0000000 0.0000000 -0.5292581), wk = 0.2500000
k ( 8) = ( 0.8804236 0.5083128 -0.7056775), wk = 0.0000000
k ( 9) = ( 0.8804236 -0.5083128 0.1764194), wk = 0.5000000
k ( 10) = ( 1.7608472 0.0000000 0.0000000), wk = 0.0000000
k ( 11) = ( 0.8804236 0.5083128 0.3528387), wk = 0.2500000
k ( 12) = ( 1.7608472 1.0166256 0.1764194), wk = 0.0000000
cryst. coord.
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.2500000
k ( 2) = ( -0.0000000 0.0000000 -0.5000000), wk = 0.0000000
k ( 3) = ( -0.0000000 0.0000000 -0.5000000), wk = 0.2500000
k ( 4) = ( -0.0000000 0.0000000 -1.0000000), wk = 0.0000000
k ( 5) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.5000000
k ( 6) = ( 0.0000000 -0.5000000 -1.0000000), wk = 0.0000000
k ( 7) = ( -0.5000000 -0.5000000 -0.5000000), wk = 0.2500000
k ( 8) = ( -0.5000000 -0.5000000 -1.0000000), wk = 0.0000000
k ( 9) = ( 0.5000000 0.0000000 0.0000000), wk = 0.5000000
k ( 10) = ( 0.5000000 0.0000000 -0.5000000), wk = 0.0000000
k ( 11) = ( 0.5000000 0.5000000 0.0000000), wk = 0.2500000
k ( 12) = ( 0.5000000 0.5000000 -0.5000000), wk = 0.0000000
Atomic wfc used for the DFT+U projector are orthogonalized
Total time spent up to now is:
HP : 12.14s CPU 12.37s WALL
=--------------------------------------------=
START SOLVING THE LINEAR SYSTEM
=--------------------------------------------=
atom # 1 q point # 2 iter # 1
chi: 1 -0.2837787880
Average number of iter. to solve lin. system: 23.8
Total CPU time : 13.2 s
atom # 1 q point # 2 iter # 2
chi: 1 0.1127957796 residue: 0.3965745676
Average number of iter. to solve lin. system: 18.5
Total CPU time : 14.1 s
atom # 1 q point # 2 iter # 3
chi: 1 -0.1010313960 residue: 0.2138271756
Average number of iter. to solve lin. system: 17.8
Total CPU time : 14.8 s
atom # 1 q point # 2 iter # 4
chi: 1 -0.0952534809 residue: 0.0057779151
Average number of iter. to solve lin. system: 18.5
Total CPU time : 15.5 s
atom # 1 q point # 2 iter # 5
chi: 1 -0.0924029997 residue: 0.0028504812
Average number of iter. to solve lin. system: 19.8
Total CPU time : 16.2 s
atom # 1 q point # 2 iter # 6
chi: 1 -0.0927919700 residue: 0.0003889703
Average number of iter. to solve lin. system: 18.3
Total CPU time : 16.9 s
atom # 1 q point # 2 iter # 7
chi: 1 -0.0928609061 residue: 0.0000689361
Average number of iter. to solve lin. system: 19.2
Total CPU time : 17.7 s
atom # 1 q point # 2 iter # 8
chi: 1 -0.0928382585 residue: 0.0000226477
Average number of iter. to solve lin. system: 20.0
Total CPU time : 18.4 s
atom # 1 q point # 2 iter # 9
chi: 1 -0.0928395669 residue: 0.0000013084
Average number of iter. to solve lin. system: 18.7
Total CPU time : 19.1 s
atom # 1 q point # 2 iter # 10
chi: 1 -0.0928427933 residue: 0.0000032264
Average number of iter. to solve lin. system: 20.2
Total CPU time : 19.9 s
atom # 1 q point # 2 iter # 11
chi: 1 -0.0928431490 residue: 0.0000003557
Average number of iter. to solve lin. system: 20.5
Total CPU time : 20.6 s
atom # 1 q point # 2 iter # 12
chi: 1 -0.0928429308 residue: 0.0000002181
Average number of iter. to solve lin. system: 17.7
Total CPU time : 21.3 s
atom # 1 q point # 2 iter # 13
chi: 1 -0.0928430920 residue: 0.0000001611
Average number of iter. to solve lin. system: 20.0
Total CPU time : 22.1 s
atom # 1 q point # 2 iter # 14
chi: 1 -0.0928429847 residue: 0.0000001072
Average number of iter. to solve lin. system: 18.5
Total CPU time : 22.8 s
atom # 1 q point # 2 iter # 15
chi: 1 -0.0928429765 residue: 0.0000000082
Average number of iter. to solve lin. system: 20.5
Total CPU time : 23.6 s
=--------------------------------------------=
CONVERGENCE HAS BEEN REACHED
=--------------------------------------------=
=-------------------------------------------------------------=
Calculation for q # 3 = ( 0.8804236 -0.5083128 -0.3528387 )
=-------------------------------------------------------------=
Performing NSCF calculation at all points k and k+q...
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 189 94 34 3658 1285 284
Max 190 95 35 3660 1286 285
Sum 1517 755 279 29271 10281 2279
bravais-lattice index = 5
lattice parameter (alat) = 9.3705 a.u.
unit-cell volume = 217.1091 (a.u.)^3
number of atoms/cell = 4
number of atomic types = 3
number of electrons = 32.00
number of Kohn-Sham states= 16
kinetic-energy cutoff = 50.0000 Ry
charge density cutoff = 400.0000 Ry
Exchange-correlation = PBESOL ( 1 4 10 8 0 0)
celldm(1)= 9.370500 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.838740 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 0.283954 -0.163941 0.944719 )
a(2) = ( 0.000000 0.327882 0.944719 )
a(3) = ( -0.283954 -0.163941 0.944719 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.760847 -1.016626 0.352839 )
b(2) = ( 0.000000 2.033251 0.352839 )
b(3) = ( -1.760847 -1.016626 0.352839 )
PseudoPot. # 1 for Co read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/Co.pbesol-spn-rrkjus_psl.0.3.1.UPF
MD5 check sum: be6bd9f12902551d80f7748aded6479c
Pseudo is Ultrasoft + core correction, Zval = 17.0
Generated using "atomic" code by A. Dal Corso v.6.3
Using radial grid of 1193 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
Q(r) pseudized with 0 coefficients
PseudoPot. # 2 for O read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/O.pbesol-n-rrkjus_psl.0.1.UPF
MD5 check sum: bd3a94f595980770d88934e89ba8e519
Pseudo is Ultrasoft + core correction, Zval = 6.0
Generated using "atomic" code by A. Dal Corso v.6.3MaX
Using radial grid of 1095 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
PseudoPot. # 3 for Li read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/Li.pbesol-s-rrkjus_psl.0.2.1.UPF
MD5 check sum: 7d78e5abfb8299c9ad50f6162b1076c3
Pseudo is Ultrasoft, Zval = 3.0
Generated using "atomic" code by A. Dal Corso v.5.0.2 svn rev. 9415
Using radial grid of 1017 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
atomic species valence mass pseudopotential
Co 17.00 59.00000 Co( 1.00)
O 6.00 16.00000 O ( 1.00)
Li 3.00 7.00000 Li( 1.00)
Simplified LDA+U calculation (l_max = 2) with parameters (eV):
atomic species L U alpha J0 beta
Co 2 7.8300 0.0000 0.0000 0.0000
12 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Co tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
2 O tau( 2) = ( 0.0000000 -0.0000000 0.7382650 )
3 O tau( 3) = ( 0.0000000 -0.0000000 2.0958909 )
4 Li tau( 4) = ( 0.0000000 -0.0000000 1.4170780 )
number of k points= 12
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.2500000
k( 2) = ( 0.8804236 -0.5083128 -0.3528387), wk = 0.0000000
k( 3) = ( 0.8804236 0.5083128 -0.1764194), wk = 0.5000000
k( 4) = ( 1.7608472 0.0000000 -0.5292581), wk = 0.0000000
k( 5) = ( 0.8804236 -0.5083128 -0.3528387), wk = 0.2500000
k( 6) = ( 1.7608472 -1.0166256 -0.7056775), wk = 0.0000000
k( 7) = ( 0.0000000 0.0000000 -0.5292581), wk = 0.2500000
k( 8) = ( 0.8804236 -0.5083128 -0.8820968), wk = 0.0000000
k( 9) = ( 0.8804236 -0.5083128 0.1764194), wk = 0.2500000
k( 10) = ( 1.7608472 -1.0166256 -0.1764194), wk = 0.0000000
k( 11) = ( 0.8804236 0.5083128 0.3528387), wk = 0.5000000
k( 12) = ( 1.7608472 -0.0000000 0.0000000), wk = 0.0000000
Dense grid: 29271 G-vectors FFT dimensions: ( 60, 60, 60)
Smooth grid: 10281 G-vectors FFT dimensions: ( 45, 45, 45)
Estimated max dynamical RAM per process > 20.66 MB
Estimated total dynamical RAM > 165.31 MB
Check: negative core charge= -0.000097
The potential is recalculated from file :
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/tempdir/HP/LiCoO2.save/charge-density
Number of +U iterations with fixed ns = 0
Starting occupations:
--- enter write_ns ---
LDA+U parameters:
U( 1) = 7.83000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 7.37170
eigenvalues:
0.352 0.352 0.994 0.994 0.994
eigenvectors:
0.000 0.000 0.000 0.000 1.000
0.436 0.197 0.019 0.349 0.000
0.197 0.436 0.349 0.019 0.000
0.114 0.253 0.600 0.033 0.000
0.253 0.114 0.033 0.600 0.000
occupations:
0.994 0.000 0.000 0.000 0.000
0.000 0.588 0.000 -0.000 -0.310
0.000 0.000 0.588 -0.310 0.000
0.000 -0.000 -0.310 0.758 -0.000
0.000 -0.310 0.000 -0.000 0.758
N of occupied +U levels = 7.371698
--- exit write_ns ---
Atomic wfc used for LDA+U Projector are orthogonalized
Starting wfcs are 20 atomic wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 1.00E-11, avg # of iterations = 14.7
total cpu time spent up to now is -1.0 secs
End of band structure calculation
k = 0.0000 0.0000 0.0000 ( 1273 PWs) bands (ev):
-84.3792 -47.8084 -47.8084 -47.6807 -33.3562 -9.2842 -7.4740 2.4743
4.6297 4.6297 6.8794 6.8794 7.7674 8.6229 8.7546 8.7546
k = 0.8804-0.5083-0.3528 ( 1284 PWs) bands (ev):
-84.3710 -47.8853 -47.8269 -47.6673 -33.3177 -7.5957 -7.4015 2.2051
4.3175 4.8427 5.3629 7.1466 7.1560 7.3352 7.3458 7.7114
k = 0.8804 0.5083-0.1764 ( 1296 PWs) bands (ev):
-84.3712 -47.8857 -47.8267 -47.6686 -33.3158 -7.5360 -7.4723 2.2538
4.3157 5.0646 5.2742 7.0662 7.0820 7.2077 7.4146 7.7035
k = 1.7608 0.0000-0.5293 ( 1296 PWs) bands (ev):
-84.3712 -47.8857 -47.8267 -47.6686 -33.3158 -7.5360 -7.4723 2.2538
4.3157 5.0646 5.2742 7.0662 7.0820 7.2077 7.4146 7.7035
k = 0.8804-0.5083-0.3528 ( 1284 PWs) bands (ev):
-84.3710 -47.8853 -47.8269 -47.6673 -33.3177 -7.5957 -7.4015 2.2051
4.3175 4.8427 5.3629 7.1466 7.1560 7.3352 7.3458 7.7114
k = 1.7608-1.0166-0.7057 ( 1273 PWs) bands (ev):
-84.3792 -47.8084 -47.8084 -47.6807 -33.3562 -9.2842 -7.4740 2.4743
4.6297 4.6297 6.8794 6.8794 7.7674 8.6229 8.7546 8.7546
k = 0.0000 0.0000-0.5293 ( 1268 PWs) bands (ev):
-84.3784 -47.8087 -47.8087 -47.6793 -33.3545 -9.1555 -7.6903 3.0875
4.6209 4.6209 6.9293 6.9293 7.0642 8.3444 8.6798 8.6798
k = 0.8804-0.5083-0.8821 ( 1296 PWs) bands (ev):
-84.3712 -47.8857 -47.8267 -47.6686 -33.3158 -7.5360 -7.4723 2.2538
4.3157 5.0646 5.2742 7.0662 7.0820 7.2077 7.4146 7.7035
k = 0.8804-0.5083 0.1764 ( 1296 PWs) bands (ev):
-84.3712 -47.8857 -47.8267 -47.6686 -33.3158 -7.5360 -7.4723 2.2538
4.3157 5.0646 5.2742 7.0662 7.0820 7.2077 7.4146 7.7035
k = 1.7608-1.0166-0.1764 ( 1268 PWs) bands (ev):
-84.3784 -47.8087 -47.8087 -47.6793 -33.3545 -9.1555 -7.6903 3.0875
4.6209 4.6209 6.9293 6.9293 7.0642 8.3444 8.6798 8.6798
k = 0.8804 0.5083 0.3528 ( 1284 PWs) bands (ev):
-84.3710 -47.8853 -47.8269 -47.6673 -33.3177 -7.5957 -7.4015 2.2051
4.3175 4.8427 5.3629 7.1466 7.1560 7.3352 7.3458 7.7114
k = 1.7608-0.0000 0.0000 ( 1284 PWs) bands (ev):
-84.3710 -47.8853 -47.8269 -47.6673 -33.3177 -7.5957 -7.4015 2.2051
4.3175 4.8427 5.3629 7.1466 7.1560 7.3352 7.3458 7.7114
highest occupied level (ev): 8.7546
Writing output data file LiCoO2.save/
Done!
WRITING LINEAR-RESPONSE SUMMARY:
Number of symmetries in the small group of q, nsymq = 4
+ the symmetry q -> -q+G
Symmetry matrices (and vectors of fractional translations if f/=0):
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 inversion
cryst. s( 2) = ( -1 0 0 )
( 0 -1 0 )
( 0 0 -1 )
cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 3 180 deg rotation - cryst. axis [1,1,0]
cryst. s( 3) = ( -1 0 0 )
( 0 0 -1 )
( 0 -1 0 )
cart. s( 3) = ( -0.5000000 0.8660254 0.0000000 )
( 0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 4 inv. 180 deg rotation - cryst. axis [1,1,0]
cryst. s( 4) = ( 1 0 0 )
( 0 0 1 )
( 0 1 0 )
cart. s( 4) = ( 0.5000000 -0.8660254 -0.0000000 )
( -0.8660254 -0.5000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
This transformation sends q -> -q+G
isym = 5 identity
cryst. s( 5) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 5) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
G cutoff = 889.6635 ( 3659 G-vectors) FFT grid: ( 60, 60, 60)
G cutoff = 444.8318 ( 1286 G-vectors) smooth grid: ( 45, 45, 45)
Number of k (and k+q if q/=0) points = 12
cart. coord. (in units 2pi/alat)
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.2500000
k ( 2) = ( 0.8804236 -0.5083128 -0.3528387), wk = 0.0000000
k ( 3) = ( 0.8804236 0.5083128 -0.1764194), wk = 0.5000000
k ( 4) = ( 1.7608472 0.0000000 -0.5292581), wk = 0.0000000
k ( 5) = ( 0.8804236 -0.5083128 -0.3528387), wk = 0.2500000
k ( 6) = ( 1.7608472 -1.0166256 -0.7056775), wk = 0.0000000
k ( 7) = ( 0.0000000 0.0000000 -0.5292581), wk = 0.2500000
k ( 8) = ( 0.8804236 -0.5083128 -0.8820968), wk = 0.0000000
k ( 9) = ( 0.8804236 -0.5083128 0.1764194), wk = 0.2500000
k ( 10) = ( 1.7608472 -1.0166256 -0.1764194), wk = 0.0000000
k ( 11) = ( 0.8804236 0.5083128 0.3528387), wk = 0.5000000
k ( 12) = ( 1.7608472 -0.0000000 0.0000000), wk = 0.0000000
cryst. coord.
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.2500000
k ( 2) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.0000000
k ( 3) = ( -0.0000000 0.0000000 -0.5000000), wk = 0.5000000
k ( 4) = ( 0.0000000 -0.5000000 -1.0000000), wk = 0.0000000
k ( 5) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.2500000
k ( 6) = ( 0.0000000 -1.0000000 -1.0000000), wk = 0.0000000
k ( 7) = ( -0.5000000 -0.5000000 -0.5000000), wk = 0.2500000
k ( 8) = ( -0.5000000 -1.0000000 -1.0000000), wk = 0.0000000
k ( 9) = ( 0.5000000 0.0000000 0.0000000), wk = 0.2500000
k ( 10) = ( 0.5000000 -0.5000000 -0.5000000), wk = 0.0000000
k ( 11) = ( 0.5000000 0.5000000 0.0000000), wk = 0.5000000
k ( 12) = ( 0.5000000 -0.0000000 -0.5000000), wk = 0.0000000
Atomic wfc used for the DFT+U projector are orthogonalized
Total time spent up to now is:
HP : 24.37s CPU 24.78s WALL
=--------------------------------------------=
START SOLVING THE LINEAR SYSTEM
=--------------------------------------------=
atom # 1 q point # 3 iter # 1
chi: 1 -0.2823818666
Average number of iter. to solve lin. system: 24.0
Total CPU time : 25.6 s
atom # 1 q point # 3 iter # 2
chi: 1 0.1139081954 residue: 0.3962900620
Average number of iter. to solve lin. system: 18.3
Total CPU time : 26.3 s
atom # 1 q point # 3 iter # 3
chi: 1 -0.1000873049 residue: 0.2139955003
Average number of iter. to solve lin. system: 17.8
Total CPU time : 27.0 s
atom # 1 q point # 3 iter # 4
chi: 1 -0.0945148823 residue: 0.0055724225
Average number of iter. to solve lin. system: 19.0
Total CPU time : 27.7 s
atom # 1 q point # 3 iter # 5
chi: 1 -0.0919921948 residue: 0.0025226875
Average number of iter. to solve lin. system: 20.2
Total CPU time : 28.5 s
atom # 1 q point # 3 iter # 6
chi: 1 -0.0924357196 residue: 0.0004435248
Average number of iter. to solve lin. system: 17.8
Total CPU time : 29.1 s
atom # 1 q point # 3 iter # 7
chi: 1 -0.0925959601 residue: 0.0001602405
Average number of iter. to solve lin. system: 18.8
Total CPU time : 29.9 s
atom # 1 q point # 3 iter # 8
chi: 1 -0.0925479053 residue: 0.0000480548
Average number of iter. to solve lin. system: 20.3
Total CPU time : 30.6 s
atom # 1 q point # 3 iter # 9
chi: 1 -0.0925475998 residue: 0.0000003055
Average number of iter. to solve lin. system: 18.8
Total CPU time : 31.3 s
atom # 1 q point # 3 iter # 10
chi: 1 -0.0925501746 residue: 0.0000025748
Average number of iter. to solve lin. system: 20.3
Total CPU time : 32.1 s
atom # 1 q point # 3 iter # 11
chi: 1 -0.0925505834 residue: 0.0000004088
Average number of iter. to solve lin. system: 21.2
Total CPU time : 32.9 s
atom # 1 q point # 3 iter # 12
chi: 1 -0.0925504036 residue: 0.0000001798
Average number of iter. to solve lin. system: 18.5
Total CPU time : 33.6 s
atom # 1 q point # 3 iter # 13
chi: 1 -0.0925504446 residue: 0.0000000410
Average number of iter. to solve lin. system: 20.3
Total CPU time : 34.3 s
atom # 1 q point # 3 iter # 14
chi: 1 -0.0925504204 residue: 0.0000000242
Average number of iter. to solve lin. system: 20.5
Total CPU time : 35.1 s
atom # 1 q point # 3 iter # 15
chi: 1 -0.0925504395 residue: 0.0000000191
Average number of iter. to solve lin. system: 19.7
Total CPU time : 35.8 s
atom # 1 q point # 3 iter # 16
chi: 1 -0.0925504250 residue: 0.0000000145
Average number of iter. to solve lin. system: 18.5
Total CPU time : 36.5 s
atom # 1 q point # 3 iter # 17
chi: 1 -0.0925504249 residue: 0.0000000001
Average number of iter. to solve lin. system: 19.7
Total CPU time : 37.3 s
=--------------------------------------------=
CONVERGENCE HAS BEEN REACHED
=--------------------------------------------=
=-------------------------------------------------------------=
Calculation for q # 4 = ( 0.0000000 0.0000000 -0.5292581 )
=-------------------------------------------------------------=
Performing NSCF calculation at all points k and k+q...
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 189 94 30 3658 1285 233
Max 190 95 31 3660 1286 234
Sum 1517 755 241 29271 10281 1865
bravais-lattice index = 5
lattice parameter (alat) = 9.3705 a.u.
unit-cell volume = 217.1091 (a.u.)^3
number of atoms/cell = 4
number of atomic types = 3
number of electrons = 32.00
number of Kohn-Sham states= 16
kinetic-energy cutoff = 50.0000 Ry
charge density cutoff = 400.0000 Ry
Exchange-correlation = PBESOL ( 1 4 10 8 0 0)
celldm(1)= 9.370500 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.838740 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 0.283954 -0.163941 0.944719 )
a(2) = ( 0.000000 0.327882 0.944719 )
a(3) = ( -0.283954 -0.163941 0.944719 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.760847 -1.016626 0.352839 )
b(2) = ( 0.000000 2.033251 0.352839 )
b(3) = ( -1.760847 -1.016626 0.352839 )
PseudoPot. # 1 for Co read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/Co.pbesol-spn-rrkjus_psl.0.3.1.UPF
MD5 check sum: be6bd9f12902551d80f7748aded6479c
Pseudo is Ultrasoft + core correction, Zval = 17.0
Generated using "atomic" code by A. Dal Corso v.6.3
Using radial grid of 1193 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
Q(r) pseudized with 0 coefficients
PseudoPot. # 2 for O read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/O.pbesol-n-rrkjus_psl.0.1.UPF
MD5 check sum: bd3a94f595980770d88934e89ba8e519
Pseudo is Ultrasoft + core correction, Zval = 6.0
Generated using "atomic" code by A. Dal Corso v.6.3MaX
Using radial grid of 1095 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
PseudoPot. # 3 for Li read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/Li.pbesol-s-rrkjus_psl.0.2.1.UPF
MD5 check sum: 7d78e5abfb8299c9ad50f6162b1076c3
Pseudo is Ultrasoft, Zval = 3.0
Generated using "atomic" code by A. Dal Corso v.5.0.2 svn rev. 9415
Using radial grid of 1017 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
atomic species valence mass pseudopotential
Co 17.00 59.00000 Co( 1.00)
O 6.00 16.00000 O ( 1.00)
Li 3.00 7.00000 Li( 1.00)
Simplified LDA+U calculation (l_max = 2) with parameters (eV):
atomic species L U alpha J0 beta
Co 2 7.8300 0.0000 0.0000 0.0000
12 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Co tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
2 O tau( 2) = ( 0.0000000 -0.0000000 0.7382650 )
3 O tau( 3) = ( 0.0000000 -0.0000000 2.0958909 )
4 Li tau( 4) = ( 0.0000000 -0.0000000 1.4170780 )
number of k points= 8
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.2500000
k( 2) = ( 0.0000000 0.0000000 -0.5292581), wk = 0.0000000
k( 3) = ( 0.8804236 0.5083128 -0.1764194), wk = 0.7500000
k( 4) = ( 0.8804236 0.5083128 -0.7056775), wk = 0.0000000
k( 5) = ( 0.8804236 -0.5083128 -0.3528387), wk = 0.7500000
k( 6) = ( 0.8804236 -0.5083128 -0.8820968), wk = 0.0000000
k( 7) = ( 0.0000000 0.0000000 -0.5292581), wk = 0.2500000
k( 8) = ( 0.0000000 0.0000000 -1.0585162), wk = 0.0000000
Dense grid: 29271 G-vectors FFT dimensions: ( 60, 60, 60)
Smooth grid: 10281 G-vectors FFT dimensions: ( 45, 45, 45)
Estimated max dynamical RAM per process > 20.53 MB
Estimated total dynamical RAM > 164.26 MB
Check: negative core charge= -0.000097
The potential is recalculated from file :
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/tempdir/HP/LiCoO2.save/charge-density
Number of +U iterations with fixed ns = 0
Starting occupations:
--- enter write_ns ---
LDA+U parameters:
U( 1) = 7.83000000
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 7.37170
eigenvalues:
0.352 0.352 0.994 0.994 0.994
eigenvectors:
0.000 0.000 0.000 0.000 1.000
0.436 0.197 0.019 0.349 0.000
0.197 0.436 0.349 0.019 0.000
0.114 0.253 0.600 0.033 0.000
0.253 0.114 0.033 0.600 0.000
occupations:
0.994 0.000 0.000 0.000 0.000
0.000 0.588 0.000 -0.000 -0.310
0.000 0.000 0.588 -0.310 0.000
0.000 -0.000 -0.310 0.758 -0.000
0.000 -0.310 0.000 -0.000 0.758
N of occupied +U levels = 7.371698
--- exit write_ns ---
Atomic wfc used for LDA+U Projector are orthogonalized
Starting wfcs are 20 atomic wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 1.00E-11, avg # of iterations = 14.5
total cpu time spent up to now is -1.0 secs
End of band structure calculation
k = 0.0000 0.0000 0.0000 ( 1273 PWs) bands (ev):
-84.3792 -47.8084 -47.8084 -47.6807 -33.3562 -9.2842 -7.4740 2.4743
4.6297 4.6297 6.8794 6.8794 7.7674 8.6229 8.7546 8.7546
k = 0.0000 0.0000-0.5293 ( 1268 PWs) bands (ev):
-84.3784 -47.8087 -47.8087 -47.6793 -33.3545 -9.1555 -7.6903 3.0875
4.6209 4.6209 6.9293 6.9293 7.0642 8.3444 8.6798 8.6798
k = 0.8804 0.5083-0.1764 ( 1296 PWs) bands (ev):
-84.3712 -47.8857 -47.8267 -47.6686 -33.3158 -7.5360 -7.4723 2.2538
4.3157 5.0646 5.2742 7.0662 7.0820 7.2077 7.4146 7.7035
k = 0.8804 0.5083-0.7057 ( 1284 PWs) bands (ev):
-84.3710 -47.8853 -47.8269 -47.6673 -33.3177 -7.5957 -7.4015 2.2051
4.3175 4.8427 5.3629 7.1466 7.1560 7.3352 7.3458 7.7114
k = 0.8804-0.5083-0.3528 ( 1284 PWs) bands (ev):
-84.3710 -47.8853 -47.8269 -47.6673 -33.3177 -7.5957 -7.4015 2.2051
4.3175 4.8427 5.3629 7.1466 7.1560 7.3352 7.3458 7.7114
k = 0.8804-0.5083-0.8821 ( 1296 PWs) bands (ev):
-84.3712 -47.8857 -47.8267 -47.6686 -33.3158 -7.5360 -7.4723 2.2538
4.3157 5.0646 5.2742 7.0662 7.0820 7.2077 7.4146 7.7035
k = 0.0000 0.0000-0.5293 ( 1268 PWs) bands (ev):
-84.3784 -47.8087 -47.8087 -47.6793 -33.3545 -9.1555 -7.6903 3.0875
4.6209 4.6209 6.9293 6.9293 7.0642 8.3444 8.6798 8.6798
k = 0.0000 0.0000-1.0585 ( 1273 PWs) bands (ev):
-84.3792 -47.8084 -47.8084 -47.6807 -33.3562 -9.2842 -7.4740 2.4743
4.6297 4.6297 6.8794 6.8794 7.7674 8.6229 8.7546 8.7546
highest occupied level (ev): 8.7546
Writing output data file LiCoO2.save/
Done!
WRITING LINEAR-RESPONSE SUMMARY:
Number of symmetries in the small group of q, nsymq = 12
+ the symmetry q -> -q+G
Symmetry matrices (and vectors of fractional translations if f/=0):
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 inversion
cryst. s( 2) = ( -1 0 0 )
( 0 -1 0 )
( 0 0 -1 )
cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 3 180 deg rotation - cryst. axis [1,1,0]
cryst. s( 3) = ( -1 0 0 )
( 0 0 -1 )
( 0 -1 0 )
cart. s( 3) = ( -0.5000000 0.8660254 0.0000000 )
( 0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 4 inv. 180 deg rotation - cryst. axis [1,1,0]
cryst. s( 4) = ( 1 0 0 )
( 0 0 1 )
( 0 1 0 )
cart. s( 4) = ( 0.5000000 -0.8660254 -0.0000000 )
( -0.8660254 -0.5000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 5 180 deg rotation - cart. axis [1,0,0]
cryst. s( 5) = ( 0 0 -1 )
( 0 -1 0 )
( -1 0 0 )
cart. s( 5) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 6 180 deg rotation - cryst. axis [0,1,0]
cryst. s( 6) = ( 0 -1 0 )
( -1 0 0 )
( 0 0 -1 )
cart. s( 6) = ( -0.5000000 -0.8660254 -0.0000000 )
( -0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 7 120 deg rotation - cryst. axis [0,0,1]
cryst. s( 7) = ( 0 1 0 )
( 0 0 1 )
( 1 0 0 )
cart. s( 7) = ( -0.5000000 -0.8660254 -0.0000000 )
( 0.8660254 -0.5000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 8 inv. 180 deg rotation - cart. axis [1,0,0]
cryst. s( 8) = ( 0 0 1 )
( 0 1 0 )
( 1 0 0 )
cart. s( 8) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 9 inv. 120 deg rotation - cryst. axis [0,0,1]
cryst. s( 9) = ( 0 -1 0 )
( 0 0 -1 )
( -1 0 0 )
cart. s( 9) = ( 0.5000000 0.8660254 0.0000000 )
( -0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 10 inv. 120 deg rotation - cryst. axis [0,0,-1]
cryst. s(10) = ( 0 0 -1 )
( -1 0 0 )
( 0 -1 0 )
cart. s(10) = ( 0.5000000 -0.8660254 -0.0000000 )
( 0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 11 120 deg rotation - cryst. axis [0,0,-1]
cryst. s(11) = ( 0 0 1 )
( 1 0 0 )
( 0 1 0 )
cart. s(11) = ( -0.5000000 0.8660254 0.0000000 )
( -0.8660254 -0.5000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 12 inv. 180 deg rotation - cryst. axis [0,1,0]
cryst. s(12) = ( 0 1 0 )
( 1 0 0 )
( 0 0 1 )
cart. s(12) = ( 0.5000000 0.8660254 0.0000000 )
( 0.8660254 -0.5000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
This transformation sends q -> -q+G
isym = 13 identity
cryst. s(13) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s(13) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 -0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
G cutoff = 889.6635 ( 3659 G-vectors) FFT grid: ( 60, 60, 60)
G cutoff = 444.8318 ( 1286 G-vectors) smooth grid: ( 45, 45, 45)
Number of k (and k+q if q/=0) points = 8
cart. coord. (in units 2pi/alat)
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.2500000
k ( 2) = ( 0.0000000 0.0000000 -0.5292581), wk = 0.0000000
k ( 3) = ( 0.8804236 0.5083128 -0.1764194), wk = 0.7500000
k ( 4) = ( 0.8804236 0.5083128 -0.7056775), wk = 0.0000000
k ( 5) = ( 0.8804236 -0.5083128 -0.3528387), wk = 0.7500000
k ( 6) = ( 0.8804236 -0.5083128 -0.8820968), wk = 0.0000000
k ( 7) = ( 0.0000000 0.0000000 -0.5292581), wk = 0.2500000
k ( 8) = ( 0.0000000 0.0000000 -1.0585162), wk = 0.0000000
cryst. coord.
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.2500000
k ( 2) = ( -0.5000000 -0.5000000 -0.5000000), wk = 0.0000000
k ( 3) = ( -0.0000000 0.0000000 -0.5000000), wk = 0.7500000
k ( 4) = ( -0.5000000 -0.5000000 -1.0000000), wk = 0.0000000
k ( 5) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.7500000
k ( 6) = ( -0.5000000 -1.0000000 -1.0000000), wk = 0.0000000
k ( 7) = ( -0.5000000 -0.5000000 -0.5000000), wk = 0.2500000
k ( 8) = ( -1.0000000 -1.0000000 -1.0000000), wk = 0.0000000
Atomic wfc used for the DFT+U projector are orthogonalized
Total time spent up to now is:
HP : 37.49s CPU 38.16s WALL
=--------------------------------------------=
START SOLVING THE LINEAR SYSTEM
=--------------------------------------------=
atom # 1 q point # 4 iter # 1
chi: 1 -0.2575622834
Average number of iter. to solve lin. system: 18.5
Total CPU time : 38.7 s
atom # 1 q point # 4 iter # 2
chi: 1 0.0876525128 residue: 0.3452147962
Average number of iter. to solve lin. system: 14.2
Total CPU time : 39.2 s
atom # 1 q point # 4 iter # 3
chi: 1 -0.0945622773 residue: 0.1822147901
Average number of iter. to solve lin. system: 14.8
Total CPU time : 39.7 s
atom # 1 q point # 4 iter # 4
chi: 1 -0.0892034183 residue: 0.0053588590
Average number of iter. to solve lin. system: 15.2
Total CPU time : 40.2 s
atom # 1 q point # 4 iter # 5
chi: 1 -0.0870298155 residue: 0.0021736028
Average number of iter. to solve lin. system: 16.5
Total CPU time : 40.7 s
atom # 1 q point # 4 iter # 6
chi: 1 -0.0871942712 residue: 0.0001644557
Average number of iter. to solve lin. system: 16.8
Total CPU time : 41.2 s
atom # 1 q point # 4 iter # 7
chi: 1 -0.0871575511 residue: 0.0000367201
Average number of iter. to solve lin. system: 16.8
Total CPU time : 41.7 s
atom # 1 q point # 4 iter # 8
chi: 1 -0.0871537190 residue: 0.0000038320
Average number of iter. to solve lin. system: 16.8
Total CPU time : 42.3 s
atom # 1 q point # 4 iter # 9
chi: 1 -0.0871437984 residue: 0.0000099206
Average number of iter. to solve lin. system: 16.5
Total CPU time : 42.8 s
atom # 1 q point # 4 iter # 10
chi: 1 -0.0871466626 residue: 0.0000028642
Average number of iter. to solve lin. system: 15.5
Total CPU time : 43.3 s
atom # 1 q point # 4 iter # 11
chi: 1 -0.0871485165 residue: 0.0000018539
Average number of iter. to solve lin. system: 16.0
Total CPU time : 43.8 s
atom # 1 q point # 4 iter # 12
chi: 1 -0.0871491896 residue: 0.0000006732
Average number of iter. to solve lin. system: 16.8
Total CPU time : 44.4 s
atom # 1 q point # 4 iter # 13
chi: 1 -0.0871490159 residue: 0.0000001738
Average number of iter. to solve lin. system: 16.2
Total CPU time : 45.0 s
atom # 1 q point # 4 iter # 14
chi: 1 -0.0871490499 residue: 0.0000000340
Average number of iter. to solve lin. system: 16.8
Total CPU time : 45.6 s
atom # 1 q point # 4 iter # 15
chi: 1 -0.0871490170 residue: 0.0000000329
Average number of iter. to solve lin. system: 17.8
Total CPU time : 46.2 s
atom # 1 q point # 4 iter # 16
chi: 1 -0.0871490321 residue: 0.0000000151
Average number of iter. to solve lin. system: 15.5
Total CPU time : 46.7 s
atom # 1 q point # 4 iter # 17
chi: 1 -0.0871490315 residue: 0.0000000006
Average number of iter. to solve lin. system: 16.8
Total CPU time : 47.3 s
=--------------------------------------------=
CONVERGENCE HAS BEEN REACHED
=--------------------------------------------=
Computing the sum over q of the response occupation matrices...
q # 1 = 0.000000000 0.000000000 0.000000000
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
q # 2 = 0.880423607 0.508312806 -0.176419367
Number of q in the star = 3
List of q in the star:
1 0.880423607 0.508312806 -0.176419367
2 0.880423607 -0.508312806 0.176419367
3 0.000000000 1.016625613 0.176419367
q # 3 = 0.880423607 -0.508312806 -0.352838734
Number of q in the star = 3
List of q in the star:
1 0.880423607 -0.508312806 -0.352838734
2 0.880423607 0.508312806 0.352838734
3 0.000000000 -1.016625613 0.352838734
q # 4 = 0.000000000 0.000000000 -0.529258101
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 -0.529258101
Post-processing calculation of Hubbard parameters ...
PRINTING TIMING FROM PWSCF ROUTINES:
init_run : 0.85s CPU 0.85s WALL ( 3 calls)
electrons : 2.32s CPU 2.36s WALL ( 3 calls)
Called by init_run:
wfcinit : 0.02s CPU 0.02s WALL ( 3 calls)
wfcinit:atom : 0.00s CPU 0.00s WALL ( 32 calls)
wfcinit:wfcr : 0.20s CPU 0.21s WALL ( 32 calls)
potinit : 0.05s CPU 0.05s WALL ( 3 calls)
hinit0 : 0.68s CPU 0.68s WALL ( 3 calls)
Called by electrons:
c_bands : 2.32s CPU 2.36s WALL ( 3 calls)
v_of_rho : 0.05s CPU 0.05s WALL ( 4 calls)
v_h : 0.00s CPU 0.00s WALL ( 4 calls)
v_xc : 0.05s CPU 0.05s WALL ( 4 calls)
newd : 0.06s CPU 0.06s WALL ( 4 calls)
Called by c_bands:
init_us_2 : 0.04s CPU 0.04s WALL ( 448 calls)
cegterg : 2.10s CPU 2.13s WALL ( 32 calls)
Called by sum_band:
Called by *egterg:
h_psi : 30.12s CPU 30.63s WALL ( 9975 calls)
s_psi : 0.50s CPU 0.50s WALL ( 19814 calls)
g_psi : 0.01s CPU 0.01s WALL ( 468 calls)
cdiaghg : 0.29s CPU 0.29s WALL ( 500 calls)
cegterg:over : 0.05s CPU 0.04s WALL ( 468 calls)
cegterg:upda : 0.01s CPU 0.02s WALL ( 468 calls)
cegterg:last : 0.02s CPU 0.02s WALL ( 138 calls)
Called by h_psi:
h_psi:pot : 29.91s CPU 30.40s WALL ( 9975 calls)
h_psi:calbec : 0.40s CPU 0.37s WALL ( 9975 calls)
vloc_psi : 29.27s CPU 29.74s WALL ( 9975 calls)
add_vuspsi : 0.23s CPU 0.26s WALL ( 9975 calls)
vhpsi : 0.18s CPU 0.20s WALL ( 9975 calls)
General routines
calbec : 0.83s CPU 0.82s WALL ( 30137 calls)
fft : 0.79s CPU 0.85s WALL ( 1058 calls)
ffts : 0.02s CPU 0.03s WALL ( 139 calls)
fftw : 30.02s CPU 29.94s WALL ( 231712 calls)
interpolate : 0.08s CPU 0.11s WALL ( 139 calls)
davcio : 0.20s CPU 0.27s WALL ( 13135 calls)
Parallel routines
fft_scatt_xy : 3.35s CPU 3.98s WALL ( 232909 calls)
fft_scatt_yz : 5.68s CPU 5.99s WALL ( 232909 calls)
Hubbard U routines
vhpsi : 0.18s CPU 0.20s WALL ( 9975 calls)
init_vloc : 0.13s CPU 0.13s WALL ( 4 calls)
init_us_1 : 0.53s CPU 0.53s WALL ( 4 calls)
newd : 0.06s CPU 0.06s WALL ( 4 calls)
add_vuspsi : 0.23s CPU 0.26s WALL ( 9975 calls)
PRINTING TIMING FROM HP ROUTINES:
hp_setup_q : 0.15s CPU 0.14s WALL ( 4 calls)
hp_init_q : 0.02s CPU 0.02s WALL ( 4 calls)
hp_solve_lin : 42.10s CPU 42.88s WALL ( 4 calls)
hp_dvpsi_per : 0.01s CPU 0.01s WALL ( 328 calls)
hp_dnsq : 0.03s CPU 0.03s WALL ( 66 calls)
hp_symdnsq : 0.00s CPU 0.00s WALL ( 66 calls)
hp_dnstot_su : 0.00s CPU 0.00s WALL ( 1 calls)
hp_rotate_dn : 0.00s CPU 0.00s WALL ( 8 calls)
hp_calc_chi : 0.00s CPU 0.00s WALL ( 1 calls)
hp_vpsifft : 1.43s CPU 1.46s WALL ( 308 calls)
hp_sphi : 0.02s CPU 0.02s WALL ( 4 calls)
hp_run_nscf : 3.18s CPU 3.23s WALL ( 3 calls)
hp_psymdvscf : 5.52s CPU 5.52s WALL ( 66 calls)
PRINTING TIMING FROM LR MODULE:
ortho : 0.04s CPU 0.04s WALL ( 328 calls)
cgsolve : 29.77s CPU 30.28s WALL ( 328 calls)
ch_psi : 29.49s CPU 30.03s WALL ( 9443 calls)
incdrhoscf : 1.58s CPU 1.63s WALL ( 328 calls)
dv_of_drho : 0.86s CPU 0.88s WALL ( 66 calls)
mix_pot : 0.21s CPU 0.32s WALL ( 66 calls)
setup_dgc : 0.12s CPU 0.12s WALL ( 4 calls)
setup_dmuxc : 0.02s CPU 0.02s WALL ( 4 calls)
setup_nbnd_o : 0.00s CPU 0.00s WALL ( 4 calls)
cft_wave : 1.33s CPU 1.35s WALL ( 9856 calls)
USPP ROUTINES:
newdq : 1.22s CPU 1.24s WALL ( 66 calls)
adddvscf : 0.03s CPU 0.03s WALL ( 308 calls)
addusdbec : 0.02s CPU 0.02s WALL ( 328 calls)
HP : 46.42s CPU 47.26s WALL
This run was terminated on: 17:52:10 6Sep2018
=------------------------------------------------------------------------------=
JOB DONE.
=------------------------------------------------------------------------------=