quantum-espresso/test-suite/epw_mob/benchmark.out.git.inp=epw3....

321 lines
14 KiB
Plaintext

``:oss/
`.+s+. .+ys--yh+ `./ss+.
-sh//yy+` +yy +yy -+h+-oyy
-yh- .oyy/.-sh. .syo-.:sy- /yh
`.-.` `yh+ -oyyyo. `/syys: oys `.`
`/+ssys+-` `sh+ ` oys` .:osyo`
-yh- ./syyooyo` .sys+/oyo--yh/
`yy+ .-:-. `-/+/:` -sh-
/yh. oys
``..---hho---------` .---------..` `.-----.` -hd+---.
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
-yh- ```````````````` ````````` `` `` oys
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
S. Ponce, E. R. Margine, C. Verdi, and F. Giustino,
Comput. Phys. Commun. 209, 116 (2016)
Program EPW v.5.0.0 starts on 4Feb2019 at 17:34:55
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 1 processors
MPI processes distributed on 1 nodes
------------------------------------------------------------------------
RESTART - RESTART - RESTART - RESTART
Restart is done without reading PWSCF save file.
Be aware that some consistency checks are therefore not done.
------------------------------------------------------------------------
--
bravais-lattice index = 0
lattice parameter (a_0) = 0.0000 a.u.
unit-cell volume = 0.0000 (a.u.)^3
number of atoms/cell = 0
number of atomic types = 0
kinetic-energy cut-off = 0.0000 Ry
charge density cut-off = 0.0000 Ry
Exchange-correlation = not set (-1 -1 -1 -1-1-1)
celldm(1)= 0.00000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( 0.0000 0.0000 0.0000 )
a(2) = ( 0.0000 0.0000 0.0000 )
a(3) = ( 0.0000 0.0000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( 0.0000 0.0000 0.0000 )
b(2) = ( 0.0000 0.0000 0.0000 )
b(3) = ( 0.0000 0.0000 0.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (a_0 units)
No symmetry!
G cutoff = 0.0000 ( 0 G-vectors) FFT grid: ( 0, 0, 0)
number of k points= 0
cart. coord. in units 2pi/a_0
EPW : 0.00s CPU 0.00s WALL
EPW : 0.00s CPU 0.00s WALL
No wavefunction gauge setting applied
-------------------------------------------------------------------
Using si.ukk from disk
-------------------------------------------------------------------
Using kmap and kgmap from disk
Do not need to read .epb files; read .fmt files
Band disentanglement is used: nbndsub = 16
Use zone-centred Wigner-Seitz cells
Number of WS vectors for electrons 93
Number of WS vectors for phonons 19
Number of WS vectors for electron-phonon 19
Maximum number of cores for efficient parallelization 114
Results may improve by using use_ws == .true.
Reading Hamiltonian, Dynamical matrix and EP vertex in Wann rep from file
Reading interatomic force constants
IFC last -0.0032828
Norm of the difference between old and new effective charges: 0.0000000
Norm of the difference between old and new force-constants: 0.0000291
Imposed crystal ASR
Finished reading ifcs
Finished reading Wann rep data from file
===================================================================
Memory usage: VmHWM = 13Mb
VmPeak = 272Mb
===================================================================
Using uniform q-mesh: 12 12 12
Size of q point mesh for interpolation: 1728
Using k-mesh file: ./kpt.txt
Size of k point mesh for interpolation: 210
Max number of k points per pool: 210
Fermi energy coarse grid = 0.000000 eV
Fermi energy is calculated from the fine k-mesh: Ef = 6.868910 eV
Warning: check if difference with Fermi level fine grid makes sense
===================================================================
Applying a scissor shift of 0.70000 eV to the conduction states
ibndmin = 3 ebndmin = 0.363
ibndmax = 12 ebndmax = 0.636
Number of ep-matrix elements per pool : 63000 ~= 492.19 Kb (@ 8 bytes/ DP)
Reading selecq.fmt file.
We only need to compute 1728 q-points
Restart from tau_CB: 1728/ 1728
Restart from tau: 1728/ 1728
Temperature 300.000 K
Valence band maximum = 6.302838 eV
Conduction band minimum = 7.610953 eV
Mobility VB Fermi level 6.841096 eV
Valence band maximum = 6.302838 eV
Conduction band minimum = 7.610953 eV
Mobility CB Fermi level 7.107123 eV
Temperature 350.000 K
Valence band maximum = 6.302838 eV
Conduction band minimum = 7.610953 eV
Mobility VB Fermi level 6.935694 eV
Valence band maximum = 6.302838 eV
Conduction band minimum = 7.610953 eV
Mobility CB Fermi level 7.022715 eV
Temperature 400.000 K
Valence band maximum = 6.302838 eV
Conduction band minimum = 7.610953 eV
Mobility VB Fermi level 7.030724 eV
Valence band maximum = 6.302838 eV
Conduction band minimum = 7.610953 eV
Mobility CB Fermi level 6.938080 eV
Temperature 450.000 K
Valence band maximum = 6.302838 eV
Conduction band minimum = 7.610953 eV
Mobility VB Fermi level 7.126114 eV
Valence band maximum = 6.302838 eV
Conduction band minimum = 7.610953 eV
Mobility CB Fermi level 6.853219 eV
Temperature 500.000 K
Valence band maximum = 6.302838 eV
Conduction band minimum = 7.610953 eV
Mobility VB Fermi level 7.221813 eV
Valence band maximum = 6.302838 eV
Conduction band minimum = 7.610953 eV
Mobility CB Fermi level 6.768138 eV
Temperature 300.000 K
Average over degenerate eigenstates is performed
Average over degenerate eigenstates in CB is performed
Writing scattering rate to file
Temperature 350.000 K
Average over degenerate eigenstates is performed
Average over degenerate eigenstates in CB is performed
Writing scattering rate to file
Temperature 400.000 K
Average over degenerate eigenstates is performed
Average over degenerate eigenstates in CB is performed
Writing scattering rate to file
Temperature 450.000 K
Average over degenerate eigenstates is performed
Average over degenerate eigenstates in CB is performed
Writing scattering rate to file
Temperature 500.000 K
Average over degenerate eigenstates is performed
Average over degenerate eigenstates in CB is performed
Writing scattering rate to file
Creation of the final restart point
===================================================================
Temp [K] Fermi [eV] Hole density [cm^-3] Hole mobility [cm^2/Vs]
===================================================================
300.000 6.8411 0.100000E+14 0.160070E+03 x-axis
0.219443E+03 y-axis
0.220769E+03 z-axis
0.200094E+03 avg
350.000 6.9357 0.999999E+13 0.115351E+03 x-axis
0.156122E+03 y-axis
0.158137E+03 z-axis
0.143203E+03 avg
400.000 7.0307 0.100000E+14 0.870560E+02 x-axis
0.116333E+03 y-axis
0.119386E+03 z-axis
0.107592E+03 avg
450.000 7.1261 0.100001E+14 0.680915E+02 x-axis
0.899683E+02 y-axis
0.938222E+02 z-axis
0.839607E+02 avg
500.000 7.2218 0.999991E+13 0.547700E+02 x-axis
0.716872E+02 y-axis
0.760530E+02 z-axis
0.675034E+02 avg
===================================================================
Temp [K] Fermi [eV] Elec density [cm^-3] Elec mobility [cm^2/Vs]
===================================================================
300.000 7.1071 0.999991E+13 0.207706E+04 x-axis
0.355034E+04 y-axis
0.355278E+04 z-axis
0.306006E+04 avg
350.000 7.0227 0.100001E+14 0.153034E+04 x-axis
0.261549E+04 y-axis
0.261856E+04 z-axis
0.225480E+04 avg
400.000 6.9381 0.999994E+13 0.115751E+04 x-axis
0.197798E+04 y-axis
0.198145E+04 z-axis
0.170565E+04 avg
450.000 6.8532 0.999999E+13 0.896101E+03 x-axis
0.153099E+04 y-axis
0.153468E+04 z-axis
0.132059E+04 avg
500.000 6.7681 0.999999E+13 0.708077E+03 x-axis
0.120949E+04 y-axis
0.121324E+04 z-axis
0.104360E+04 avg
Note: Mobility are sorted by ascending values and might not correspond
to the expected (x,y,z) axis.
Total time so far
SCAT : 0.02s CPU 0.02s WALL ( 1 calls)
MOB : 0.00s CPU 0.00s WALL ( 1 calls)
===================================================================
Memory usage: VmHWM = 22Mb
VmPeak = 303Mb
===================================================================
Unfolding on the coarse grid
elphon_wrap : 0.00s CPU 0.00s WALL ( 1 calls)
INITIALIZATION:
Electron-Phonon interpolation
ephwann : 0.23s CPU 0.24s WALL ( 1 calls)
ep-interp : 0.06s CPU 0.06s WALL ( 1 calls)
DynW2B : 0.00s CPU 0.00s WALL ( 1 calls)
HamW2B : 0.03s CPU 0.03s WALL ( 420 calls)
ephW2Bp : 0.00s CPU 0.01s WALL ( 1 calls)
Total program execution
EPW : 0.23s CPU 0.24s WALL
Please consider citing:
S. Ponce, E. R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
In addition, if you used anisotropic Eliashberg superconductivity please cite:
E. R. Margine and F. Giustino, Phys. Rev. B 87, 024505 (2013)
if you used transport properties (scattering rates, mobility) please cite:
S. Ponce, E. R. Margine and F. Giustino, Phys. Rev. B 97, 121201 (2018)