quantum-espresso/XSpectra/examples/reference/SiO2.xspectra_dip_plane.out

667 lines
33 KiB
Plaintext

Program XSpectra v.5.2.0 (svn rev. 11610M) starts on 20Aug2015 at 16:19:36
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 1 processors
-------------------------------------------------------------------------
__ ____ _
\ \/ / _\_ __ ___ ___| |_ _ __ __ _
\ /\ \| '_ \ / _ \/ __| __| '__/ _` |
/ \_\ \ |_) | __/ (__| |_| | | (_| |
/_/\_\__/ .__/ \___|\___|\__|_| \__,_|
|_|
In publications arising from the use of XSpectra, please cite:
- O. Bunau and M. Calandra,
Phys. Rev. B 87, 205105 (2013)
- Ch. Gougoussis, M. Calandra, A. P. Seitsonen, F. Mauri,
Phys. Rev. B 80, 075102 (2009)
- M. Taillefumier, D. Cabaret, A. M. Flank, and F. Mauri,
Phys. Rev. B 66, 195107 (2002)
-------------------------------------------------------------------------
Reading input_file
-------------------------------------------------------------------------
calculation: xanes_dipole
xepsilon [crystallographic coordinates]: 1.000000 1.000000 0.000000
xonly_plot: FALSE
=> complete calculation: Lanczos + spectrum plot
filecore (core-wavefunction file): Si.wfc
main plot parameters:
cut_occ_states: TRUE
gamma_mode: constant
-> using xgamma [eV]: 0.80
xemin [eV]: -10.00
xemax [eV]: 100.00
xnepoint: 1000
energy zero automatically set to the Fermi level
Fermi level determined from SCF save directory (SiO2.save)
NB: For an insulator (SCF calculated with occupations="fixed")
the Fermi level will be placed at the position of HOMO.
WARNING: variable ef_r is obsolete
-------------------------------------------------------------------------
Reading SCF save directory: SiO2.save
-------------------------------------------------------------------------
Reading data from directory:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/SiO2.save
Info: using nr1, nr2, nr3 values from input
Info: using nr1, nr2, nr3 values from input
IMPORTANT: XC functional enforced from input :
Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
WARNING: atomic wfc # 2 for atom type 1 has zero norm
WARNING: atomic wfc # 2 for atom type 2 has zero norm
file O_PBE_USPP.UPF: wavefunction(s) 2S renormalized
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 889 475 151 23595 9203 1559
the Fermi energy is 6.4758 ev
-------------------------------------------------------------------------
Getting the Fermi energy
-------------------------------------------------------------------------
From SCF save directory:
ef [eV]: 6.4758
-> ef (in eV) will be written in x_save_file
-------------------------------------------------------------------------
Energy zero of the spectrum
-------------------------------------------------------------------------
-> ef will be used as energy zero of the spectrum
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 889 475 169 23595 9203 2057
bravais-lattice index = 4
lattice parameter (alat) = 9.2863 a.u.
unit-cell volume = 762.9417 (a.u.)^3
number of atoms/cell = 9
number of atomic types = 3
number of electrons = 48.00
number of Kohn-Sham states= 30
kinetic-energy cutoff = 20.0000 Ry
charge density cutoff = 150.0000 Ry
Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0 0)
celldm(1)= 9.286303 celldm(2)= 0.000000 celldm(3)= 1.100100
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.000000 0.000000 0.000000 )
a(2) = ( -0.500000 0.866025 0.000000 )
a(3) = ( 0.000000 0.000000 1.100100 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.000000 0.577350 -0.000000 )
b(2) = ( 0.000000 1.154701 0.000000 )
b(3) = ( 0.000000 -0.000000 0.909008 )
PseudoPot. # 1 for Si read from file:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/Si_PBE_USPP.UPF
MD5 check sum: 2fb286e7979bc4fe35b54746d77eb429
Pseudo is Ultrasoft, Zval = 4.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1141 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
PseudoPot. # 2 for Si read from file:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/Si_PBE_USPP.UPF
MD5 check sum: 2fb286e7979bc4fe35b54746d77eb429
Pseudo is Ultrasoft, Zval = 4.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1141 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
PseudoPot. # 3 for O read from file:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/O_PBE_USPP.UPF
MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9
Pseudo is Ultrasoft, Zval = 6.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1269 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
atomic species valence mass pseudopotential
Sih 4.00 28.08600 Si( 1.00)
Si 4.00 28.08600 Si( 1.00)
O 6.00 15.99940 O ( 1.00)
2 Sym. Ops. (no inversion) found
Cartesian axes
site n. atom positions (alat units)
1 Sih tau( 1) = ( 0.4700000 0.0000000 0.0000000 )
2 Si tau( 2) = ( -0.2350000 0.4070319 0.7334000 )
3 Si tau( 3) = ( -0.2350000 -0.4070319 0.3667000 )
4 O tau( 4) = ( 0.2792500 0.2318350 0.1308019 )
5 O tau( 5) = ( 0.0611500 0.3577551 0.6025981 )
6 O tau( 6) = ( -0.3404000 0.1259201 0.8642019 )
7 O tau( 7) = ( -0.3404000 -0.1259201 0.2358981 )
8 O tau( 8) = ( 0.0611500 -0.3577551 0.4975019 )
9 O tau( 9) = ( 0.2792500 -0.2318350 -0.1308019 )
number of k points= 27 Methfessel-Paxton smearing, width (Ry)= 0.0300
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0740741
k( 2) = ( 0.0000000 0.0000000 0.3030028), wk = 0.0740741
k( 3) = ( 0.0000000 0.0000000 0.6060055), wk = 0.0740741
k( 4) = ( 0.0000000 0.3849002 0.0000000), wk = 0.0740741
k( 5) = ( 0.0000000 0.3849002 0.3030028), wk = 0.0740741
k( 6) = ( 0.0000000 0.3849002 0.6060055), wk = 0.0740741
k( 7) = ( 0.0000000 0.7698004 0.0000000), wk = 0.0740741
k( 8) = ( 0.0000000 0.7698004 0.3030028), wk = 0.0740741
k( 9) = ( 0.0000000 0.7698004 0.6060055), wk = 0.0740741
k( 10) = ( 0.3333333 0.1924501 0.0000000), wk = 0.0740741
k( 11) = ( 0.3333333 0.1924501 0.3030028), wk = 0.0740741
k( 12) = ( 0.3333333 0.1924501 0.6060055), wk = 0.0740741
k( 13) = ( 0.3333333 0.5773503 0.0000000), wk = 0.0740741
k( 14) = ( 0.3333333 0.5773503 0.3030028), wk = 0.0740741
k( 15) = ( 0.3333333 0.5773503 0.6060055), wk = 0.0740741
k( 16) = ( 0.3333333 0.9622504 0.0000000), wk = 0.0740741
k( 17) = ( 0.3333333 0.9622504 0.3030028), wk = 0.0740741
k( 18) = ( 0.3333333 0.9622504 0.6060055), wk = 0.0740741
k( 19) = ( 0.6666667 0.3849002 0.0000000), wk = 0.0740741
k( 20) = ( 0.6666667 0.3849002 0.3030028), wk = 0.0740741
k( 21) = ( 0.6666667 0.3849002 0.6060055), wk = 0.0740741
k( 22) = ( 0.6666667 0.7698004 0.0000000), wk = 0.0740741
k( 23) = ( 0.6666667 0.7698004 0.3030028), wk = 0.0740741
k( 24) = ( 0.6666667 0.7698004 0.6060055), wk = 0.0740741
k( 25) = ( 0.6666667 1.1547005 0.0000000), wk = 0.0740741
k( 26) = ( 0.6666667 1.1547005 0.3030028), wk = 0.0740741
k( 27) = ( 0.6666667 1.1547005 0.6060055), wk = 0.0740741
Dense grid: 23595 G-vectors FFT dimensions: ( 40, 40, 40)
Smooth grid: 9203 G-vectors FFT dimensions: ( 27, 27, 30)
Largest allocated arrays est. size (Mb) dimensions
Kohn-Sham Wavefunctions 0.54 Mb ( 1184, 30)
NL pseudopotentials 1.30 Mb ( 1184, 72)
Each V/rho on FFT grid 0.98 Mb ( 64000)
Each G-vector array 0.18 Mb ( 23595)
G-vector shells 0.01 Mb ( 1138)
Largest temporary arrays est. size (Mb) dimensions
Auxiliary wavefunctions 0.54 Mb ( 1184, 30)
Each subspace H/S matrix 0.01 Mb ( 30, 30)
Each <psi_i|beta_j> matrix 0.03 Mb ( 72, 30)
The potential is recalculated from file :
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/SiO2.save/charge-density.dat
Starting wfc are 60 atomic wfcs
-------------------------------------------------------------------------
Reading core wavefunction file for the absorbing atom
-------------------------------------------------------------------------
Si.wfc successfully read
-------------------------------------------------------------------------
Attributing the PAW radii
for the absorbing atom [units: Bohr radius]
-------------------------------------------------------------------------
PAW proj 1: r_paw(l= 0)= 3.60 (1.5*r_cut)
PAW proj 2: r_paw(l= 0)= 3.60 (1.5*r_cut)
PAW proj 3: r_paw(l= 1)= 2.40 (from input file))
PAW proj 4: r_paw(l= 1)= 2.40 (from input file))
PAW proj 5: r_paw(l= 2)= 3.00 (1.5*r_cut)
NB: The calculation will not necessary use all these r_paw values.
- For a edge in the electric-dipole approximation,
only the r_paw(l=1) values are used.
- For a K edge in the electric-quadrupole approximation,
only the r_paw(l=2) values are used.
- For a L2 or L3 edge in the electric-quadrupole approximation,
all projectors (s, p and d) are used.
init_gipaw_1: projectors nearly linearly dependent:
ntyp = 1, l/n1/n2 = 1 2 1 0.99554741
-------------------------------------------------------------------------
Starting XANES calculation
in the electric dipole approximation
-------------------------------------------------------------------------
Method of calculation based on the Lanczos recursion algorithm
--------------------------------------------------------------
- STEP 1: Construction of a kpoint-dependent Lanczos basis,
in which the Hamiltonian is tridiagonal (each 'iter'
corresponds to the calculation of one more Lanczos vector)
- STEP 2: Calculation of the cross-section as a continued fraction
averaged over the k-points.
... Begin STEP 1 ...
Radial transition matrix element(s) used in the calculation of the
initial vector of the Lanczos basis (|tilde{phi}_abs> normalized)
| For PAW proj. (l=1) #1: radial matrix element = 0.026695735
| For PAW proj. (l=1) #2: radial matrix element = 0.024893931
|-------------------------------------------------------------
! k-point # 1: ( 0.0000, 0.0000, 0.0000), 0.0741, 1
|-------------------------------------------------------------
| Hilbert space is saturated
| xniter is set equal to 1155
| Increase kinetic-energy cutoff in your SCF calculation!
okvan= T
| Norm of the initial Lanczos vector: 0.14416406E-01
| Estimated error at iter 50: 1.00285791
| Estimated error at iter 100: 0.10220550
| Estimated error at iter 150: 0.02496042
| Estimated error at iter 200: 0.00642121
| Estimated error at iter 250: 0.00296386
| Estimated error at iter 300: 0.00120615
! => CONVERGED at iter 350 with error= 0.00022332
|-------------------------------------------------------------
! k-point # 2: ( 0.0000, 0.0000, 0.3030), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14420525E-01
| Estimated error at iter 50: 1.00287314
| Estimated error at iter 100: 0.06648453
| Estimated error at iter 150: 0.03238287
| Estimated error at iter 200: 0.00863399
| Estimated error at iter 250: 0.00350046
! => CONVERGED at iter 300 with error= 0.00097219
|-------------------------------------------------------------
! k-point # 3: ( 0.0000, 0.0000, 0.6060), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14420525E-01
| Estimated error at iter 50: 1.00287314
| Estimated error at iter 100: 0.06648453
| Estimated error at iter 150: 0.03237380
| Estimated error at iter 200: 0.00868710
| Estimated error at iter 250: 0.00361713
! => CONVERGED at iter 300 with error= 0.00093606
|-------------------------------------------------------------
! k-point # 4: ( 0.0000, 0.3849, 0.0000), 0.0741, 1
|-------------------------------------------------------------
| Hilbert space is saturated
| xniter is set equal to 1150
| Increase kinetic-energy cutoff in your SCF calculation!
okvan= T
| Norm of the initial Lanczos vector: 0.14418568E-01
| Estimated error at iter 50: 1.00286630
| Estimated error at iter 100: 0.07806384
| Estimated error at iter 150: 0.02270751
| Estimated error at iter 200: 0.00763963
| Estimated error at iter 250: 0.00347398
! => CONVERGED at iter 300 with error= 0.00097101
|-------------------------------------------------------------
! k-point # 5: ( 0.0000, 0.3849, 0.3030), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14418642E-01
| Estimated error at iter 50: 1.00285087
| Estimated error at iter 100: 0.10388944
| Estimated error at iter 150: 0.02777892
| Estimated error at iter 200: 0.00961158
| Estimated error at iter 250: 0.00243900
! => CONVERGED at iter 300 with error= 0.00095643
|-------------------------------------------------------------
! k-point # 6: ( 0.0000, 0.3849, 0.6060), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14418540E-01
| Estimated error at iter 50: 1.00284246
| Estimated error at iter 100: 0.10568030
| Estimated error at iter 150: 0.02368441
| Estimated error at iter 200: 0.01140207
| Estimated error at iter 250: 0.00397433
| Estimated error at iter 300: 0.00120563
! => CONVERGED at iter 350 with error= 0.00045807
|-------------------------------------------------------------
! k-point # 7: ( 0.0000, 0.7698, 0.0000), 0.0741, 1
|-------------------------------------------------------------
| Hilbert space is saturated
| xniter is set equal to 1150
| Increase kinetic-energy cutoff in your SCF calculation!
okvan= T
| Norm of the initial Lanczos vector: 0.14418568E-01
| Estimated error at iter 50: 1.00286630
| Estimated error at iter 100: 0.07806384
| Estimated error at iter 150: 0.02322226
| Estimated error at iter 200: 0.00841092
| Estimated error at iter 250: 0.00355133
! => CONVERGED at iter 300 with error= 0.00092155
|-------------------------------------------------------------
! k-point # 8: ( 0.0000, 0.7698, 0.3030), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14418540E-01
| Estimated error at iter 50: 1.00284246
| Estimated error at iter 100: 0.10568030
| Estimated error at iter 150: 0.02365731
| Estimated error at iter 200: 0.01120968
| Estimated error at iter 250: 0.00365714
| Estimated error at iter 300: 0.00121210
! => CONVERGED at iter 350 with error= 0.00047476
|-------------------------------------------------------------
! k-point # 9: ( 0.0000, 0.7698, 0.6060), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14418642E-01
| Estimated error at iter 50: 1.00285087
| Estimated error at iter 100: 0.10388944
| Estimated error at iter 150: 0.02779008
| Estimated error at iter 200: 0.00959134
| Estimated error at iter 250: 0.00243589
| Estimated error at iter 300: 0.00100320
! => CONVERGED at iter 350 with error= 0.00035482
|-------------------------------------------------------------
! k-point # 10: ( 0.3333, 0.1925, 0.0000), 0.0741, 1
|-------------------------------------------------------------
| Hilbert space is saturated
| xniter is set equal to 1150
| Increase kinetic-energy cutoff in your SCF calculation!
okvan= T
| Norm of the initial Lanczos vector: 0.14418502E-01
| Estimated error at iter 50: 1.00284298
| Estimated error at iter 100: 0.08020650
| Estimated error at iter 150: 0.01893203
| Estimated error at iter 200: 0.01041788
| Estimated error at iter 250: 0.00267328
| Estimated error at iter 300: 0.00139538
! => CONVERGED at iter 350 with error= 0.00040613
|-------------------------------------------------------------
! k-point # 11: ( 0.3333, 0.1925, 0.3030), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14418536E-01
| Estimated error at iter 50: 1.00285067
| Estimated error at iter 100: 0.09633836
| Estimated error at iter 150: 0.02790117
| Estimated error at iter 200: 0.00931780
| Estimated error at iter 250: 0.00373912
| Estimated error at iter 300: 0.00116677
! => CONVERGED at iter 350 with error= 0.00049841
|-------------------------------------------------------------
! k-point # 12: ( 0.3333, 0.1925, 0.6060), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14418582E-01
| Estimated error at iter 50: 1.00284899
| Estimated error at iter 100: 0.10553797
| Estimated error at iter 150: 0.03349060
| Estimated error at iter 200: 0.00931366
| Estimated error at iter 250: 0.00252475
! => CONVERGED at iter 300 with error= 0.00096040
|-------------------------------------------------------------
! k-point # 13: ( 0.3333, 0.5774, 0.0000), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14418892E-01
| Estimated error at iter 50: 1.00285727
| Estimated error at iter 100: 0.11175884
| Estimated error at iter 150: 0.02788370
| Estimated error at iter 200: 0.01052806
| Estimated error at iter 250: 0.00271636
| Estimated error at iter 300: 0.00120508
! => CONVERGED at iter 350 with error= 0.00034133
|-------------------------------------------------------------
! k-point # 14: ( 0.3333, 0.5774, 0.3030), 0.0741, 1
|-------------------------------------------------------------
| Hilbert space is saturated
| xniter is set equal to 1149
| Increase kinetic-energy cutoff in your SCF calculation!
okvan= T
| Norm of the initial Lanczos vector: 0.14419298E-01
| Estimated error at iter 50: 1.00286104
| Estimated error at iter 100: 0.09886444
| Estimated error at iter 150: 0.02922640
| Estimated error at iter 200: 0.00844608
| Estimated error at iter 250: 0.00379074
| Estimated error at iter 300: 0.00121239
! => CONVERGED at iter 350 with error= 0.00045422
|-------------------------------------------------------------
! k-point # 15: ( 0.3333, 0.5774, 0.6060), 0.0741, 1
|-------------------------------------------------------------
| Hilbert space is saturated
| xniter is set equal to 1149
| Increase kinetic-energy cutoff in your SCF calculation!
okvan= T
| Norm of the initial Lanczos vector: 0.14419207E-01
| Estimated error at iter 50: 1.00285608
| Estimated error at iter 100: 0.09002052
| Estimated error at iter 150: 0.02458730
| Estimated error at iter 200: 0.00945907
| Estimated error at iter 250: 0.00315732
| Estimated error at iter 300: 0.00101711
! => CONVERGED at iter 350 with error= 0.00048322
|-------------------------------------------------------------
! k-point # 16: ( 0.3333, 0.9623, 0.0000), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14417328E-01
| Estimated error at iter 50: 1.00286310
| Estimated error at iter 100: 0.06774535
| Estimated error at iter 150: 0.02357116
| Estimated error at iter 200: 0.00838638
| Estimated error at iter 250: 0.00418068
| Estimated error at iter 300: 0.00141662
! => CONVERGED at iter 350 with error= 0.00043569
|-------------------------------------------------------------
! k-point # 17: ( 0.3333, 0.9623, 0.3030), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14418029E-01
| Estimated error at iter 50: 1.00287936
| Estimated error at iter 100: 0.10303751
| Estimated error at iter 150: 0.02665293
| Estimated error at iter 200: 0.00648680
| Estimated error at iter 250: 0.00321893
| Estimated error at iter 300: 0.00120863
! => CONVERGED at iter 350 with error= 0.00044714
|-------------------------------------------------------------
! k-point # 18: ( 0.3333, 0.9623, 0.6060), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14417936E-01
| Estimated error at iter 50: 1.00287700
| Estimated error at iter 100: 0.06057265
| Estimated error at iter 150: 0.03226833
| Estimated error at iter 200: 0.00965904
| Estimated error at iter 250: 0.00359912
| Estimated error at iter 300: 0.00126258
! => CONVERGED at iter 350 with error= 0.00046354
|-------------------------------------------------------------
! k-point # 19: ( 0.6667, 0.3849, 0.0000), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14418502E-01
| Estimated error at iter 50: 1.00284298
| Estimated error at iter 100: 0.08020650
| Estimated error at iter 150: 0.01894350
| Estimated error at iter 200: 0.01043853
| Estimated error at iter 250: 0.00258924
| Estimated error at iter 300: 0.00137870
! => CONVERGED at iter 350 with error= 0.00041345
|-------------------------------------------------------------
! k-point # 20: ( 0.6667, 0.3849, 0.3030), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14418582E-01
| Estimated error at iter 50: 1.00284899
| Estimated error at iter 100: 0.10553797
| Estimated error at iter 150: 0.03348668
| Estimated error at iter 200: 0.00929784
| Estimated error at iter 250: 0.00256009
! => CONVERGED at iter 300 with error= 0.00077772
|-------------------------------------------------------------
! k-point # 21: ( 0.6667, 0.3849, 0.6060), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14418536E-01
| Estimated error at iter 50: 1.00285067
| Estimated error at iter 100: 0.09633836
| Estimated error at iter 150: 0.02784002
| Estimated error at iter 200: 0.00922105
| Estimated error at iter 250: 0.00372334
| Estimated error at iter 300: 0.00133213
! => CONVERGED at iter 350 with error= 0.00052854
|-------------------------------------------------------------
! k-point # 22: ( 0.6667, 0.7698, 0.0000), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14417328E-01
| Estimated error at iter 50: 1.00286310
| Estimated error at iter 100: 0.06774535
| Estimated error at iter 150: 0.02352101
| Estimated error at iter 200: 0.00834749
| Estimated error at iter 250: 0.00417297
| Estimated error at iter 300: 0.00141797
! => CONVERGED at iter 350 with error= 0.00045171
|-------------------------------------------------------------
! k-point # 23: ( 0.6667, 0.7698, 0.3030), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14417936E-01
| Estimated error at iter 50: 1.00287700
| Estimated error at iter 100: 0.06057265
| Estimated error at iter 150: 0.03208685
| Estimated error at iter 200: 0.00902490
| Estimated error at iter 250: 0.00360896
| Estimated error at iter 300: 0.00132837
! => CONVERGED at iter 350 with error= 0.00042903
|-------------------------------------------------------------
! k-point # 24: ( 0.6667, 0.7698, 0.6060), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14418029E-01
| Estimated error at iter 50: 1.00287936
| Estimated error at iter 100: 0.10303751
| Estimated error at iter 150: 0.02666422
| Estimated error at iter 200: 0.00641288
| Estimated error at iter 250: 0.00316254
| Estimated error at iter 300: 0.00122437
! => CONVERGED at iter 350 with error= 0.00044749
|-------------------------------------------------------------
! k-point # 25: ( 0.6667, 1.1547, 0.0000), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14418892E-01
| Estimated error at iter 50: 1.00285727
| Estimated error at iter 100: 0.11175884
| Estimated error at iter 150: 0.02786077
| Estimated error at iter 200: 0.01067946
| Estimated error at iter 250: 0.00275440
| Estimated error at iter 300: 0.00118450
! => CONVERGED at iter 350 with error= 0.00032406
|-------------------------------------------------------------
! k-point # 26: ( 0.6667, 1.1547, 0.3030), 0.0741, 1
|-------------------------------------------------------------
| Hilbert space is saturated
| xniter is set equal to 1149
| Increase kinetic-energy cutoff in your SCF calculation!
okvan= T
| Norm of the initial Lanczos vector: 0.14419207E-01
| Estimated error at iter 50: 1.00285608
| Estimated error at iter 100: 0.09002052
| Estimated error at iter 150: 0.02456326
| Estimated error at iter 200: 0.00942122
| Estimated error at iter 250: 0.00321415
| Estimated error at iter 300: 0.00104321
! => CONVERGED at iter 350 with error= 0.00050974
|-------------------------------------------------------------
! k-point # 27: ( 0.6667, 1.1547, 0.6060), 0.0741, 1
|-------------------------------------------------------------
| Hilbert space is saturated
| xniter is set equal to 1149
| Increase kinetic-energy cutoff in your SCF calculation!
okvan= T
| Norm of the initial Lanczos vector: 0.14419298E-01
| Estimated error at iter 50: 1.00286104
| Estimated error at iter 100: 0.09886444
| Estimated error at iter 150: 0.02872318
| Estimated error at iter 200: 0.00677022
| Estimated error at iter 250: 0.00377436
| Estimated error at iter 300: 0.00131576
! => CONVERGED at iter 350 with error= 0.00047527
Results of STEP 1 successfully written in x_save_file
x_save_file name:
-> SiO2.xspectra_dip_plane.sav
x_save_file version: 2
... End STEP 1 ...
... Begin STEP 2 ...
The spectrum is calculated using the following parameters:
energy-zero of the spectrum [eV]: 6.4758
the occupied states are cut
xemin [eV]: -10.00
xemax [eV]: 100.00
xnepoint: 1000
constant broadening parameter [eV]: 0.800
Core level energy [eV]: -1839.
(from electron binding energy of neutral atoms in X-ray data booklet)
Cross-section successfully written in xanes.dat
... End STEP 2 ...
xanes : 66.39s CPU 67.23s WALL ( 1 calls)
-------------------------------------------------------------------------
END JOB XSpectra
-------------------------------------------------------------------------