quantum-espresso/XSpectra/examples/reference/NiO.xspectra_qua.out

539 lines
24 KiB
Plaintext

Program XSpectra v.5.2.0 (svn rev. 11610M) starts on 20Aug2015 at 16:29:51
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 1 processors
-------------------------------------------------------------------------
__ ____ _
\ \/ / _\_ __ ___ ___| |_ _ __ __ _
\ /\ \| '_ \ / _ \/ __| __| '__/ _` |
/ \_\ \ |_) | __/ (__| |_| | | (_| |
/_/\_\__/ .__/ \___|\___|\__|_| \__,_|
|_|
In publications arising from the use of XSpectra, please cite:
- O. Bunau and M. Calandra,
Phys. Rev. B 87, 205105 (2013)
- Ch. Gougoussis, M. Calandra, A. P. Seitsonen, F. Mauri,
Phys. Rev. B 80, 075102 (2009)
- M. Taillefumier, D. Cabaret, A. M. Flank, and F. Mauri,
Phys. Rev. B 66, 195107 (2002)
-------------------------------------------------------------------------
Reading input_file
-------------------------------------------------------------------------
calculation: xanes_qyadrupole
xepsilon [crystallographic coordinates]: 1.000000 -1.000000 0.000000
xonly_plot: FALSE
=> complete calculation: Lanczos + spectrum plot
filecore (core-wavefunction file): Ni.wfc
main plot parameters:
cut_occ_states: TRUE
gamma_mode: constant
-> using xgamma [eV]: 0.80
xemin [eV]: -10.00
xemax [eV]: 20.00
xnepoint: 300
energy zero automatically set to the Fermi level
Fermi level determined from SCF save directory (NiO.save)
NB: For an insulator (SCF calculated with occupations="fixed")
the Fermi level will be placed at the position of HOMO.
WARNING: variable ef_r is obsolete
-------------------------------------------------------------------------
Reading SCF save directory: NiO.save
-------------------------------------------------------------------------
Reading data from directory:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/NiO.save
Info: using nr1, nr2, nr3 values from input
Info: using nr1, nr2, nr3 values from input
IMPORTANT: XC functional enforced from input :
Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
file Ni_PBE_TM_2pj.UPF: wavefunction(s) 3S 3P 3D renormalized
file Ni_PBE_TM_2pj.UPF: wavefunction(s) 3S 3P 3D renormalized
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 1151 1151 287 19477 19477 2437
Generating pointlists ...
new r_m : 0.1684 (alat units) 1.6287 (a.u.) for type 1
new r_m : 0.1684 (alat units) 1.6287 (a.u.) for type 2
new r_m : 0.1684 (alat units) 1.6287 (a.u.) for type 3
highest occupied level (ev): 13.9509
-------------------------------------------------------------------------
Getting the Fermi energy
-------------------------------------------------------------------------
From SCF save directory (spin polarized work):
ehomo [eV]: 13.9509 (highest occupied level:max of up and down)
No LUMO values in SCF calculation
ef [eV]: 13.9509
-> ef (in eV) will be written in x_save_file
-------------------------------------------------------------------------
Energy zero of the spectrum
-------------------------------------------------------------------------
-> ef will be used as energy zero of the spectrum
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 1151 1151 331 19477 19477 3009
Generating pointlists ...
bravais-lattice index = 5
lattice parameter (alat) = 9.6715 a.u.
unit-cell volume = 246.2189 (a.u.)^3
number of atoms/cell = 4
number of atomic types = 3
number of electrons = 48.00 (up: 24.00, down: 24.00)
number of Kohn-Sham states= 24
kinetic-energy cutoff = 70.0000 Ry
charge density cutoff = 280.0000 Ry
Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0 0)
celldm(1)= 9.671550 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.833333 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 0.288675 -0.166667 0.942809 )
a(2) = ( 0.000000 0.333333 0.942809 )
a(3) = ( -0.288675 -0.166667 0.942809 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.732051 -1.000000 0.353553 )
b(2) = ( 0.000000 2.000000 0.353553 )
b(3) = ( -1.732051 -1.000000 0.353553 )
PseudoPot. # 1 for Ni read from file:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/Ni_PBE_TM_2pj.UPF
MD5 check sum: 3fd375d40f68096c892dcf97f555543a
Pseudo is Norm-conserving, Zval = 18.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1195 points, 2 beta functions with:
l(1) = 0
l(2) = 1
PseudoPot. # 2 for Ni read from file:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/Ni_PBE_TM_2pj.UPF
MD5 check sum: 3fd375d40f68096c892dcf97f555543a
Pseudo is Norm-conserving, Zval = 18.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1195 points, 2 beta functions with:
l(1) = 0
l(2) = 1
PseudoPot. # 3 for O read from file:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/O_PBE_TM.UPF
MD5 check sum: 7269e4db10efbd9bf64de7c8e654fab0
Pseudo is Norm-conserving, Zval = 6.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1095 points, 1 beta functions with:
l(1) = 0
atomic species valence mass pseudopotential
Ni 18.00 58.69340 Ni( 1.00)
NiB 18.00 58.69340 Ni( 1.00)
O 6.00 15.99940 O ( 1.00)
Starting magnetic structure
atomic species magnetization
Ni 1.000
NiB -1.000
O 0.000
Simplified LDA+U calculation (l_max = 2) with parameters (eV):
atomic species L U alpha J0 beta
Ni 2 7.6000 0.0000 0.0000 0.0000
NiB 2 7.6000 0.0000 0.0000 0.0000
12 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
2 NiB tau( 2) = ( 0.0000000 0.6666667 0.4714045 )
3 O tau( 3) = ( 0.2886751 -0.1666667 0.2357023 )
4 O tau( 4) = ( -0.2886751 0.1666667 -0.2357023 )
number of k points= 16
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k( 2) = ( -0.8660254 -0.5000000 0.1767767), wk = 0.1250000
k( 3) = ( 0.0000000 1.0000000 0.1767767), wk = 0.1250000
k( 4) = ( -0.8660254 0.5000000 0.3535534), wk = 0.1250000
k( 5) = ( 0.8660254 -0.5000000 0.1767767), wk = 0.1250000
k( 6) = ( 0.0000000 -1.0000000 0.3535534), wk = 0.1250000
k( 7) = ( 0.8660254 0.5000000 0.3535534), wk = 0.1250000
k( 8) = ( 0.0000000 0.0000000 0.5303301), wk = 0.1250000
k( 9) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k( 10) = ( -0.8660254 -0.5000000 0.1767767), wk = 0.1250000
k( 11) = ( 0.0000000 1.0000000 0.1767767), wk = 0.1250000
k( 12) = ( -0.8660254 0.5000000 0.3535534), wk = 0.1250000
k( 13) = ( 0.8660254 -0.5000000 0.1767767), wk = 0.1250000
k( 14) = ( 0.0000000 -1.0000000 0.3535534), wk = 0.1250000
k( 15) = ( 0.8660254 0.5000000 0.3535534), wk = 0.1250000
k( 16) = ( 0.0000000 0.0000000 0.5303301), wk = 0.1250000
Dense grid: 19477 G-vectors FFT dimensions: ( 54, 54, 54)
Largest allocated arrays est. size (Mb) dimensions
Kohn-Sham Wavefunctions 0.90 Mb ( 2454, 24)
Atomic Hubbard wavefuncts 0.37 Mb ( 2454, 10)
NL pseudopotentials 0.37 Mb ( 2454, 10)
Each V/rho on FFT grid 4.81 Mb ( 157464, 2)
Each G-vector array 0.15 Mb ( 19477)
G-vector shells 0.01 Mb ( 1293)
Largest temporary arrays est. size (Mb) dimensions
Auxiliary wavefunctions 0.90 Mb ( 2454, 24)
Each subspace H/S matrix 0.01 Mb ( 24, 24)
Each <psi_i|beta_j> matrix 0.00 Mb ( 10, 24)
The potential is recalculated from file :
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/NiO.save/charge-density.dat
Number of +U iterations with fixed ns = 0
Starting occupations:
--- enter write_ns ---
LDA+U parameters:
U( 1) = 7.60000000
alpha( 1) = 0.00000000
U( 2) = 7.60000000
alpha( 2) = 0.00000000
atom 1 Tr[ns(na)] (up, down, total) = 4.69493 3.56013 8.25506
spin 1
eigenvalues:
0.907 0.907 0.956 0.956 0.970
eigenvectors:
0.000 0.000 0.000 0.000 1.000
0.722 0.044 0.018 0.215 0.000
0.044 0.722 0.215 0.018 0.000
0.014 0.220 0.706 0.060 0.000
0.220 0.014 0.060 0.706 0.000
occupations:
0.970 0.000 0.000 0.000 0.000
0.000 0.918 0.000 -0.000 -0.021
0.000 0.000 0.918 -0.021 -0.000
0.000 -0.000 -0.021 0.944 -0.000
0.000 -0.021 -0.000 -0.000 0.944
spin 2
eigenvalues:
0.345 0.345 0.952 0.952 0.966
eigenvectors:
0.000 0.000 0.000 0.000 1.000
0.422 0.210 0.018 0.351 0.000
0.210 0.422 0.351 0.018 0.000
0.122 0.246 0.602 0.030 0.000
0.246 0.122 0.030 0.602 0.000
occupations:
0.966 0.000 0.000 0.000 0.000
0.000 0.569 0.000 -0.000 -0.292
0.000 0.000 0.569 -0.292 0.000
0.000 -0.000 -0.292 0.729 -0.000
0.000 -0.292 0.000 -0.000 0.729
atomic mag. moment = 1.134809
atom 2 Tr[ns(na)] (up, down, total) = 3.56017 4.69490 8.25507
spin 1
eigenvalues:
0.345 0.345 0.952 0.952 0.966
eigenvectors:
0.000 0.000 0.000 0.000 1.000
0.424 0.208 0.018 0.350 0.000
0.208 0.424 0.350 0.018 0.000
0.121 0.246 0.602 0.030 0.000
0.246 0.121 0.030 0.602 0.000
occupations:
0.966 0.000 0.000 0.000 0.000
0.000 0.568 0.000 -0.000 -0.292
0.000 0.000 0.568 -0.292 0.000
0.000 -0.000 -0.292 0.729 -0.000
0.000 -0.292 0.000 -0.000 0.729
spin 2
eigenvalues:
0.907 0.907 0.956 0.956 0.970
eigenvectors:
0.000 0.000 0.000 0.000 1.000
0.721 0.045 0.018 0.216 0.000
0.045 0.721 0.216 0.018 0.000
0.014 0.221 0.706 0.060 0.000
0.221 0.014 0.060 0.706 0.000
occupations:
0.970 0.000 0.000 0.000 0.000
0.000 0.918 0.000 -0.000 -0.021
0.000 0.000 0.918 -0.021 -0.000
0.000 -0.000 -0.021 0.944 -0.000
0.000 -0.021 -0.000 -0.000 0.944
atomic mag. moment = -1.134731
N of occupied +U levels = 16.510133
--- exit write_ns ---
Atomic wfc used for LDA+U Projector are NOT orthogonalized
Starting wfc are 26 atomic wfcs
-------------------------------------------------------------------------
Reading core wavefunction file for the absorbing atom
-------------------------------------------------------------------------
Ni.wfc successfully read
-------------------------------------------------------------------------
Attributing the PAW radii
for the absorbing atom [units: Bohr radius]
-------------------------------------------------------------------------
PAW proj 1: r_paw(l= 0)= 1.88 (1.5*r_cut)
PAW proj 2: r_paw(l= 1)= 1.88 (1.5*r_cut)
PAW proj 3: r_paw(l= 2)= 1.50 (from input file))
PAW proj 4: r_paw(l= 0)= 1.88 (1.5*r_cut)
PAW proj 5: r_paw(l= 1)= 1.88 (1.5*r_cut)
PAW proj 6: r_paw(l= 2)= 1.50 (from input file))
NB: The calculation will not necessary use all these r_paw values.
- For a edge in the electric-dipole approximation,
only the r_paw(l=1) values are used.
- For a K edge in the electric-quadrupole approximation,
only the r_paw(l=2) values are used.
- For a L2 or L3 edge in the electric-quadrupole approximation,
all projectors (s, p and d) are used.
-------------------------------------------------------------------------
Starting XANES calculation
in the electric quadrupole approximation
-------------------------------------------------------------------------
Method of calculation based on the Lanczos recursion algorithm
--------------------------------------------------------------
- STEP 1: Construction of a kpoint-dependent Lanczos basis,
in which the Hamiltonian is tridiagonal (each 'iter'
corresponds to the calculation of one more Lanczos vector)
- STEP 2: Calculation of the cross-section as a continued fraction
averaged over the k-points.
... Begin STEP 1 ...
| For PAW proj. (l=2) #1: radial matrix element = 0.000829385
| For PAW proj. (l=2) #2: radial matrix element = 0.001056836
|-------------------------------------------------------------
! k-point # 1: ( 0.0000, 0.0000, 0.0000)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15959612E-03
| Estimated error at iter 50: 1.01015177
| Estimated error at iter 100: 0.03639657
! => CONVERGED at iter 150 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 2: (-0.8660, -0.5000, 0.1768)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15957056E-03
| Estimated error at iter 50: 1.00984206
| Estimated error at iter 100: 0.00102906
! => CONVERGED at iter 150 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 3: ( 0.0000, 1.0000, 0.1768)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15961957E-03
| Estimated error at iter 50: 1.00972064
| Estimated error at iter 100: 0.22411524
| Estimated error at iter 150: 0.04229935
! => CONVERGED at iter 200 with error= 0.00015468
|-------------------------------------------------------------
! k-point # 4: (-0.8660, 0.5000, 0.3536)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15959003E-03
| Estimated error at iter 50: 1.00972305
| Estimated error at iter 100: 0.26360588
| Estimated error at iter 150: 0.01144988
| Estimated error at iter 200: 0.00115452
! => CONVERGED at iter 250 with error= 0.00010445
|-------------------------------------------------------------
! k-point # 5: ( 0.8660, -0.5000, 0.1768)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15961957E-03
| Estimated error at iter 50: 1.00972064
| Estimated error at iter 100: 0.22407817
| Estimated error at iter 150: 0.04222384
! => CONVERGED at iter 200 with error= 0.00014794
|-------------------------------------------------------------
! k-point # 6: ( 0.0000, -1.0000, 0.3536)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15959003E-03
| Estimated error at iter 50: 1.00972305
| Estimated error at iter 100: 0.26363718
| Estimated error at iter 150: 0.01147764
| Estimated error at iter 200: 0.00105824
! => CONVERGED at iter 250 with error= 0.00010593
|-------------------------------------------------------------
! k-point # 7: ( 0.8660, 0.5000, 0.3536)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15955058E-03
| Estimated error at iter 50: 1.00999218
| Estimated error at iter 100: 0.01991907
! => CONVERGED at iter 150 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 8: ( 0.0000, 0.0000, 0.5303)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15962985E-03
| Estimated error at iter 50: 1.00995113
| Estimated error at iter 100: 0.00252388
! => CONVERGED at iter 150 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 9: ( 0.0000, 0.0000, 0.0000)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15959612E-03
| Estimated error at iter 50: 1.01358767
| Estimated error at iter 100: 0.00343507
! => CONVERGED at iter 150 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 10: (-0.8660, -0.5000, 0.1768)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15957056E-03
| Estimated error at iter 50: 1.01241320
! => CONVERGED at iter 100 with error= 0.00088773
|-------------------------------------------------------------
! k-point # 11: ( 0.0000, 1.0000, 0.1768)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15961957E-03
| Estimated error at iter 50: 1.01275726
| Estimated error at iter 100: 0.13431535
| Estimated error at iter 150: 0.00961795
! => CONVERGED at iter 200 with error= 0.00029583
|-------------------------------------------------------------
! k-point # 12: (-0.8660, 0.5000, 0.3536)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15959003E-03
| Estimated error at iter 50: 1.01397946
| Estimated error at iter 100: 0.01640859
| Estimated error at iter 150: 0.00551590
! => CONVERGED at iter 200 with error= 0.00032148
|-------------------------------------------------------------
! k-point # 13: ( 0.8660, -0.5000, 0.1768)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15961957E-03
| Estimated error at iter 50: 1.01275726
| Estimated error at iter 100: 0.13425131
| Estimated error at iter 150: 0.00958480
! => CONVERGED at iter 200 with error= 0.00026684
|-------------------------------------------------------------
! k-point # 14: ( 0.0000, -1.0000, 0.3536)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15959003E-03
| Estimated error at iter 50: 1.01397946
| Estimated error at iter 100: 0.01638551
| Estimated error at iter 150: 0.00550691
! => CONVERGED at iter 200 with error= 0.00024701
|-------------------------------------------------------------
! k-point # 15: ( 0.8660, 0.5000, 0.3536)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15955058E-03
| Estimated error at iter 50: 1.01416847
| Estimated error at iter 100: 0.00310721
! => CONVERGED at iter 150 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 16: ( 0.0000, 0.0000, 0.5303)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
! Atomic wfc used for LDA+U Projector are NOT orthogonalized
| Norm of the initial Lanczos vector: 0.15962985E-03
| Estimated error at iter 50: 1.01222746
| Estimated error at iter 100: 0.00398105
! => CONVERGED at iter 150 with error= 0.00000000
Results of STEP 1 successfully written in x_save_file
x_save_file name:
-> NiO.xspectra_qua.sav
x_save_file version: 2
... End STEP 1 ...
... Begin STEP 2 ...
The spectrum is calculated using the following parameters:
energy-zero of the spectrum [eV]: 13.9509
the occupied states are cut
xemin [eV]: -10.00
xemax [eV]: 20.00
xnepoint: 300
constant broadening parameter [eV]: 0.800
Core level energy [eV]: -8333.
(from electron binding energy of neutral atoms in X-ray data booklet)
Cross-section successfully written in xanes.dat
... End STEP 2 ...
xanes : 28.26s CPU 28.51s WALL ( 1 calls)
-------------------------------------------------------------------------
END JOB XSpectra
-------------------------------------------------------------------------