quantum-espresso/TDDFPT/examples/example12/reference/H2O.tddfpt.out

501 lines
21 KiB
Plaintext

Program turboTDDFT v.6.3 starts on 6Sep2018 at 12:17:11
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 8 processors
MPI processes distributed on 1 nodes
R & G space division: proc/nbgrp/npool/nimage = 8
Reading data from directory:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/tempdir/H2O.save/
IMPORTANT: XC functional enforced from input :
Exchange-correlation = PZ ( 1 1 0 0 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
file H.pz-vbc.UPF: wavefunction(s) 1S renormalized
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 396 396 98 16878 16878 2106
Max 400 400 100 16882 16882 2112
Sum 3181 3181 793 135043 135043 16879
Subspace diagonalization in iterative solution of the eigenvalue problem:
a serial algorithm will be used
Allocating 16 extra bands for projection
=-----------------------------------------------------------------=
Please cite the TDDFPT project as:
X. Ge, S. J. Binnie, D. Rocca, R. Gebauer, and S. Baroni,
Comput. Phys. Commun. 185, 2080 (2014)
in publications and presentations arising from this work.
=-----------------------------------------------------------------=
Virt read
Gamma point algorithm
Num of eigen values= 5
Allocating parameters for davidson ...
Estimating the RAM requirements:
For the basis sets: 61.88 M
For the eigenvectors: 10.31 M
Num_eign = 5 Num_basis_max = 40
Reference = 0.50 Ry
Do make sure that you have enough RAM.
poor_of_ram2 is set to .false.. This means that you would like to increase the speed
by storing the D_basis and C_basis vectors which will cause three time of the memory cost.
Switch it to .true. if you need to save memory.
Finished allocating parameters.
Initiating variables for davidson ...
Lowest energy electron-hole pairs are used as initial vectors ...
Calculating the electron-hole pairs for initiating trial vectors ...
1 4 2 0.523184235302
2 4 3 0.556906767464
3 4 4 0.575327464243
4 4 5 0.575976077464
5 4 1 0.422739394909
6 3 1 0.612077018561
7 3 2 0.712521858954
8 3 3 0.746244391116
9 3 4 0.764665087895
10 3 5 0.765313701116
11 2 1 0.850361077959
12 2 2 0.950805918351
13 2 3 0.984528450514
14 2 4 1.002949147292
15 2 5 1.003597760514
16 1 1 1.948205218790
17 1 2 2.048650059183
18 1 3 2.082372591345
19 1 4 2.100793288124
20 1 5 2.101441901345
Finished calculating the cv couples.
Finished initiating.
Precondition is used in the algorithm,
total cpu time spent up to now is 0.2 secs
==============================
Davidson iteration: 1
num of basis: 10 total built basis: 10
10 Transition energy 1 : 0.5252873052
10 Transition energy 2 : 0.5551454863
10 Transition energy 3 : 0.4313946608
10 Transition energy 4 : 0.5724361009
10 Transition energy 5 : 0.5856775129
Residue(Squared modulus): 1 0.0095391 0.0000000
Residue(Squared modulus): 2 0.0047701 0.0000001
Residue(Squared modulus): 3 0.0212963 0.0000000
Residue(Squared modulus): 4 0.0027256 0.0000001
Residue(Squared modulus): 5 0.0415567 0.0000001
Largest residue: 0.041556681068
total cpu time spent up to now is 0.3 secs
==============================
Davidson iteration: 2
num of basis: 15 total built basis: 15
15 Transition energy 1 : 0.5245226967
15 Transition energy 2 : 0.5546377703
15 Transition energy 3 : 0.4296885448
15 Transition energy 4 : 0.5721409524
15 Transition energy 5 : 0.5791321533
Residue(Squared modulus): 1 0.0013144 0.0006935
Residue(Squared modulus): 2 0.0003039 0.0004345
Residue(Squared modulus): 3 0.0046672 0.0007249
Residue(Squared modulus): 4 0.0001891 0.0001847
Residue(Squared modulus): 5 0.0018494 0.0011805
Largest residue: 0.004667218205
total cpu time spent up to now is 0.3 secs
==============================
Davidson iteration: 3
num of basis: 25 total built basis: 25
25 Transition energy 1 : 0.5243650947
25 Transition energy 2 : 0.5545395403
25 Transition energy 3 : 0.4291617042
25 Transition energy 4 : 0.5721096293
25 Transition energy 5 : 0.5786688083
Residue(Squared modulus): 1 0.0001267 0.0001518
Residue(Squared modulus): 2 0.0001235 0.0001432
Residue(Squared modulus): 3 0.0003612 0.0002347
Residue(Squared modulus): 4 0.0000504 0.0000334
Residue(Squared modulus): 5 0.0003491 0.0002556
Largest residue: 0.000361155524
total cpu time spent up to now is 0.4 secs
==============================
Davidson iteration: 4
num of basis: 33 total built basis: 33
33 Transition energy 1 : 0.5243428115
33 Transition energy 2 : 0.5545170316
33 Transition energy 3 : 0.4291051338
33 Transition energy 4 : 0.5721056591
33 Transition energy 5 : 0.5785975636
Residue(Squared modulus): 1 0.0000334 0.0000365
Residue(Squared modulus): 2 0.0000162 0.0000162
Residue(Squared modulus): 3 0.0000812 0.0000679
Residue(Squared modulus): 4 0.0000326 0.0000339
Residue(Squared modulus): 5 0.0000851 0.0000706
Largest residue: 0.000085132180
================================================================
Davidson diagonalization has finished in 4 steps.
the number of current basis is 33
the number of total basis built is 33
Now print out information of eigenstates
K-S Oscillator strengths
occ con R-x R-y R-z
1 1 0.11797483E-05 0.18189448E-02 0.30063090E-05
1 2 -0.10809858E-05 -0.35522298E-02 -0.18275365E-05
1 3 -0.98899583E-02 -0.13564730E-05 -0.91645383E-07
1 4 0.85951689E-06 0.68134311E-03 -0.33595217E-04
1 5 -0.22271516E-06 -0.29970167E-06 0.17414354E-01
2 1 -0.59681025E+00 0.11123195E-05 0.24155677E-05
2 2 0.29905879E+00 0.15262379E-04 0.30716773E-05
2 3 -0.29976833E-04 0.20121661E+00 -0.13222286E-04
2 4 -0.14991410E+00 -0.19549108E-05 0.70521084E-05
2 5 -0.31593976E-03 0.37418788E-05 0.11544955E-04
3 1 -0.14361474E-05 0.60192138E+00 -0.22520094E-06
3 2 -0.21306703E-04 -0.27273136E+00 0.38957381E-05
3 3 -0.26715052E+00 -0.12191556E-04 0.20317776E-05
3 4 0.33692327E-05 -0.59510856E-01 0.16368732E-03
3 5 -0.56475248E-05 -0.11837355E-03 -0.76770408E-01
4 1 -0.31357631E-05 0.61993897E-05 0.46741094E+00
4 2 -0.33717239E-05 0.26663779E-05 -0.12101026E+00
4 3 0.24219461E-04 0.27864198E-05 -0.24555789E-04
4 4 -0.79082903E-05 0.15745587E-03 0.10150501E+00
4 5 -0.16891181E-04 -0.70809818E-01 0.10562309E-03
! The 1 -th eigen state. The transition energy is: 0.52434281
The two digitals below indicate the importance of doing beyong TDA:
Components: X 1.00013; Y -0.00013
In the occ-virt project subspace the total Fxy is:
X 0.99870; Y -0.00005 total 0.99866 / 1.00000
The Chi_i_i is Total 1 2 3
0.39389223E-02 0.21234087E-12 0.86302172E-14 0.39389223E-02
Now is the components analysis of this transition.
First we print out only the principle components.
occ virt FX FY
4 2 0.99725 -0.00110
Now for all the calculated particle and hole pairs :
occ virt FX FY
1 1 0.32811077E-06 0.11806789E-05
1 2 0.36916920E-06 -0.15349221E-06
1 3 -0.62795023E-07 -0.40447284E-07
1 4 0.29154830E-05 0.10829125E-05
1 5 -0.14937471E-02 -0.98128667E-03
2 1 -0.65487570E-06 -0.10278111E-06
2 2 -0.17691260E-05 -0.49562845E-06
2 3 -0.15081152E-05 0.25585531E-05
2 4 -0.51443480E-06 -0.17447881E-07
2 5 -0.10857813E-05 -0.11541597E-05
3 1 -0.43754173E-06 -0.33442306E-07
3 2 0.39856151E-05 0.60491533E-06
3 3 0.74936726E-06 0.13738013E-06
3 4 -0.15422681E-05 -0.29055465E-06
3 5 0.72410639E-03 0.13527781E-03
4 1 -0.61054934E-01 0.65490582E-02
4 2 0.99725035E+00 -0.11044610E-02
4 3 -0.48174274E-05 -0.42849771E-07
4 4 0.21565107E-01 0.99975183E-03
4 5 0.17397318E-04 0.76440609E-06
**************
! The 2 -th eigen state. The transition energy is: 0.55451703
The two digitals below indicate the importance of doing beyong TDA:
Components: X 1.00007; Y -0.00007
In the occ-virt project subspace the total Fxy is:
X 0.99885; Y -0.00000 total 0.99884 / 1.00000
The Chi_i_i is Total 1 2 3
0.90872773E-10 0.78728988E-12 0.15658369E-17 0.90085482E-10
Now is the components analysis of this transition.
First we print out only the principle components.
occ virt FX FY
4 3 -0.99942 -0.00215
Now for all the calculated particle and hole pairs :
occ virt FX FY
1 1 0.19622782E-06 0.34640137E-07
1 2 -0.10635522E-07 0.20342558E-07
1 3 -0.92406730E-08 0.13062026E-07
1 4 0.18649662E-07 0.29020656E-07
1 5 -0.54094870E-06 -0.33568990E-05
2 1 0.65180467E-06 0.74836440E-07
2 2 0.52941722E-06 0.85537939E-07
2 3 0.71115844E-06 0.25343206E-08
2 4 -0.21007796E-05 -0.73631131E-06
2 5 0.14137749E-02 0.43064567E-03
3 1 0.42598359E-06 0.16526189E-08
3 2 -0.16003749E-05 -0.22071944E-06
3 3 -0.14149971E-05 -0.22592773E-06
3 4 -0.53467410E-06 -0.12272975E-06
3 5 -0.15825243E-05 -0.26917328E-06
4 1 0.96068026E-06 -0.49853299E-07
4 2 -0.36916545E-05 0.16331621E-06
4 3 -0.99942260E+00 -0.21487211E-02
4 4 -0.24782148E-04 -0.40268033E-06
4 5 -0.20377967E-06 0.14706404E-07
**************
! The 3 -th eigen state. The transition energy is: 0.42910513
The two digitals below indicate the importance of doing beyong TDA:
Components: X 1.00038; Y -0.00038
In the occ-virt project subspace the total Fxy is:
X 0.99859; Y -0.00010 total 0.99850 / 1.00000
The Chi_i_i is Total 1 2 3
0.41743381E-01 0.37163857E-12 0.20931799E-12 0.41743381E-01
Now is the components analysis of this transition.
First we print out only the principle components.
occ virt FX FY
4 1 0.99734 -0.00745
Now for all the calculated particle and hole pairs :
occ virt FX FY
1 1 -0.10964591E-05 -0.12609600E-05
1 2 0.64853621E-06 0.54100068E-06
1 3 -0.37663523E-07 0.33801957E-09
1 4 -0.41421004E-05 -0.21745149E-05
1 5 0.20180685E-02 0.14292446E-02
2 1 -0.10170785E-06 -0.14157510E-06
2 2 -0.44327256E-06 -0.27751929E-06
2 3 -0.13000263E-05 -0.31466414E-05
2 4 -0.16156927E-06 -0.34860671E-06
2 5 0.10300076E-06 0.18966504E-05
3 1 -0.37809556E-06 -0.63518024E-07
3 2 0.10051484E-05 0.25343504E-06
3 3 0.28077760E-06 0.74158341E-07
3 4 0.22587680E-05 0.64781486E-06
3 5 -0.98774312E-03 -0.27803171E-03
4 1 0.99733935E+00 -0.74529244E-02
4 2 0.62223384E-01 0.61456843E-02
4 3 0.20295946E-06 -0.24747327E-07
4 4 -0.54346881E-02 -0.79122608E-03
4 5 -0.27378442E-04 -0.38307879E-05
**************
! The 4 -th eigen state. The transition energy is: 0.57210566
The two digitals below indicate the importance of doing beyong TDA:
Components: X 1.00005; Y -0.00005
In the occ-virt project subspace the total Fxy is:
X 0.99898; Y -0.00001 total 0.99897 / 1.00000
The Chi_i_i is Total 1 2 3
0.25697680E-02 0.35544804E-11 0.38555622E-10 0.25697679E-02
Now is the components analysis of this transition.
First we print out only the principle components.
occ virt FX FY
4 4 0.99923 0.00280
Now for all the calculated particle and hole pairs :
occ virt FX FY
1 1 -0.26933810E-05 -0.10480659E-05
1 2 0.12552758E-05 0.44367017E-06
1 3 -0.12063556E-06 -0.62477877E-07
1 4 -0.19592303E-05 -0.12942303E-05
1 5 0.76169651E-03 0.38773327E-03
2 1 -0.49506956E-06 -0.93717024E-07
2 2 -0.58201249E-06 -0.23553004E-07
2 3 -0.77628781E-05 -0.10573761E-05
2 4 -0.75131871E-06 -0.15038334E-06
2 5 -0.99144373E-06 -0.83079648E-06
3 1 -0.46761838E-04 -0.15785133E-05
3 2 0.73764149E-05 0.79870054E-06
3 3 0.64678541E-07 0.24490246E-07
3 4 0.21835372E-05 0.30000369E-06
3 5 0.52152906E-02 0.75336144E-03
4 1 0.62338756E-02 -0.93590580E-03
4 2 -0.21267004E-01 0.94971788E-03
4 3 -0.24738975E-04 0.38326010E-06
4 4 0.99922826E+00 0.28037512E-02
4 5 0.15613257E-02 0.52039830E-05
**************
! The 5 -th eigen state. The transition energy is: 0.57859756
The two digitals below indicate the importance of doing beyong TDA:
Components: X 1.00045; Y -0.00045
In the occ-virt project subspace the total Fxy is:
X 0.99276; Y -0.00006 total 0.99270 / 1.00000
The Chi_i_i is Total 1 2 3
0.18298479E-03 0.51808513E-12 0.18292074E-03 0.64046567E-07
Now is the components analysis of this transition.
First we print out only the principle components.
occ virt FX FY
3 1 0.11096 0.00312
4 5 0.98964 -0.00225
Now for all the calculated particle and hole pairs :
occ virt FX FY
1 1 0.62770443E-02 0.31249539E-02
1 2 -0.32312269E-02 -0.16135173E-02
1 3 0.16714606E-06 0.13571574E-06
1 4 0.84866386E-03 0.53999570E-03
1 5 0.51960363E-05 0.37269210E-05
2 1 -0.72953703E-06 -0.13758588E-06
2 2 0.18509154E-06 0.96376048E-07
2 3 0.17428495E-01 0.47930828E-02
2 4 -0.19218244E-05 -0.51686314E-06
2 5 -0.26961564E-06 -0.28602917E-06
3 1 0.11096470E+00 0.31202397E-02
3 2 -0.19726616E-01 -0.20461398E-02
3 3 0.27068989E-05 0.32901164E-06
3 4 -0.18026313E-01 -0.24968295E-02
3 5 -0.29263619E-04 -0.40719460E-05
4 1 0.29775969E-04 -0.46111324E-05
4 2 0.60409775E-04 -0.30047209E-05
4 3 -0.54290533E-06 -0.83700455E-07
4 4 -0.14888348E-02 0.41544965E-05
4 5 0.98963568E+00 -0.22472895E-02
**************
Now generate the eigenvalues list...
Now generate the spectrum plot file...
Finished linear response calculation...
lr_dav_main : 0.84s CPU 1.10s WALL ( 1 calls)
read_wf : 0.01s CPU 0.01s WALL ( 1 calls)
lr_solve_e : 0.08s CPU 0.08s WALL ( 1 calls)
calc_residue : 0.01s CPU 0.01s WALL ( 4 calls)
expan_basis : 0.05s CPU 0.05s WALL ( 3 calls)
matrix : 0.00s CPU 0.00s WALL ( 4 calls)
mGS_orth : 0.05s CPU 0.05s WALL ( 9 calls)
mGS_orth_pp : 0.00s CPU 0.00s WALL ( 9 calls)
one_step : 0.26s CPU 0.26s WALL ( 4 calls)
lr_apply : 0.23s CPU 0.23s WALL ( 66 calls)
lr_apply_int : 0.18s CPU 0.18s WALL ( 33 calls)
lr_apply_no : 0.05s CPU 0.05s WALL ( 33 calls)
h_psi : 0.15s CPU 0.16s WALL ( 120 calls)
lr_calc_dens : 0.04s CPU 0.04s WALL ( 43 calls)
lr_dvpsi_e : 0.07s CPU 0.07s WALL ( 3 calls)
lr_dv_setup : 0.00s CPU 0.00s WALL ( 1 calls)
dv_of_drho : 0.06s CPU 0.06s WALL ( 33 calls)
interaction : 0.03s CPU 0.03s WALL ( 33 calls)
lr_dot : 0.03s CPU 0.03s WALL ( 4399 calls)
ortho : 0.00s CPU 0.00s WALL ( 72 calls)
lr_ortho : 0.00s CPU 0.00s WALL ( 53 calls)
US routines
lr_dot_us : 0.06s CPU 0.06s WALL ( 4399 calls)
lr_sm1_psi : 0.00s CPU 0.00s WALL ( 66 calls)
General routines
calbec : 0.00s CPU 0.00s WALL ( 180 calls)
fft : 0.05s CPU 0.05s WALL ( 70 calls)
fftw : 0.18s CPU 0.18s WALL ( 610 calls)
interpolate : 0.00s CPU 0.00s WALL ( 33 calls)
davcio : 0.00s CPU 0.00s WALL ( 5 calls)
Parallel routines
turboTDDFT : 0.84s CPU 1.10s WALL
This run was terminated on: 12:17:12 6Sep2018
=------------------------------------------------------------------------------=
JOB DONE.
=------------------------------------------------------------------------------=