quantum-espresso/QHA/SRC/F_QHA.f90

215 lines
6.1 KiB
Fortran
Executable File

!
! Copyright (C) 2006 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
! Eyvaz Isaev, Copyright 2005-2008
!
! Department of Physics, Chemistry, and Biophysics (IFM), Linkoping University, Sweden
!
! Theoretical Physics Department, Moscow State Institute of Steel and Alloys, Russia
!
! Materials Theory Group, Institute of Physics and Materials Science, Uppsala University, Sweden
!
! isaev@ifm.liu.se
! eyvaz_isaev@yahoo.com
!
! Given phonon DOS, calculates:
!
! F0 - zero vibration energy, ZVE (Ry/cell)
! E_int - the internal energy (Ry/cell)
! F_vib - the phonon contribution to the free energy (Ry/cell) including the ZVE
! C_v - the heat capacity at a constant volume (in units of R, the universal gas constant)
! S - entropy (in units of R, the universal gas constant )
! u^2 - mean square displacement, in Ang^2
!
! Parameters used
! T in K,
! F_vib in Ry/cell,
! C_v in R (the universal gas constant, so that C_v(\infty) \to 3NR)
! where N is the number of atoms considered,
! S in R
! Zero vibration energy in Ry/cell,
! phonon DOS has the norm of 3*N
!
! from R to J/(mol K) multiply C_v by 8.314
! from R to cal/(mol K) multiply C_v by 1.985
! from Web: R equal to 8.314 joules per Kelvin or 1.985 calories
!
! PHDOS.out - name of the phonon DOS file obtained by means of either matdyn.x
! applying dos=.true. option (then copy your phonon DOS file to PHDOS.out)
! or the program with projected phonon DOS.
!
! Avoid using another DOS filename otherwise the program will try to read projected DOS.
!
! Output file is suitable for visualization using Gnuplot (www.gnuplot.info) or Xmgace (Xmgr).
!
! MSD calculations moved to MSD.f90
! Keep in mind: preliminary u^2 estimations are for simple metals or semiconductors (one atom type only!)
! If Theta_D is unknown, then set up Theta_D=0 or negatve, so that preliminary u^2 estimations are avoided.
! High temperature estimaton for u^2 is given at room temperature
!
program fqha
!
implicit none
integer, parameter:: ndivx=10000
real(kind=8) :: dos(ndivx),nu(ndivx),a1,a2,a3
real(kind=8) :: pdos(ndivx),gx(ndivx),gy(ndivx),gz(ndivx)
real(kind=8) :: de, emax, norm,norm_tot
real(kind=8) :: F0, F0_tot, Ftot, Free, Ftot_sum, Free_sum, S0, E_internal
!
real(kind=8) :: CV, CV_tot, E_int, q1,q2,q3,Entropy
integer :: T_start, T_end, T_delta
real(kind=8) :: coth, norm_par, x, T
! real(kind=8) :: Theta_D,prefactor,amass, factor2
integer :: i,ndiv,n
character(len=80) :: filename, outfile
character(len=9) :: dos_file, dosfile
character(len=1) :: dummy
!
coth(x)=(dexp(x)+dexp(-x))/(dexp(x) - dexp(-x))
!
!
! Used constants
a1=0.5d0/13.6058d0/8065.5d0
a2=8.617d-5/13.6058d0
a3=1.0d0/8065.5d0/8.617d-5
dos_file='PHDOS.out'
read(5,'(a)') filename
read(5,'(a)') outfile
read(5, *) T_start, T_end, T_delta
dosfile=filename(1:9)
open(unit=1,file=filename)
read (1,*)
read (1,*) dummy, ndiv, emax, de
if (ndiv.gt.ndivx) stop ' ndivx too small'
print*, 'ndiv from file ===', ndiv
if(dosfile.eq.dos_file) then
i=1
1 read(1,*, end=98) nu(i),dos(i)
i=i+1
goto 1
!
else
i=1
2 read(1,*,end=98) nu(i),dos(i),pdos(i),gx(i),gy(i),gz(i)
i=i+1
goto 2
!
endif
98 continue
close(1)
!
ndiv = i - 1
!
print*, 'ndiv===', ndiv
if(dosfile.ne.dos_file) then
norm_par=0.
do i=2,ndiv-3,3
norm_par = norm_par + 3*pdos(i)+3*pdos(i+1)+2*pdos(i+2)
enddo
norm_par=norm_par*de*3/8
print*, 'norm_partial==', norm_par
endif
open(unit=1,file=outfile,status='unknown')
do T=T_start,T_end,T_delta
!
norm=0.d0
F0=0.d0
Free=0.d0
Ftot=0.d0
CV=0.d0
S0=0.d0
E_int=0.d0
!
do i=2,ndiv-3,3
norm = norm + 3*dos(i)+3*dos(i+1)+2*dos(i+2)
F0= F0 + 3*dos(i)*a1*nu(i)+3*dos(i+1)*a1*nu(i+1)+ &
& 2*dos(i+2)*a1*nu(i+2)
q1=0.5*a3*nu(i)/T
q2=0.5*a3*nu(i+1)/T
q3=0.5*a3*nu(i+2)/T
! The next is the phonon contribution to the free energy without ZVE
!
! Ftot=Ftot + 3*dos(i)*a2*T*dlog(1.d0-exp(-2*q1)) + &
! & 3*dos(i+1)*a2*T*dlog(1.d0-exp(-2*q2)) + &
! & 2*dos(i+2)*a2*T*dlog(1.d0-exp(-2*q3))
!
E_int = E_int + 3*dos(i)*a1*nu(i)*coth(q1) + &
& 3*dos(i+1)*a1*nu(i+1)*coth(q2) + &
& 2*dos(i+2)*a1*nu(i+2)*coth(q3)
!
!
Free = Free + 3*dos(i)*a2*T*dlog(2.*sinh(q1)) + &
& 3*dos(i+1)*a2*T*dlog(2.*sinh(q2)) + &
& 2*dos(i+2)*a2*T*dlog(2.*sinh(q3))
!
!
CV = CV + 3*dos(i)*q1*q1/sinh(q1)**2 + &
& 3*dos(i+1)*q2*q2/sinh(q2)**2 + &
& 2*dos(i+2)*q3*q3/sinh(q3)**2
!
! S: a2*dos(i)*[ ]
!
S0 = S0 + 3*dos(i)*(q1*coth(q1) - dlog(2*sinh(q1))) + &
& 3*dos(i+1)*(q2*coth(q2) - dlog(2*sinh(q2))) + &
& 2*dos(i+2)*(q3*coth(q3) - dlog(2*sinh(q3)))
enddo
norm_tot=norm*de*3/8
F0_tot=F0*de*3/8
! Ftot_sum=Ftot*de*3/8 + F0_tot
E_internal=E_int*de*3/8
Free_sum=Free*de*3/8
CV_tot=CV*de*3/8
Entropy=S0*de*3/8
if(T.eq.T_start) then
write(1,'("# Zero vibration energy:",f18.10,2x, "(Ry/cell)")') F0_tot
write(1,'("# Phonon DOS norm :",2x, f12.6, 6x, "! 3N for check purpose, N number of atoms in the unit cell")') norm_tot
write(1,'("# T in K, F_vib in Ry/cell, C_v in R (the universal gas constant by 3N modes), S in k_B ")')
write(1,'("#")')
! write(1,'("# T E_internal F_vibration Specific heat (C_v) Entropy u2")')
write(1,'("# T", 9X,"E_internal",8X, "F_vibration",10X, "Specific heat (C_v)",7X,"Entropy")')
write(1,'(108("#"))')
!! & "Specific heat (C_v)",7X,"Entropy",13X, "u2")')
!
endif
!
write(1,'(f8.2,2f18.10,5X,f18.10,4X,f18.10,4X,f12.6)') T, E_internal, Free_sum,CV_tot,Entropy
write(6,'(f8.2,5f14.8)') T,norm_tot,F0_tot,Free_sum, Entropy
enddo
!
10 close(1)
!
stop
end program fqha
!