mirror of https://gitlab.com/QEF/q-e.git
190 lines
7.0 KiB
Fortran
190 lines
7.0 KiB
Fortran
!
|
|
! Copyright (C) 2001-2018 Quantum ESPRESSO group
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
SUBROUTINE syme_dns (ldim, npe, dns)
|
|
!-----------------------------------------------------------------------
|
|
!
|
|
! DFPT+U: This routine symmetrizes the first order variation of
|
|
! the occupation matrices dns due to the perturbation with the
|
|
! electric field.
|
|
!
|
|
! Written by S. de Gironcoli and A. Floris
|
|
! Modified by I. Timrov (01.10.2018)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
USE constants, ONLY : tpi
|
|
USE ions_base, ONLY : nat, ityp
|
|
USE ldaU, ONLY : Hubbard_l, is_hubbard, nwfcU, Hubbard_lmax
|
|
USE lsda_mod, ONLY : lsda, nspin
|
|
USE lr_symm_base, ONLY : nsymq, irgq, minus_q, irotmq, rtau
|
|
USE uspp_param, ONLY : upf
|
|
USE symm_base, ONLY : d1, d2, d3, nsym, irt, s, invs
|
|
|
|
IMPLICIT NONE
|
|
!
|
|
INTEGER, INTENT(IN) :: ldim, npe
|
|
COMPLEX(DP), INTENT(INOUT) :: dns(ldim,ldim,nspin,nat,npe)
|
|
!
|
|
! Local variables
|
|
!
|
|
INTEGER :: nt, n, counter, l, ip, jp, na, nb, is, m1, m2, &
|
|
m0, m00, isym, irot
|
|
COMPLEX(DP), ALLOCATABLE :: dnr(:,:,:,:,:), dnraux(:,:,:,:,:)
|
|
!
|
|
IF ((nsym==1) .AND. (.NOT.minus_q)) RETURN
|
|
!
|
|
! Initialization
|
|
!
|
|
! D_Sl for l=1, l=2 and l=3 are already initialized, for l=0 D_S0 is 1
|
|
!
|
|
counter = 0
|
|
DO na = 1, nat
|
|
nt = ityp(na)
|
|
IF (.NOT.is_hubbard(nt)) CYCLE
|
|
DO n = 1, upf(nt)%nwfc
|
|
l = upf(nt)%lchi(n)
|
|
IF (upf(nt)%oc(n) > 0.d0 .AND. l == Hubbard_l(nt)) &
|
|
counter = counter + 2 * l + 1
|
|
ENDDO
|
|
ENDDO
|
|
IF (counter.NE.nwfcU) CALL errore ('syme_dns', 'nwfcU<>counter', 1)
|
|
!
|
|
ALLOCATE (dnraux(ldim,ldim,nspin,nat,npe))
|
|
ALLOCATE (dnr(ldim,ldim,nspin,nat,npe))
|
|
!
|
|
dnraux = (0.d0, 0.d0)
|
|
dnr = (0.d0, 0.d0)
|
|
!
|
|
! Impose hermiticity of dns_{m1,m2, is,na,ip} for m1<->m2
|
|
! and put it in dnr zeroing dns
|
|
!
|
|
DO ip = 1, npe
|
|
DO na = 1, nat
|
|
nt = ityp(na)
|
|
DO is = 1, nspin
|
|
DO m1 = 1, 2 * Hubbard_l(nt) + 1
|
|
DO m2 = 1, 2 * Hubbard_l(nt) + 1
|
|
dnr(m1, m2, is, na, ip) = 0.5d0 * ( dns(m1, m2, is, na, ip) &
|
|
+ dns(m2, m1, is, na, ip) )
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
!
|
|
dns = (0.d0, 0.d0)
|
|
!
|
|
! Symmetrize with -q if present (output overwritten on dnr)
|
|
! We use the s matrix in cryst. coord.
|
|
!
|
|
IF (minus_q) THEN
|
|
DO ip = 1, npe
|
|
DO na = 1, nat
|
|
nt = ityp(na)
|
|
IF (is_hubbard(nt)) THEN
|
|
DO is = 1, nspin
|
|
DO m1 = 1, 2 * Hubbard_l(nt) + 1
|
|
DO m2 = 1, 2 * Hubbard_l(nt) + 1
|
|
nb = irt (irotmq, na)
|
|
DO m0 = 1, 2 * Hubbard_l(nt) + 1
|
|
DO m00 = 1, 2 * Hubbard_l(nt) + 1
|
|
DO jp = 1, npe
|
|
IF (Hubbard_l(nt).EQ.0) THEN
|
|
dns(m1,m2,is,na,ip) = dns(m1,m2,is,na,ip) + &
|
|
dnr(m0,m00,is,nb,jp) * s(ip,jp,irotmq)
|
|
ELSE IF (Hubbard_l(nt).EQ.1) THEN
|
|
dns(m1,m2,is,na,ip) = dns(m1,m2,is,na,ip) + &
|
|
d1(m0 ,m1,irotmq) * d1(m00,m2,irotmq) * &
|
|
dnr(m0,m00,is,nb,jp) * s(ip,jp,irotmq)
|
|
ELSE IF (Hubbard_l(nt).EQ.2) THEN
|
|
dns(m1,m2,is,na,ip) = dns(m1,m2,is,na,ip) + &
|
|
d2(m0 ,m1,irotmq) * d2(m00,m2,irotmq) * &
|
|
dnr(m0,m00,is,nb,jp) * s(ip,jp,irotmq)
|
|
ELSE IF (Hubbard_l(nt).EQ.3) THEN
|
|
dns(m1,m2,is,na,ip) = dns(m1,m2,is,na,ip) + &
|
|
d3(m0 ,m1,irotmq) * d3(m00,m2,irotmq) * &
|
|
dnr(m0,m00,is,nb,jp) * s(ip,jp,irotmq)
|
|
ELSE
|
|
CALL errore ('syme_dns', &
|
|
'angular momentum not implemented', &
|
|
ABS(Hubbard_l(nt)) )
|
|
ENDIF
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
ENDIF
|
|
ENDDO
|
|
ENDDO
|
|
dnr(:,:,:,:,:) = 0.5d0 * ( dnr(:,:,:,:,:) + CONJG(dns(:,:,:,:,:)) )
|
|
dns = (0.d0, 0.d0)
|
|
ENDIF
|
|
!
|
|
dnraux = (0.d0, 0.d0)
|
|
!
|
|
! Symmetryze dnr -> dns
|
|
!
|
|
DO isym = 1, nsym
|
|
!
|
|
dns = (0.d0, 0.d0)
|
|
!
|
|
irot = isym
|
|
!
|
|
DO ip = 1, npe
|
|
DO na = 1, nat
|
|
nt = ityp(na)
|
|
IF (is_hubbard(nt)) THEN
|
|
DO m1 = 1, 2 * Hubbard_l(nt) + 1
|
|
DO m2 = 1, 2 * Hubbard_l(nt) + 1
|
|
nb = irt (irot, na)
|
|
DO m0 = 1, 2 * Hubbard_l(nt) + 1
|
|
DO m00 = 1, 2 * Hubbard_l(nt) + 1
|
|
DO jp = 1, npe
|
|
IF (Hubbard_l(nt).EQ.0) THEN
|
|
dns(m1,m2,:,na,ip) = dns(m1,m2,:,na,ip) + &
|
|
dnr(m0,m00,is,nb,jp) * s(ip,jp,irot)
|
|
ELSE IF (Hubbard_l(nt).EQ.1) THEN
|
|
dns(m1,m2,:,na,ip) = dns(m1,m2,:,na,ip) + &
|
|
d1(m0 ,m1,irot) * d1(m00,m2,irot) * &
|
|
dnr(m0,m00,:,nb,jp) * s(ip,jp,irot)
|
|
ELSE IF (Hubbard_l(nt).EQ.2) THEN
|
|
dns(m1,m2,:,na,ip) = dns(m1,m2,:,na,ip) + &
|
|
d2(m0 ,m1,irot) * d2(m00,m2,irot) * &
|
|
dnr(m0,m00,:,nb,jp) * s(ip,jp,irot)
|
|
ELSE IF (Hubbard_l(nt).EQ.3) THEN
|
|
dns(m1,m2,:,na,ip) = dns(m1,m2,:,na,ip) + &
|
|
d3(m0 ,m1,irot) * d3(m00,m2,irot) * &
|
|
dnr(m0,m00,:,nb,jp) * s(ip,jp,irot)
|
|
ELSE
|
|
CALL errore ('syme_dns', &
|
|
'angular momentum not implemented', &
|
|
ABS(Hubbard_l(nt)) )
|
|
ENDIF
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
ENDDO
|
|
ENDIF
|
|
ENDDO
|
|
ENDDO
|
|
dnraux = dnraux + dns / nsym
|
|
ENDDO
|
|
dns = dnraux
|
|
!
|
|
DEALLOCATE (dnr)
|
|
DEALLOCATE (dnraux)
|
|
!
|
|
RETURN
|
|
!
|
|
END SUBROUTINE syme_dns
|
|
!---------------------------------------------------------------------
|