mirror of https://gitlab.com/QEF/q-e.git
252 lines
7.3 KiB
Fortran
252 lines
7.3 KiB
Fortran
!
|
|
! Copyright (C) 2001-2016 Quantum ESPRESSO group
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!
|
|
!
|
|
!----------------------------------------------------------------------
|
|
subroutine dvqpsi_us (ik, uact, addnlcc)
|
|
!----------------------------------------------------------------------
|
|
!
|
|
! This routine calculates dV_bare/dtau * psi for one perturbation
|
|
! with a given q. The displacements are described by a vector u.
|
|
! The result is stored in dvpsi. The routine is called for each k point
|
|
! and for each pattern u. It computes simultaneously all the bands.
|
|
! It implements Eq. B29 of PRB 64, 235118 (2001). The contribution
|
|
! of the local pseudopotential is calculated here, that of the nonlocal
|
|
! pseudopotential in dvqpsi_us_only.
|
|
!
|
|
!
|
|
USE kinds, only : DP
|
|
USE funct, ONLY : dft_is_gradient, dft_is_nonlocc
|
|
USE ions_base, ONLY : nat, ityp
|
|
USE cell_base, ONLY : tpiba
|
|
USE fft_base, ONLY : dfftp, dffts
|
|
USE fft_interfaces, ONLY: fwfft, invfft
|
|
USE gvect, ONLY : eigts1, eigts2, eigts3, mill, g, &
|
|
ngm
|
|
USE gvecs, ONLY : ngms, doublegrid
|
|
USE lsda_mod, ONLY : lsda, isk
|
|
USE scf, ONLY : rho, rho_core
|
|
USE noncollin_module, ONLY : nspin_lsda, nspin_gga, nspin_mag, npol
|
|
use uspp_param,ONLY : upf
|
|
USE wvfct, ONLY : nbnd, npwx
|
|
USE wavefunctions, ONLY: evc
|
|
USE nlcc_ph, ONLY : drc
|
|
USE uspp, ONLY : nlcc_any
|
|
USE eqv, ONLY : dvpsi, dmuxc, vlocq
|
|
USE qpoint, ONLY : xq, eigqts, ikqs, ikks
|
|
USE klist, ONLY : ngk, igk_k
|
|
USE gc_lr, ONLY: grho, dvxc_rr, dvxc_sr, dvxc_ss, dvxc_s
|
|
|
|
USE Coul_cut_2D, ONLY: do_cutoff_2D
|
|
USE Coul_cut_2D_ph, ONLY : cutoff_localq
|
|
!
|
|
IMPLICIT NONE
|
|
!
|
|
! The dummy variables
|
|
!
|
|
INTEGER, INTENT(in) :: ik
|
|
!! input: the k point
|
|
COMPLEX(DP) :: uact (3 * nat)
|
|
!! input: the pattern of displacements
|
|
LOGICAL :: addnlcc
|
|
!!
|
|
!
|
|
! And the local variables
|
|
!
|
|
INTEGER :: na
|
|
!! counter on atoms
|
|
INTEGER :: mu
|
|
!! counter on modes
|
|
INTEGER :: npw
|
|
!! Number of pw
|
|
INTEGER :: ikk
|
|
!! the point k
|
|
INTEGER :: npwq
|
|
!! Number of q
|
|
INTEGER :: ikq
|
|
!! k-q index
|
|
INTEGER :: iks
|
|
!!
|
|
INTEGER :: ig
|
|
!! counter on G vectors
|
|
INTEGER :: nt
|
|
!! the type of atom
|
|
INTEGER :: ibnd
|
|
!! counter on bands
|
|
INTEGER :: ir
|
|
!! counter on real mesh
|
|
INTEGER :: is
|
|
!!
|
|
INTEGER :: ip
|
|
!!
|
|
!
|
|
complex(DP) :: gtau, gu, fact, u1, u2, u3, gu0
|
|
complex(DP) , allocatable, target :: aux (:)
|
|
complex(DP) , allocatable :: aux1 (:), aux2 (:)
|
|
complex(DP) , pointer :: auxs (:)
|
|
COMPLEX(DP), ALLOCATABLE :: drhoc(:)
|
|
!
|
|
call start_clock ('dvqpsi_us')
|
|
if (nlcc_any.and.addnlcc) then
|
|
allocate (drhoc( dfftp%nnr))
|
|
allocate (aux( dfftp%nnr))
|
|
allocate (auxs(dffts%nnr))
|
|
endif
|
|
allocate (aux1(dffts%nnr))
|
|
allocate (aux2(dffts%nnr))
|
|
!
|
|
! We start by computing the contribution of the local potential.
|
|
! The computation of the derivative of the local potential is done in
|
|
! reciprocal space while the product with the wavefunction is done in
|
|
! real space
|
|
!
|
|
ikk = ikks(ik)
|
|
ikq = ikqs(ik)
|
|
npw = ngk(ikk)
|
|
npwq= ngk(ikq)
|
|
!
|
|
dvpsi(:,:) = (0.d0, 0.d0)
|
|
aux1(:) = (0.d0, 0.d0)
|
|
do na = 1, nat
|
|
fact = tpiba * (0.d0, -1.d0) * eigqts (na)
|
|
mu = 3 * (na - 1)
|
|
if (abs (uact (mu + 1) ) + abs (uact (mu + 2) ) + abs (uact (mu + &
|
|
3) ) .gt.1.0d-12) then
|
|
nt = ityp (na)
|
|
u1 = uact (mu + 1)
|
|
u2 = uact (mu + 2)
|
|
u3 = uact (mu + 3)
|
|
gu0 = xq (1) * u1 + xq (2) * u2 + xq (3) * u3
|
|
do ig = 1, ngms
|
|
gtau = eigts1 (mill(1,ig), na) * eigts2 (mill(2,ig), na) * &
|
|
eigts3 (mill(3,ig), na)
|
|
gu = gu0 + g (1, ig) * u1 + g (2, ig) * u2 + g (3, ig) * u3
|
|
aux1 (dffts%nl (ig) ) = aux1 (dffts%nl (ig) ) + vlocq (ig, nt) * gu * &
|
|
fact * gtau
|
|
enddo
|
|
IF (do_cutoff_2D) then
|
|
call cutoff_localq( aux1, fact, u1, u2, u3, gu0, nt, na)
|
|
ENDIF
|
|
!
|
|
endif
|
|
enddo
|
|
!
|
|
! add NLCC when present
|
|
!
|
|
if (nlcc_any.and.addnlcc) then
|
|
drhoc(:) = (0.d0, 0.d0)
|
|
do na = 1,nat
|
|
fact = tpiba*(0.d0,-1.d0)*eigqts(na)
|
|
mu = 3*(na-1)
|
|
if (abs(uact(mu+1))+abs(uact(mu+2)) &
|
|
+abs(uact(mu+3)).gt.1.0d-12) then
|
|
nt=ityp(na)
|
|
u1 = uact(mu+1)
|
|
u2 = uact(mu+2)
|
|
u3 = uact(mu+3)
|
|
gu0 = xq(1)*u1 +xq(2)*u2+xq(3)*u3
|
|
if (upf(nt)%nlcc) then
|
|
do ig = 1,ngm
|
|
gtau = eigts1(mill(1,ig),na)* &
|
|
eigts2(mill(2,ig),na)* &
|
|
eigts3(mill(3,ig),na)
|
|
gu = gu0+g(1,ig)*u1+g(2,ig)*u2+g(3,ig)*u3
|
|
drhoc(dfftp%nl(ig))=drhoc(dfftp%nl(ig))+drc(ig,nt)*gu*fact*gtau
|
|
enddo
|
|
endif
|
|
endif
|
|
enddo
|
|
CALL invfft ('Rho', drhoc, dfftp)
|
|
if (.not.lsda) then
|
|
do ir=1,dfftp%nnr
|
|
aux(ir) = drhoc(ir) * dmuxc(ir,1,1)
|
|
end do
|
|
else
|
|
is=isk(ikk)
|
|
do ir=1,dfftp%nnr
|
|
aux(ir) = drhoc(ir) * 0.5d0 * &
|
|
(dmuxc(ir,is,1)+dmuxc(ir,is,2))
|
|
enddo
|
|
endif
|
|
|
|
rho%of_r(:,1) = rho%of_r(:,1) + rho_core
|
|
|
|
IF ( dft_is_gradient() ) CALL dgradcorr (dfftp, rho%of_r, grho, dvxc_rr, &
|
|
dvxc_sr, dvxc_ss, dvxc_s, xq, drhoc, 1, nspin_gga, g, aux)
|
|
|
|
IF (dft_is_nonlocc()) CALL dnonloccorr(rho%of_r, drhoc, xq, aux)
|
|
|
|
rho%of_r(:,1) = rho%of_r(:,1) - rho_core
|
|
|
|
CALL fwfft ('Rho', aux, dfftp)
|
|
!
|
|
! This is needed also when the smooth and the thick grids coincide to
|
|
! cut the potential at the cut-off
|
|
!
|
|
auxs(:) = (0.d0, 0.d0)
|
|
do ig=1,ngms
|
|
auxs(dffts%nl(ig)) = aux(dfftp%nl(ig))
|
|
enddo
|
|
aux1(:) = aux1(:) + auxs(:)
|
|
endif
|
|
!
|
|
! Now we compute dV_loc/dtau in real space
|
|
!
|
|
CALL invfft ('Rho', aux1, dffts)
|
|
do ibnd = 1, nbnd
|
|
do ip=1,npol
|
|
aux2(:) = (0.d0, 0.d0)
|
|
if (ip==1) then
|
|
do ig = 1, npw
|
|
aux2 (dffts%nl (igk_k (ig,ikk) ) ) = evc (ig, ibnd)
|
|
enddo
|
|
else
|
|
do ig = 1, npw
|
|
aux2 (dffts%nl (igk_k (ig,ikk) ) ) = evc (ig+npwx, ibnd)
|
|
enddo
|
|
end if
|
|
!
|
|
! This wavefunction is computed in real space
|
|
!
|
|
CALL invfft ('Wave', aux2, dffts)
|
|
do ir = 1, dffts%nnr
|
|
aux2 (ir) = aux2 (ir) * aux1 (ir)
|
|
enddo
|
|
!
|
|
! and finally dV_loc/dtau * psi is transformed in reciprocal space
|
|
!
|
|
CALL fwfft ('Wave', aux2, dffts)
|
|
if (ip==1) then
|
|
do ig = 1, npwq
|
|
dvpsi (ig, ibnd) = aux2 (dffts%nl (igk_k (ig,ikq) ) )
|
|
enddo
|
|
else
|
|
do ig = 1, npwq
|
|
dvpsi (ig+npwx, ibnd) = aux2 (dffts%nl (igk_k (ig,ikq) ) )
|
|
enddo
|
|
end if
|
|
enddo
|
|
enddo
|
|
!
|
|
deallocate (aux2)
|
|
deallocate (aux1)
|
|
if (nlcc_any.and.addnlcc) then
|
|
deallocate (drhoc)
|
|
deallocate (aux)
|
|
deallocate (auxs)
|
|
endif
|
|
!
|
|
! We add the contribution of the nonlocal potential in the US form
|
|
! First a term similar to the KB case.
|
|
! Then a term due to the change of the D coefficients.
|
|
!
|
|
call dvqpsi_us_only (ik, uact)
|
|
|
|
call stop_clock ('dvqpsi_us')
|
|
return
|
|
end subroutine dvqpsi_us
|