mirror of https://gitlab.com/QEF/q-e.git
164 lines
5.9 KiB
Fortran
164 lines
5.9 KiB
Fortran
!
|
|
! Copyright (C) 2001 PWSCF group
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine compute_alphasum
|
|
!-----------------------------------------------------------------------
|
|
!
|
|
! This routine computes the alphasum term which is used to compute the
|
|
! change of the charge due to the displacement of the augmentation
|
|
! term and a part of the US contribution to the dynamical matrix.
|
|
!
|
|
! It implements Eq.B17 of Ref.[1]. This quantity is distributed
|
|
! among processors.
|
|
! [1] PRB 64, 235118 (2001).
|
|
!
|
|
!
|
|
|
|
USE kinds, only : DP
|
|
USE ions_base, ONLY : nat, ityp, ntyp => nsp
|
|
USE lsda_mod, ONLY : current_spin, isk, lsda
|
|
USE wvfct, ONLY : nbnd, wg
|
|
USE noncollin_module, ONLY : noncolin, npol
|
|
USE uspp, ONLY: okvan
|
|
USE uspp_param, ONLY: upf, nh
|
|
USE paw_variables, ONLY : okpaw
|
|
USE phus, ONLY : alphasum, alphasum_nc, alphap
|
|
|
|
USE lrus, ONLY : becp1
|
|
USE qpoint, ONLY : nksq, ikks, ikqs
|
|
USE control_ph, ONLY : rec_code_read
|
|
USE control_lr, ONLY : nbnd_occ
|
|
|
|
implicit none
|
|
|
|
integer :: ik, ikk, ikq, ijkb0, ijh, ikb, jkb, ih, jh, na, nt, &
|
|
ipol, ibnd, is1, is2
|
|
! counter on k points
|
|
! counters on beta functions
|
|
! counters on beta functions
|
|
! counters for atoms
|
|
! counter on polarizations
|
|
! counter on bands
|
|
|
|
real(DP) :: wgg1
|
|
! auxiliary weight
|
|
|
|
|
|
if (.not.okvan) return
|
|
IF (rec_code_read >= -20.AND..NOT.okpaw) RETURN
|
|
|
|
|
|
alphasum = 0.d0
|
|
IF (noncolin) alphasum_nc=(0.d0,0.d0)
|
|
do ik = 1, nksq
|
|
ikk = ikks(ik)
|
|
ikq = ikqs(ik)
|
|
if (lsda) current_spin = isk (ikk)
|
|
ijkb0 = 0
|
|
do nt = 1, ntyp
|
|
if (upf(nt)%tvanp ) then
|
|
do na = 1, nat
|
|
if (ityp (na) == nt) then
|
|
ijh = 0
|
|
do ih = 1, nh (nt)
|
|
ikb = ijkb0 + ih
|
|
ijh = ijh + 1
|
|
do ibnd = 1, nbnd_occ (ikk)
|
|
wgg1 = wg (ibnd, ikk)
|
|
do ipol = 1, 3
|
|
IF (noncolin) THEN
|
|
DO is1=1,npol
|
|
DO is2=1,npol
|
|
alphasum_nc(ijh,ipol,na,is1,is2) = &
|
|
alphasum_nc(ijh,ipol,na,is1,is2)+wgg1* &
|
|
(CONJG(alphap(ipol,ik)%nc(ikb,is1,ibnd))*&
|
|
becp1(ik)%nc(ikb,is2,ibnd) + &
|
|
CONJG(becp1(ik)%nc(ikb,is1,ibnd))* &
|
|
alphap(ipol,ik)%nc(ikb,is2,ibnd))
|
|
END DO
|
|
END DO
|
|
ELSE
|
|
alphasum(ijh,ipol,na,current_spin) = &
|
|
alphasum(ijh,ipol,na,current_spin) + 2.d0*wgg1*&
|
|
DBLE (CONJG(alphap(ipol,ik)%k(ikb,ibnd) ) * &
|
|
becp1(ik)%k(ikb,ibnd) )
|
|
END IF
|
|
enddo
|
|
enddo
|
|
do jh = ih+1, nh (nt)
|
|
jkb = ijkb0 + jh
|
|
ijh = ijh + 1
|
|
do ibnd = 1, nbnd
|
|
wgg1 = wg (ibnd, ikk)
|
|
do ipol = 1, 3
|
|
IF (noncolin) THEN
|
|
DO is1=1,npol
|
|
DO is2=1,npol
|
|
alphasum_nc(ijh,ipol,na,is1,is2) = &
|
|
alphasum_nc(ijh,ipol,na,is1,is2) &
|
|
+wgg1* &
|
|
(CONJG(alphap(ipol,ik)%nc(ikb,is1,ibnd))* &
|
|
becp1(ik)%nc(jkb,is2,ibnd)+ &
|
|
CONJG(becp1(ik)%nc(ikb,is1,ibnd))* &
|
|
alphap(ipol,ik)%nc(jkb,is2,ibnd) )
|
|
END DO
|
|
END DO
|
|
ELSE
|
|
alphasum(ijh,ipol,na,current_spin) = &
|
|
alphasum(ijh,ipol,na,current_spin) + &
|
|
2.d0 * wgg1 * &
|
|
DBLE(CONJG(alphap(ipol,ik)%k(ikb,ibnd) )*&
|
|
becp1(ik)%k(jkb,ibnd) + &
|
|
CONJG( becp1(ik)%k(ikb,ibnd) ) * &
|
|
alphap(ipol,ik)%k(jkb,ibnd) )
|
|
END IF
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
ijkb0 = ijkb0 + nh (nt)
|
|
endif
|
|
enddo
|
|
else
|
|
do na = 1, nat
|
|
if (ityp (na) == nt) ijkb0 = ijkb0 + nh (nt)
|
|
enddo
|
|
endif
|
|
enddo
|
|
enddo
|
|
|
|
IF (noncolin.and.okvan) THEN
|
|
DO nt = 1, ntyp
|
|
IF ( upf(nt)%tvanp ) THEN
|
|
DO na = 1, nat
|
|
IF (ityp(na)==nt) THEN
|
|
IF (upf(nt)%has_so) THEN
|
|
CALL transform_alphasum_so(alphasum_nc,na)
|
|
ELSE
|
|
CALL transform_alphasum_nc(alphasum_nc,na)
|
|
END IF
|
|
END IF
|
|
END DO
|
|
END IF
|
|
END DO
|
|
END IF
|
|
|
|
! do na=1,nat
|
|
! nt=ityp(na)
|
|
! do ijh=1,nh(nt)*(nh(nt)+1)/2
|
|
! do ipol=1,3
|
|
! WRITE( stdout,'(3i5,f20.10)') na, ijh, ipol,
|
|
! + alphasum(ijh,ipol,na,1)
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! call stop_ph(.true.)
|
|
return
|
|
end subroutine compute_alphasum
|