quantum-espresso/PHonon/Gamma/dgradcorr.f90

153 lines
5.4 KiB
Fortran

!
! Copyright (C) 2003 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!--------------------------------------------------------------------
SUBROUTINE dgradcor1 (dfft, rho, grho, dvxc_rr, dvxc_sr, dvxc_ss, dvxc_s, &
drho, drhoc, nspin, g, dvxc)
! ===================
!--------------------------------------------------------------------
! ADD Gradient Correction contibution to screening potential
! phonon calculation, half G-vectors
USE kinds, ONLY : DP
USE fft_types, ONLY : fft_type_descriptor
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
INTEGER, INTENT(IN) :: nspin
REAL(DP), INTENT(IN) :: rho (dfft%nnr, nspin), grho (3, dfft%nnr, nspin), &
g (3, dfft%ngm)
REAL(DP), INTENT(OUT):: drho (dfft%nnr,nspin),&
dvxc_rr(dfft%nnr, nspin, nspin), dvxc_sr (dfft%nnr, nspin, nspin), &
dvxc_ss (dfft%nnr,nspin, nspin), dvxc_s (dfft%nnr, nspin, nspin)
REAL(DP), INTENT(INOUT) :: dvxc (dfft%nnr, nspin)
COMPLEX(DP) :: drhoc(dfft%nnr, nspin)
!
INTEGER :: k, ipol, is, js, ks, ls
real(DP) :: epsr, epsg, grho2
COMPLEX(DP) :: s1
COMPLEX(DP) :: a (2, 2, 2), b (2, 2, 2, 2), c (2, 2, 2), &
ps (2, 2), ps1 (3, 2, 2), ps2 (3, 2, 2, 2)
REAL(DP), ALLOCATABLE :: gdrho (:,:,:)
REAL(DP), ALLOCATABLE :: h (:,:,:), dh (:)
PARAMETER (epsr = 1.0d-6, epsg = 1.0d-10)
ALLOCATE (gdrho( 3, dfft%nnr , nspin))
ALLOCATE (h( 3, dfft%nnr , nspin))
ALLOCATE (dh( dfft%nnr))
h (:,:,:) = 0.d0
DO is = 1, nspin
CALL fft_gradient_g2r (dfft, drhoc(1, is), g, gdrho (1,1,is) )
ENDDO
DO k = 1, dfft%nnr
IF (nspin==1) THEN
!
! LDA case
!
grho2 = grho(1, k, 1)**2 + grho(2, k, 1)**2 + grho(3, k, 1)**2
IF (abs (rho (k, 1) ) >epsr .and. grho2>epsg ) THEN
s1 = grho (1, k, 1) * gdrho (1, k, 1) + &
grho (2, k, 1) * gdrho (2, k, 1) + &
grho (3, k, 1) * gdrho (3, k, 1)
!
! linear variation of the first term
!
dvxc (k, 1) = dvxc (k, 1) + dvxc_rr (k, 1, 1) * drho (k, 1) &
+ dvxc_sr (k, 1, 1) * s1
DO ipol = 1, 3
h (ipol, k, 1) = (dvxc_sr(k, 1, 1) * drho(k, 1) + &
dvxc_ss(k, 1, 1) * s1 )*grho(ipol, k, 1) + &
dvxc_s (k, 1, 1) * gdrho (ipol, k, 1)
ENDDO
ELSE
DO ipol = 1, 3
h (ipol, k, 1) = (0.d0, 0.d0)
ENDDO
ENDIF
ELSE
!
! LSDA case
!
ps (:,:) = (0.d0, 0.d0)
DO is = 1, nspin
DO js = 1, nspin
DO ipol = 1, 3
ps1(ipol, is, js) = drho (k, is) * grho (ipol, k, js)
ps(is, js) = ps(is, js) + grho(ipol,k,is)*gdrho(ipol,k,js)
ENDDO
DO ks = 1, nspin
IF (is==js.and.js==ks) THEN
a (is, js, ks) = dvxc_sr (k, is, is)
c (is, js, ks) = dvxc_sr (k, is, is)
ELSE
IF (is==1) THEN
a (is, js, ks) = dvxc_sr (k, 1, 2)
ELSE
a (is, js, ks) = dvxc_sr (k, 2, 1)
ENDIF
IF (js==1) THEN
c (is, js, ks) = dvxc_sr (k, 1, 2)
ELSE
c (is, js, ks) = dvxc_sr (k, 2, 1)
ENDIF
ENDIF
DO ipol = 1, 3
ps2 (ipol, is, js, ks) = ps (is, js) * grho (ipol, k, ks)
ENDDO
DO ls = 1, nspin
IF (is==js.and.js==ks.and.ks==ls) THEN
b (is, js, ks, ls) = dvxc_ss (k, is, is)
ELSE
IF (is==1) THEN
b (is, js, ks, ls) = dvxc_ss (k, 1, 2)
ELSE
b (is, js, ks, ls) = dvxc_ss (k, 2, 1)
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
DO is = 1, nspin
DO js = 1, nspin
dvxc (k, is) = dvxc (k, is) + dvxc_rr (k, is, js) * drho (k, js)
DO ipol = 1, 3
h (ipol, k, is) = h (ipol, k, is) + &
dvxc_s (k, is, js) * gdrho(ipol, k, js)
ENDDO
DO ks = 1, nspin
dvxc (k, is) = dvxc (k, is) + a (is, js, ks) * ps (js, ks)
DO ipol = 1, 3
h (ipol, k, is) = h (ipol, k, is) + &
c (is, js, ks) * ps1 (ipol, js, ks)
ENDDO
DO ls = 1, nspin
DO ipol = 1, 3
h (ipol, k, is) = h (ipol, k, is) + &
b (is, js, ks, ls) * ps2 (ipol, js, ks, ls)
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
ENDIF
ENDDO
! linear variation of the second term
DO is = 1, nspin
CALL fft_graddot (dfft, h (1, 1, is), g, dh)
DO k = 1, dfft%nnr
dvxc (k, is) = dvxc (k, is) - dh (k)
ENDDO
ENDDO
DEALLOCATE (dh)
DEALLOCATE (h)
DEALLOCATE (gdrho)
RETURN
END SUBROUTINE dgradcor1