mirror of https://gitlab.com/QEF/q-e.git
343 lines
11 KiB
Fortran
343 lines
11 KiB
Fortran
!
|
|
! Copyright (C) 2004-2011 Quantum ESPRESSO group
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!
|
|
MODULE uspp_param
|
|
!
|
|
! ... Ultrasoft and Norm-Conserving pseudopotential parameters
|
|
!
|
|
USE kinds, ONLY : DP
|
|
USE parameters, ONLY : npsx
|
|
USE pseudo_types, ONLY : pseudo_upf
|
|
!
|
|
SAVE
|
|
PUBLIC :: n_atom_wfc
|
|
!
|
|
TYPE (pseudo_upf), ALLOCATABLE, TARGET :: upf(:)
|
|
|
|
INTEGER :: &
|
|
nh(npsx), &! number of beta functions per atomic type
|
|
nhm, &! max number of different beta functions per atom
|
|
nbetam, &! max number of beta functions
|
|
iver(3,npsx) ! version of the atomic code
|
|
INTEGER :: &
|
|
lmaxkb, &! max angular momentum
|
|
lmaxq ! max angular momentum + 1 for Q functions
|
|
INTEGER :: &
|
|
nvb, &! number of species with Vanderbilt PPs (CPV)
|
|
ish(npsx) ! for each specie the index of the first beta
|
|
! function: ish(1)=1, ish(i)=1+SUM(nh(1:i-1))
|
|
CONTAINS
|
|
!
|
|
!----------------------------------------------------------------------------
|
|
FUNCTION n_atom_wfc( nat, ityp, noncolin )
|
|
!----------------------------------------------------------------------------
|
|
!
|
|
! ... Find number of starting atomic orbitals
|
|
!
|
|
IMPLICIT NONE
|
|
!
|
|
INTEGER, INTENT(IN) :: nat, ityp(nat)
|
|
LOGICAL, INTENT(IN), OPTIONAL :: noncolin
|
|
INTEGER :: n_atom_wfc
|
|
!
|
|
INTEGER :: na, nt, n
|
|
LOGICAL :: non_col
|
|
!
|
|
!
|
|
non_col = .FALSE.
|
|
IF ( PRESENT (noncolin) ) non_col=noncolin
|
|
n_atom_wfc = 0
|
|
!
|
|
DO na = 1, nat
|
|
!
|
|
nt = ityp(na)
|
|
!
|
|
DO n = 1, upf(nt)%nwfc
|
|
!
|
|
IF ( upf(nt)%oc(n) >= 0.D0 ) THEN
|
|
!
|
|
IF ( non_col ) THEN
|
|
!
|
|
IF ( upf(nt)%has_so ) THEN
|
|
!
|
|
n_atom_wfc = n_atom_wfc + 2 * upf(nt)%lchi(n)
|
|
!
|
|
IF ( ABS( upf(nt)%jchi(n)-upf(nt)%lchi(n) - 0.5D0 ) < 1.D-6 ) &
|
|
n_atom_wfc = n_atom_wfc + 2
|
|
!
|
|
ELSE
|
|
!
|
|
n_atom_wfc = n_atom_wfc + 2 * ( 2 * upf(nt)%lchi(n) + 1 )
|
|
!
|
|
END IF
|
|
!
|
|
ELSE
|
|
!
|
|
n_atom_wfc = n_atom_wfc + 2 * upf(nt)%lchi(n) + 1
|
|
!
|
|
END IF
|
|
END IF
|
|
END DO
|
|
END DO
|
|
!
|
|
RETURN
|
|
!
|
|
END FUNCTION n_atom_wfc
|
|
END MODULE uspp_param
|
|
|
|
! <<<<<<<<<<<<<<<~~~~<<<<<<<<<<<<<<<<-----------------
|
|
|
|
MODULE uspp
|
|
!
|
|
! Ultrasoft PPs:
|
|
! - Clebsch-Gordan coefficients "ap", auxiliary variables "lpx", "lpl"
|
|
! - beta and q functions of the solid
|
|
!
|
|
USE kinds, ONLY: DP
|
|
USE parameters, ONLY: lmaxx, lqmax
|
|
IMPLICIT NONE
|
|
PRIVATE
|
|
SAVE
|
|
PUBLIC :: nlx, lpx, lpl, ap, aainit, indv, nhtol, nhtolm, indv_ijkb0, &
|
|
nkb, nkbus, vkb, dvan, deeq, qq_at, qq_nt, nhtoj, ijtoh, beta, &
|
|
becsum, ebecsum, deallocate_uspp
|
|
|
|
PUBLIC :: okvan, nlcc_any
|
|
PUBLIC :: qq_so, dvan_so, deeq_nc
|
|
PUBLIC :: dbeta
|
|
INTEGER, PARAMETER :: &
|
|
nlx = (lmaxx+1)**2, &! maximum number of combined angular momentum
|
|
mx = 2*lqmax-1 ! maximum magnetic angular momentum of Q
|
|
INTEGER :: &! for each pair of combined momenta lm(1),lm(2):
|
|
lpx(nlx,nlx), &! maximum combined angular momentum LM
|
|
lpl(nlx,nlx,mx) ! list of combined angular momenta LM
|
|
REAL(DP) :: &
|
|
ap(lqmax*lqmax,nlx,nlx)
|
|
! Clebsch-Gordan coefficients for spherical harmonics
|
|
!
|
|
INTEGER :: nkb, &! total number of beta functions, with struct.fact.
|
|
nkbus ! as above, for US-PP only
|
|
!
|
|
INTEGER, ALLOCATABLE ::&
|
|
indv(:,:), &! indes linking atomic beta's to beta's in the solid
|
|
nhtol(:,:), &! correspondence n <-> angular momentum l
|
|
nhtolm(:,:), &! correspondence n <-> combined lm index for (l,m)
|
|
ijtoh(:,:,:), &! correspondence beta indexes ih,jh -> composite index ijh
|
|
indv_ijkb0(:) ! first beta (index in the solid) for each atom
|
|
!
|
|
LOGICAL :: &
|
|
okvan = .FALSE.,& ! if .TRUE. at least one pseudo is Vanderbilt
|
|
nlcc_any=.FALSE. ! if .TRUE. at least one pseudo has core corrections
|
|
!
|
|
COMPLEX(DP), ALLOCATABLE, TARGET :: &
|
|
vkb(:,:) ! all beta functions in reciprocal space
|
|
REAL(DP), ALLOCATABLE :: &
|
|
becsum(:,:,:) ! \sum_i f(i) <psi(i)|beta_l><beta_m|psi(i)>
|
|
REAL(DP), ALLOCATABLE :: &
|
|
ebecsum(:,:,:) ! \sum_i f(i) et(i) <psi(i)|beta_l><beta_m|psi(i)>
|
|
REAL(DP), ALLOCATABLE :: &
|
|
dvan(:,:,:), &! the D functions of the solid
|
|
deeq(:,:,:,:), &! the integral of V_eff and Q_{nm}
|
|
qq_nt(:,:,:), &! the integral of q functions in the solid (ONE PER NTYP) used to be the qq array
|
|
qq_at(:,:,:), &! the integral of q functions in the solid (ONE PER ATOM !!!!)
|
|
nhtoj(:,:) ! correspondence n <-> total angular momentum
|
|
!
|
|
COMPLEX(DP), ALLOCATABLE :: & ! variables for spin-orbit/noncolinear case:
|
|
qq_so(:,:,:,:), &! Q_{nm}
|
|
dvan_so(:,:,:,:), &! D_{nm}
|
|
deeq_nc(:,:,:,:) ! \int V_{eff}(r) Q_{nm}(r) dr
|
|
!
|
|
! spin-orbit coupling: qq and dvan are complex, qq has additional spin index
|
|
! noncolinear magnetism: deeq is complex (even in absence of spin-orbit)
|
|
!
|
|
REAL(DP), ALLOCATABLE :: &
|
|
beta(:,:,:) ! beta functions for CP (without struct.factor)
|
|
REAL(DP), ALLOCATABLE :: &
|
|
dbeta(:,:,:,:,:) ! derivative of beta functions w.r.t. cell for CP (without struct.factor)
|
|
!
|
|
CONTAINS
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine aainit(lli)
|
|
!-----------------------------------------------------------------------
|
|
!
|
|
! this routine computes the coefficients of the expansion of the product
|
|
! of two real spherical harmonics into real spherical harmonics.
|
|
!
|
|
! Y_limi(r) * Y_ljmj(r) = \sum_LM ap(LM,limi,ljmj) Y_LM(r)
|
|
!
|
|
! On output:
|
|
! ap the expansion coefficients
|
|
! lpx for each input limi,ljmj is the number of LM in the sum
|
|
! lpl for each input limi,ljmj points to the allowed LM
|
|
!
|
|
! The indices limi,ljmj and LM assume the order for real spherical
|
|
! harmonics given in routine ylmr2
|
|
!
|
|
USE matrix_inversion
|
|
implicit none
|
|
!
|
|
! input: the maximum li considered
|
|
!
|
|
integer :: lli
|
|
!
|
|
! local variables
|
|
!
|
|
integer :: llx, l, li, lj
|
|
real(DP) , allocatable :: r(:,:), rr(:), ylm(:,:), mly(:,:)
|
|
! an array of random vectors: r(3,llx)
|
|
! the norm of r: rr(llx)
|
|
! the real spherical harmonics for array r: ylm(llx,llx)
|
|
! the inverse of ylm considered as a matrix: mly(llx,llx)
|
|
!
|
|
if (lli < 0) call errore('aainit','lli not allowed',lli)
|
|
|
|
if (lli*lli > nlx) call errore('aainit','nlx is too small ',lli*lli)
|
|
|
|
llx = (2*lli-1)**2
|
|
if (2*lli-1 > lqmax) &
|
|
call errore('aainit','ap leading dimension is too small',llx)
|
|
|
|
allocate (r( 3, llx ))
|
|
allocate (rr( llx ))
|
|
allocate (ylm( llx, llx ))
|
|
allocate (mly( llx, llx ))
|
|
|
|
r(:,:) = 0.0_DP
|
|
ylm(:,:) = 0.0_DP
|
|
mly(:,:) = 0.0_DP
|
|
ap(:,:,:)= 0.0_DP
|
|
|
|
! - generate an array of random vectors (uniform deviate on unitary sphere)
|
|
|
|
call gen_rndm_r(llx,r,rr)
|
|
|
|
! - generate the real spherical harmonics for the array: ylm(ir,lm)
|
|
|
|
call ylmr2(llx,llx,r,rr,ylm)
|
|
|
|
!- store the inverse of ylm(ir,lm) in mly(lm,ir)
|
|
|
|
call invmat(llx, ylm, mly)
|
|
|
|
!- for each li,lj compute ap(l,li,lj) and the indices, lpx and lpl
|
|
do li = 1, lli*lli
|
|
do lj = 1, lli*lli
|
|
lpx(li,lj)=0
|
|
do l = 1, llx
|
|
ap(l,li,lj) = compute_ap(l,li,lj,llx,ylm,mly)
|
|
if (abs(ap(l,li,lj)) > 1.d-3) then
|
|
lpx(li,lj) = lpx(li,lj) + 1
|
|
if (lpx(li,lj) > mx) &
|
|
call errore('aainit','mx dimension too small', lpx(li,lj))
|
|
lpl(li,lj,lpx(li,lj)) = l
|
|
end if
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
deallocate(mly)
|
|
deallocate(ylm)
|
|
deallocate(rr)
|
|
deallocate(r)
|
|
|
|
return
|
|
end subroutine aainit
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine gen_rndm_r(llx,r,rr)
|
|
!-----------------------------------------------------------------------
|
|
! - generate an array of random vectors (uniform deviate on unitary sphere)
|
|
!
|
|
USE constants, ONLY: tpi
|
|
USE random_numbers, ONLY: randy
|
|
|
|
implicit none
|
|
!
|
|
! first the I/O variables
|
|
!
|
|
integer :: llx ! input: the dimension of r and rr
|
|
|
|
real(DP) :: &
|
|
r(3,llx), &! output: an array of random vectors
|
|
rr(llx) ! output: the norm of r
|
|
!
|
|
! here the local variables
|
|
!
|
|
integer :: ir
|
|
real(DP) :: costheta, sintheta, phi
|
|
|
|
do ir = 1, llx
|
|
costheta = 2.0_DP * randy() - 1.0_DP
|
|
sintheta = SQRT ( 1.0_DP - costheta*costheta)
|
|
phi = tpi * randy()
|
|
r (1,ir) = sintheta * cos(phi)
|
|
r (2,ir) = sintheta * sin(phi)
|
|
r (3,ir) = costheta
|
|
rr(ir) = 1.0_DP
|
|
end do
|
|
|
|
return
|
|
end subroutine gen_rndm_r
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
function compute_ap(l,li,lj,llx,ylm,mly)
|
|
!-----------------------------------------------------------------------
|
|
!- given an l and a li,lj pair compute ap(l,li,lj)
|
|
implicit none
|
|
!
|
|
! first the I/O variables
|
|
!
|
|
integer :: &
|
|
llx, &! the dimension of ylm and mly
|
|
l,li,lj ! the arguments of the array ap
|
|
|
|
real(DP) :: &
|
|
compute_ap, &! this function
|
|
ylm(llx,llx),&! the real spherical harmonics for array r
|
|
mly(llx,llx) ! the inverse of ylm considered as a matrix
|
|
!
|
|
! here the local variables
|
|
!
|
|
integer :: ir
|
|
|
|
compute_ap = 0.0_DP
|
|
do ir = 1,llx
|
|
compute_ap = compute_ap + mly(l,ir)*ylm(ir,li)*ylm(ir,lj)
|
|
end do
|
|
|
|
return
|
|
end function compute_ap
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
SUBROUTINE deallocate_uspp()
|
|
!-----------------------------------------------------------------------
|
|
!
|
|
IF( ALLOCATED( nhtol ) ) DEALLOCATE( nhtol )
|
|
IF( ALLOCATED( indv ) ) DEALLOCATE( indv )
|
|
IF( ALLOCATED( nhtolm ) ) DEALLOCATE( nhtolm )
|
|
IF( ALLOCATED( nhtoj ) ) DEALLOCATE( nhtoj )
|
|
IF( ALLOCATED( indv_ijkb0 ) ) DEALLOCATE( indv_ijkb0 )
|
|
IF( ALLOCATED( ijtoh ) ) DEALLOCATE( ijtoh )
|
|
IF( ALLOCATED( vkb ) ) DEALLOCATE( vkb )
|
|
IF( ALLOCATED( becsum ) ) DEALLOCATE( becsum )
|
|
IF( ALLOCATED( ebecsum ) ) DEALLOCATE( ebecsum )
|
|
IF( ALLOCATED( qq_at ) ) DEALLOCATE( qq_at )
|
|
IF( ALLOCATED( qq_nt ) ) DEALLOCATE( qq_nt )
|
|
IF( ALLOCATED( dvan ) ) DEALLOCATE( dvan )
|
|
IF( ALLOCATED( deeq ) ) DEALLOCATE( deeq )
|
|
IF( ALLOCATED( qq_so ) ) DEALLOCATE( qq_so )
|
|
IF( ALLOCATED( dvan_so ) ) DEALLOCATE( dvan_so )
|
|
IF( ALLOCATED( deeq_nc ) ) DEALLOCATE( deeq_nc )
|
|
IF( ALLOCATED( beta ) ) DEALLOCATE( beta )
|
|
IF( ALLOCATED( dbeta ) ) DEALLOCATE( dbeta )
|
|
!
|
|
END SUBROUTINE deallocate_uspp
|
|
!
|
|
END MODULE uspp
|
|
|