mirror of https://gitlab.com/QEF/q-e.git
2750 lines
87 KiB
Fortran
2750 lines
87 KiB
Fortran
!
|
|
! Copyright (C) 2001-2014 Quantum ESPRESSO group
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!-----------------------------------------------------------------------
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine slater (rs, ex, vx)
|
|
!-----------------------------------------------------------------------
|
|
! Slater exchange with alpha=2/3
|
|
!
|
|
USE kinds, ONLY : DP
|
|
#if defined(__LIBXC)
|
|
use xc_f90_types_m
|
|
use xc_f90_lib_m
|
|
#endif
|
|
implicit none
|
|
real(dp), intent(in) :: rs
|
|
real(dp), intent(out):: ex, vx
|
|
#if defined(__LIBXC)
|
|
real(dp):: rho
|
|
real(dp), parameter :: pi34 = 0.6203504908994d0 ! pi34=(3/4pi)^(1/3)
|
|
integer :: func_id = 1 ! Slater Exchange
|
|
integer :: size = 1
|
|
TYPE(xc_f90_pointer_t) :: xc_func
|
|
TYPE(xc_f90_pointer_t) :: xc_info
|
|
|
|
rho = (pi34/rs)**3
|
|
call xc_f90_func_init(xc_func, xc_info, func_id, XC_UNPOLARIZED)
|
|
call xc_f90_lda_exc_vxc(xc_func, size, rho ,ex, vx)
|
|
call xc_f90_func_end(xc_func)
|
|
#else
|
|
real(dp), parameter :: f= -0.687247939924714d0, alpha = 2.0d0/3.0d0
|
|
! f = -9/8*(3/2pi)^(2/3)
|
|
!
|
|
ex = f * alpha / rs
|
|
vx = 4.d0 / 3.d0 * f * alpha / rs
|
|
#endif
|
|
!
|
|
return
|
|
end subroutine slater
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine slater1(rs, ex, vx)
|
|
!-----------------------------------------------------------------------
|
|
! Slater exchange with alpha=1, corresponding to -1.374/r_s Ry
|
|
! used to recover old results
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rs, ex, vx
|
|
real(DP), parameter :: f= -0.687247939924714d0, alpha = 1.0d0
|
|
!
|
|
ex = f * alpha / rs
|
|
vx = 4.d0 / 3.d0 * f * alpha / rs
|
|
!
|
|
return
|
|
end subroutine slater1
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine slater_rxc (rs, ex, vx)
|
|
!-----------------------------------------------------------------------
|
|
! Slater exchange with alpha=2/3 and Relativistic exchange
|
|
!
|
|
USE kinds, ONLY : DP
|
|
USE constants, ONLY : pi, c_au
|
|
IMPLICIT none
|
|
real (DP):: rs, ex, vx
|
|
!
|
|
real(DP), PARAMETER :: ZERO=0.D0, ONE=1.D0, PFIVE=.5D0, &
|
|
OPF=1.5D0 !, C014=0.014D0
|
|
real (DP):: trd, ftrd, tftm, a0, alp, z, fz, fzp, vxp, xp, &
|
|
beta, sb, alb, c014
|
|
!
|
|
TRD = ONE/3.d0
|
|
FTRD = 4.d0*TRD
|
|
TFTM = 2**FTRD-2.d0
|
|
A0 = (4.d0/(9.d0*PI))**TRD
|
|
C014= 1.0_DP/a0/c_au
|
|
|
|
! X-alpha parameter:
|
|
ALP = 2.d0 * TRD
|
|
|
|
Z = ZERO
|
|
FZ = ZERO
|
|
FZP = ZERO
|
|
|
|
VXP = -3.d0*ALP/(2.d0*PI*A0*RS)
|
|
XP = 3.d0*VXP/4.d0
|
|
BETA = C014/RS
|
|
SB = SQRT(1.d0+BETA*BETA)
|
|
ALB = LOG(BETA+SB)
|
|
VXP = VXP * (-PFIVE + OPF * ALB / (BETA*SB))
|
|
XP = XP * (ONE-OPF*((BETA*SB-ALB)/BETA**2)**2)
|
|
! VXF = 2**TRD*VXP
|
|
! EXF = 2**TRD*XP
|
|
VX = VXP
|
|
EX = XP
|
|
END SUBROUTINE slater_rxc
|
|
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine slaterKZK (rs, ex, vx, vol)
|
|
!-----------------------------------------------------------------------
|
|
! Slater exchange with alpha=2/3, Kwee, Zhang and Krakauer KE
|
|
! correction
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rs, ex, vx, dL, vol, ga, pi, a0
|
|
real(DP), parameter :: a1 = -2.2037d0, &
|
|
a2 = 0.4710d0, a3 = -0.015d0, ry2h = 0.5d0
|
|
real(DP), parameter :: f= -0.687247939924714d0, alpha = 2.0d0/3.0d0
|
|
! f = -9/8*(3/2pi)^(2/3)
|
|
!
|
|
pi = 4.d0 * atan(1.d0)
|
|
a0 = f * alpha * 2.d0
|
|
|
|
dL = vol**(1.d0/3.d0)
|
|
ga = 0.5d0 * dL *(3.d0 /pi)**(1.d0/3.d0)
|
|
!
|
|
if ( rs .le. ga) then
|
|
ex = a0 / rs + a1 * rs / dL**2.d0 + a2 * rs**2.d0 / dL**3.d0
|
|
vx = (4.d0 * a0 / rs + 2.d0 * a1 * rs / dL**2.d0 + &
|
|
a2 * rs**2.d0 / dL**3.d0 ) / 3.d0
|
|
else
|
|
ex = a0 / ga + a1 * ga / dL**2.d0 + a2 * ga**2.d0 / dL**3.d0 ! solids
|
|
vx = ex
|
|
! ex = a3 * dL**5.d0 / rs**6.d0 ! molecules
|
|
! vx = 3.d0 * ex
|
|
endif
|
|
|
|
ex = ry2h * ex ! Ry to Hartree
|
|
vx = ry2h * vx
|
|
!
|
|
return
|
|
end subroutine slaterKZK
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine pz (rs, iflag, ec, vc)
|
|
!-----------------------------------------------------------------------
|
|
! LDA parameterization from Monte Carlo data
|
|
! iflag=1: J.P. Perdew and A. Zunger, PRB 23, 5048 (1981)
|
|
! iflag=2: G. Ortiz and P. Ballone, PRB 50, 1391 (1994)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
#if defined(__LIBXC)
|
|
use xc_f90_types_m
|
|
use xc_f90_lib_m
|
|
#endif
|
|
implicit none
|
|
real(dp), intent(in) :: rs
|
|
real(dp), intent(out):: ec, vc
|
|
integer, intent(in) :: iflag
|
|
#if defined(__LIBXC)
|
|
real(dp):: rho
|
|
real(dp), parameter :: pi34 = 0.6203504908994d0 ! pi34=(3/4pi)^(1/3)
|
|
integer :: func_id = 9 ! Perdew & Zunger
|
|
integer :: size = 1
|
|
TYPE(xc_f90_pointer_t) :: xc_func
|
|
TYPE(xc_f90_pointer_t) :: xc_info
|
|
|
|
if (iflag.eq.1) func_id = 9 ! Perdew & Zunger
|
|
if (iflag.eq.2) func_id = 11 ! Ortiz & Ballone (PZ)
|
|
|
|
rho = (pi34/rs)**3
|
|
call xc_f90_func_init(xc_func, xc_info, func_id, XC_UNPOLARIZED)
|
|
call xc_f90_lda_exc_vxc(xc_func, size, rho, ec, vc)
|
|
call xc_f90_func_end(xc_func)
|
|
#else
|
|
real(DP) :: a (2), b (2), c (2), d (2), gc (2), b1 (2), b2 (2)
|
|
real(DP) :: lnrs, rs12, ox, dox
|
|
!
|
|
data a / 0.0311d0, 0.031091d0 /, b / -0.048d0, -0.046644d0 /, &
|
|
c / 0.0020d0, 0.00419d0 /, d / -0.0116d0, -0.00983d0 /
|
|
data gc / -0.1423d0, -0.103756d0 /, b1 / 1.0529d0, 0.56371d0 /, &
|
|
b2 / 0.3334d0, 0.27358d0 /
|
|
!
|
|
if (rs.lt.1.0d0) then
|
|
! high density formula
|
|
lnrs = log (rs)
|
|
ec = a (iflag) * lnrs + b (iflag) + c (iflag) * rs * lnrs + d ( &
|
|
iflag) * rs
|
|
vc = a (iflag) * lnrs + (b (iflag) - a (iflag) / 3.d0) + 2.d0 / &
|
|
3.d0 * c (iflag) * rs * lnrs + (2.d0 * d (iflag) - c (iflag) ) &
|
|
/ 3.d0 * rs
|
|
else
|
|
! interpolation formula
|
|
rs12 = sqrt (rs)
|
|
ox = 1.d0 + b1 (iflag) * rs12 + b2 (iflag) * rs
|
|
dox = 1.d0 + 7.d0 / 6.d0 * b1 (iflag) * rs12 + 4.d0 / 3.d0 * &
|
|
b2 (iflag) * rs
|
|
ec = gc (iflag) / ox
|
|
vc = ec * dox / ox
|
|
endif
|
|
#endif
|
|
!
|
|
return
|
|
end subroutine pz
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine pzKZK (rs, ec, vc, vol)
|
|
!-----------------------------------------------------------------------
|
|
! LDA parameterization from Monte Carlo data
|
|
! iflag=1: J.P. Perdew and A. Zunger, PRB 23, 5048 (1981)
|
|
! iflag=2: G. Ortiz and P. Ballone, PRB 50, 1391 (1994)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rs, ec, vc, ec0 (2), vc0(2), ec0p
|
|
integer :: iflag, kr
|
|
!
|
|
real(DP) :: a (2), b (2), c (2), d (2), gc (2), b1 (2), b2 (2)
|
|
real(DP) :: lnrs, rs12, ox, dox, lnrsk, rsk
|
|
real(DP) :: a1, grs, g1, g2, g3, g4, dL, vol, gh, gl, grsp
|
|
real(DP) :: f3, f2, f1, f0, pi
|
|
real(DP) :: D1, D2, D3, P1, P2, ry2h
|
|
!
|
|
data a / 0.0311_dp, 0.031091_dp /, b / -0.048_dp, -0.046644_dp /, &
|
|
c / 0.0020_dp, 0.00419_dp /, d / -0.0116_dp, -0.00983_dp /
|
|
data gc / -0.1423_dp, -0.103756_dp /, b1 / 1.0529_dp, 0.56371_dp /, &
|
|
b2 / 0.3334_dp, 0.27358_dp /
|
|
data a1 / -2.2037_dp/, g1 / 0.1182_dp/, g2 / 1.1656_dp/, g3 / -5.2884_dp/, &
|
|
g4 / -1.1233_dp /
|
|
data ry2h / 0.5_dp /
|
|
!
|
|
iflag = 1
|
|
pi = 4.d0 * atan(1.d0)
|
|
dL = vol**(1.d0/3.d0)
|
|
gh = 0.5d0 * dL / (2.d0 * pi)**(1.d0/3.d0)
|
|
gl = dL * (3.d0 / 2.d0 / pi)**(1.d0/3.d0)
|
|
|
|
rsk = gh
|
|
do kr = 1, 2
|
|
lnrsk = log (rsk)
|
|
if (rsk.lt.1.0d0) then
|
|
! high density formula
|
|
ec0(kr) = a(iflag) *lnrsk + b(iflag) + c(iflag) * rsk * lnrsk + d( &
|
|
iflag) * rsk
|
|
vc0(kr) = a(iflag) * lnrsk + (b(iflag) - a(iflag) / 3.d0) + 2.d0 / &
|
|
3.d0 * c (iflag) * rsk * lnrsk + (2.d0 * d (iflag) - c (iflag) ) &
|
|
/ 3.d0 * rsk
|
|
else
|
|
! interpolation formula
|
|
rs12 = sqrt (rsk)
|
|
ox = 1.d0 + b1 (iflag) * rs12 + b2 (iflag) * rsk
|
|
dox = 1.d0 + 7.d0 / 6.d0 * b1 (iflag) * rs12 + 4.d0 / 3.d0 * &
|
|
b2 (iflag) * rsk
|
|
ec0(kr) = gc (iflag) / ox
|
|
vc0(kr) = ec0(kr) * dox / ox
|
|
endif
|
|
!
|
|
grs = g1 * rsk * lnrsk + g2 * rsk + g3 * rsk**1.5d0 + g4 * rsk**2.d0
|
|
grsp = g1 * lnrsk + g1 + g2 + 1.5d0 * g3 * rsk**0.5d0 + &
|
|
2.d0 * g4 * rsk
|
|
ec0(kr) = ec0(kr) + (-a1 * rsk / dL**2.d0 + grs / dL**3.d0) * ry2h
|
|
vc0(kr) = vc0(kr) + (-2.d0 * a1 * rsk / dL**2.d0 / 3.d0 + &
|
|
grs / dL**3.d0 - grsp * rsk / 3.d0 / dL**3.d0) * ry2h
|
|
!
|
|
rsk = rs
|
|
enddo
|
|
|
|
lnrs = log (rs)
|
|
if (rs .le. gh) then
|
|
ec = ec0(2)
|
|
vc = vc0(2)
|
|
else
|
|
if ( rs .le. gl) then
|
|
ec0p = 3.d0 * (ec0(1) - vc0(1)) / gh
|
|
P1 = 3.d0 * ec0(1) - gh * ec0p
|
|
P2 = ec0p
|
|
D1 = gl - gh
|
|
D2 = gl**2.d0 - gh**2.d0
|
|
D3 = gl**3.d0 - gh**3.d0
|
|
f2 = 2.d0 * gl**2.d0 * P2 * D1 + D2 * P1
|
|
f2 = f2 / (-(2.d0*gl*D1)**2.d0 + 4.d0*gl*D1*D2 - D2**2.d0 )
|
|
f3 = - (P2 + 2.d0*D1*f2) / (3.d0 * D2)
|
|
f1 = - (P1 + D2 * f2) / (2.d0 * D1)
|
|
f0 = - gl * (gl * f2 + 2.d0 * f1) / 3.d0
|
|
!
|
|
ec = f3 * rs**3.d0 + f2 * rs**2.d0 + f1 * rs + f0
|
|
vc = f2 * rs**2.d0 / 3.d0 + f1 * 2.d0 * rs / 3.d0 + f0
|
|
else
|
|
ec = 0.d0
|
|
vc = 0.d0
|
|
endif
|
|
endif
|
|
!
|
|
return
|
|
end subroutine pzKZK
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine vwn (rs, ec, vc)
|
|
!-----------------------------------------------------------------------
|
|
! S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rs, ec, vc
|
|
real(DP) :: a, b, c, x0
|
|
parameter (a = 0.0310907d0, b = 3.72744d0, c = 12.9352d0, x0 = -0.10498d0)
|
|
real(DP) :: q, f1, f2, f3, rs12, fx, qx, tx, tt
|
|
!
|
|
q = sqrt (4.d0 * c - b * b)
|
|
f1 = 2.d0 * b / q
|
|
f2 = b * x0 / (x0 * x0 + b * x0 + c)
|
|
f3 = 2.d0 * (2.d0 * x0 + b) / q
|
|
rs12 = sqrt (rs)
|
|
fx = rs + b * rs12 + c
|
|
qx = atan (q / (2.d0 * rs12 + b) )
|
|
ec = a * (log (rs / fx) + f1 * qx - f2 * (log ( (rs12 - x0) **2 / &
|
|
fx) + f3 * qx) )
|
|
tx = 2.d0 * rs12 + b
|
|
tt = tx * tx + q * q
|
|
vc = ec - rs12 * a / 6.d0 * (2.d0 / rs12 - tx / fx - 4.d0 * b / &
|
|
tt - f2 * (2.d0 / (rs12 - x0) - tx / fx - 4.d0 * (2.d0 * x0 + b) &
|
|
/ tt) )
|
|
!
|
|
return
|
|
end subroutine vwn
|
|
|
|
!-----------------------------------------------------------------------
|
|
subroutine vwn1_rpa (rs, ec, vc)
|
|
!-----------------------------------------------------------------------
|
|
! S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rs, ec, vc
|
|
real(DP) :: a, b, c, x0
|
|
parameter (a = 0.0310907_dp, b = 13.0720_dp, c = 42.7198_dp, x0 = -0.409286_dp)
|
|
real(DP) :: q, f1, f2, f3, rs12, fx, qx, tx, tt
|
|
!
|
|
q = sqrt (4.d0 * c - b * b)
|
|
f1 = 2.d0 * b / q
|
|
f2 = b * x0 / (x0 * x0 + b * x0 + c)
|
|
f3 = 2.d0 * (2.d0 * x0 + b) / q
|
|
rs12 = sqrt (rs)
|
|
fx = rs + b * rs12 + c
|
|
qx = atan (q / (2.d0 * rs12 + b) )
|
|
ec = a * (log (rs / fx) + f1 * qx - f2 * (log ( (rs12 - x0) **2 / &
|
|
fx) + f3 * qx) )
|
|
tx = 2.d0 * rs12 + b
|
|
tt = tx * tx + q * q
|
|
vc = ec - rs12 * a / 6.d0 * (2.d0 / rs12 - tx / fx - 4.d0 * b / &
|
|
tt - f2 * (2.d0 / (rs12 - x0) - tx / fx - 4.d0 * (2.d0 * x0 + b) &
|
|
/ tt) )
|
|
!
|
|
return
|
|
end subroutine vwn1_rpa
|
|
|
|
!-----------------------------------------------------------------------
|
|
subroutine lyp (rs, ec, vc)
|
|
!-----------------------------------------------------------------------
|
|
! C. Lee, W. Yang, and R.G. Parr, PRB 37, 785 (1988)
|
|
! LDA part only
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rs, ec, vc
|
|
real(DP) :: a, b, c, d, pi43
|
|
parameter (a = 0.04918d0, b = 0.132d0 * 2.87123400018819108d0)
|
|
! pi43 = (4pi/3)^(1/3)
|
|
parameter (pi43 = 1.61199195401647d0, c = 0.2533d0 * pi43, d = &
|
|
0.349d0 * pi43)
|
|
real(DP) :: ecrs, ox
|
|
!
|
|
ecrs = b * exp ( - c * rs)
|
|
ox = 1.d0 / (1.d0 + d * rs)
|
|
ec = - a * ox * (1.d0 + ecrs)
|
|
vc = ec - rs / 3.d0 * a * ox * (d * ox + ecrs * (d * ox + c) )
|
|
!
|
|
return
|
|
end subroutine lyp
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine pw (rs, iflag, ec, vc)
|
|
!-----------------------------------------------------------------------
|
|
! iflag=1: J.P. Perdew and Y. Wang, PRB 45, 13244 (1992)
|
|
! iflag=2: G. Ortiz and P. Ballone, PRB 50, 1391 (1994)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
#if defined(__LIBXC)
|
|
use xc_f90_types_m
|
|
use xc_f90_lib_m
|
|
#endif
|
|
implicit none
|
|
real(dp), intent(in) :: rs
|
|
real(dp), intent(out):: ec, vc
|
|
integer, intent(in) :: iflag
|
|
#if defined(__LIBXC)
|
|
real(dp):: rho
|
|
real(dp), parameter :: pi34 = 0.6203504908994d0 ! pi34=(3/4pi)^(1/3)
|
|
integer :: func_id = 12 ! Perdew & Zunger
|
|
integer :: size = 1
|
|
TYPE(xc_f90_pointer_t) :: xc_func
|
|
TYPE(xc_f90_pointer_t) :: xc_info
|
|
|
|
if (iflag.eq.1) func_id = 12 ! Perdew & Wang
|
|
if (iflag.eq.2) func_id = 14 ! Ortiz & Ballone (PW)
|
|
|
|
rho = (pi34/rs)**3
|
|
call xc_f90_func_init(xc_func, xc_info, func_id, XC_UNPOLARIZED)
|
|
call xc_f90_lda_exc_vxc(xc_func,size , rho, ec, vc)
|
|
call xc_f90_func_end(xc_func)
|
|
#else
|
|
real(DP) :: a, b1, b2, c0, c1, c2, c3, d0, d1
|
|
parameter (a = 0.031091d0, b1 = 7.5957d0, b2 = 3.5876d0, c0 = a, &
|
|
c1 = 0.046644d0, c2 = 0.00664d0, c3 = 0.01043d0, d0 = 0.4335d0, &
|
|
d1 = 1.4408d0)
|
|
real(DP) :: lnrs, rs12, rs32, rs2, om, dom, olog
|
|
real(DP) :: a1 (2), b3 (2), b4 (2)
|
|
data a1 / 0.21370d0, 0.026481d0 /, b3 / 1.6382d0, -0.46647d0 /, &
|
|
b4 / 0.49294d0, 0.13354d0 /
|
|
!
|
|
! high- and low-density formulae implemented but not used in PW case
|
|
! (reason: inconsistencies in PBE/PW91 functionals)
|
|
!
|
|
if (rs.lt.1d0.and.iflag.eq.2) then
|
|
! high density formula
|
|
lnrs = log (rs)
|
|
ec = c0 * lnrs - c1 + c2 * rs * lnrs - c3 * rs
|
|
vc = c0 * lnrs - (c1 + c0 / 3.d0) + 2.d0 / 3.d0 * c2 * rs * &
|
|
lnrs - (2.d0 * c3 + c2) / 3.d0 * rs
|
|
elseif (rs.gt.100.d0.and.iflag.eq.2) then
|
|
! low density formula
|
|
ec = - d0 / rs + d1 / rs**1.5d0
|
|
vc = - 4.d0 / 3.d0 * d0 / rs + 1.5d0 * d1 / rs**1.5d0
|
|
else
|
|
! interpolation formula
|
|
rs12 = sqrt (rs)
|
|
rs32 = rs * rs12
|
|
rs2 = rs**2
|
|
om = 2.d0 * a * (b1 * rs12 + b2 * rs + b3 (iflag) * rs32 + b4 ( &
|
|
iflag) * rs2)
|
|
dom = 2.d0 * a * (0.5d0 * b1 * rs12 + b2 * rs + 1.5d0 * b3 ( &
|
|
iflag) * rs32 + 2.d0 * b4 (iflag) * rs2)
|
|
olog = log (1.d0 + 1.0d0 / om)
|
|
ec = - 2.d0 * a * (1.d0 + a1 (iflag) * rs) * olog
|
|
vc = - 2.d0 * a * (1.d0 + 2.d0 / 3.d0 * a1 (iflag) * rs) &
|
|
* olog - 2.d0 / 3.d0 * a * (1.d0 + a1 (iflag) * rs) * dom / &
|
|
(om * (om + 1.d0) )
|
|
endif
|
|
#endif
|
|
return
|
|
end subroutine pw
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine wignerc(rs, ec, vc)
|
|
!-----------------------------------------------------------------------
|
|
! Wigner correlation
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rs, ec, vc
|
|
real(DP) :: pi34, rho13
|
|
parameter (pi34 = 0.6203504908994d0)
|
|
! pi34=(3/4pi)^(1/3), rho13=rho^(1/3)
|
|
!
|
|
rho13 = pi34 / rs
|
|
vc = - rho13 * ( (0.943656d0 + 8.8963d0 * rho13) / (1.d0 + &
|
|
12.57d0 * rho13) **2)
|
|
ec = - 0.738d0 * rho13 * (0.959d0 / (1.d0 + 12.57d0 * rho13) )
|
|
!
|
|
return
|
|
end subroutine wignerc
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine hl (rs, ec, vc)
|
|
!-----------------------------------------------------------------------
|
|
! L. Hedin and B.I. Lundqvist, J. Phys. C 4, 2064 (1971)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rs, ec, vc
|
|
real(DP) :: a, x
|
|
!
|
|
a = log (1.0d0 + 21.d0 / rs)
|
|
x = rs / 21.0d0
|
|
ec = a + (x**3 * a - x * x) + x / 2.d0 - 1.0d0 / 3.0d0
|
|
ec = - 0.0225d0 * ec
|
|
vc = - 0.0225d0 * a
|
|
!
|
|
return
|
|
end subroutine hl
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine gl (rs, ec, vc)
|
|
!-----------------------------------------------------------------------
|
|
! O. Gunnarsson and B. I. Lundqvist, PRB 13, 4274 (1976)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rs, vc, ec
|
|
real(DP) :: c, r, x
|
|
parameter (c = 0.0333d0, r = 11.4d0)
|
|
! c=0.0203, r=15.9 for the paramagnetic case
|
|
!
|
|
x = rs / r
|
|
vc = - c * log (1.d0 + 1.d0 / x)
|
|
ec = - c * ( (1.d0 + x**3) * log (1.d0 + 1.d0 / x) - 1.0d0 / &
|
|
3.0d0 + x * (0.5d0 - x) )
|
|
!
|
|
return
|
|
end subroutine gl
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine becke86b(rho, grho, sx, v1x, v2x)
|
|
!-----------------------------------------------------------------------
|
|
! Becke 1986 gradient correction to exchange
|
|
! A.D. Becke, J. Chem. Phys. 85 (1986) 7184
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rho, grho, sx, v1x, v2x
|
|
real(DP) :: arho, agrho, beta, gamma
|
|
parameter (beta = 0.00375_dp, gamma=0.007_dp)
|
|
real(dp) :: sgp1, sgp1_45, sgp1_95
|
|
real(dp) :: rdg2_43, rdg2_73, rdg2_83, rdg2_4, rdg4_5
|
|
|
|
arho = 0.5d0 * rho
|
|
agrho = 0.25d0 * grho
|
|
|
|
rdg2_43 = agrho / arho**(4d0/3d0)
|
|
rdg2_73 = rdg2_43 / arho
|
|
rdg2_83 = rdg2_43 * rdg2_43 / agrho
|
|
rdg2_4 = rdg2_43 * rdg2_83 / agrho
|
|
rdg4_5 = rdg2_73 * rdg2_83
|
|
|
|
sgp1 = 1d0 + gamma * rdg2_83
|
|
sgp1_45 = sgp1**(-4d0/5d0)
|
|
sgp1_95 = sgp1_45 / sgp1
|
|
|
|
sx = -2d0 * beta * agrho / arho**(4d0/3d0) * sgp1_45
|
|
v1x = -beta * (-4d0/3d0 * rdg2_73 * sgp1_45 + 32d0/15d0 * gamma * rdg4_5 * sgp1_95)
|
|
v2x = -beta * (sgp1_45 * rdg2_43 / agrho - 4d0/5d0 * gamma * rdg2_4 * sgp1_95)
|
|
|
|
end subroutine becke86b
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine becke88 (rho, grho, sx, v1x, v2x)
|
|
!-----------------------------------------------------------------------
|
|
! Becke exchange: A.D. Becke, PRA 38, 3098 (1988)
|
|
! only gradient-corrected part, no Slater term included
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rho, grho, sx, v1x, v2x
|
|
real(DP) :: beta, third, two13
|
|
parameter (beta = 0.0042d0)
|
|
parameter (third = 1.d0 / 3.d0, two13 = 1.259921049894873d0)
|
|
! two13 = 2^(1/3)
|
|
real(DP) :: rho13, rho43, xs, xs2, sa2b8, shm1, dd, dd2, ee
|
|
!
|
|
rho13 = rho**third
|
|
rho43 = rho13**4
|
|
xs = two13 * sqrt (grho) / rho43
|
|
xs2 = xs * xs
|
|
sa2b8 = sqrt (1.0d0 + xs2)
|
|
shm1 = log (xs + sa2b8)
|
|
dd = 1.0d0 + 6.0d0 * beta * xs * shm1
|
|
dd2 = dd * dd
|
|
ee = 6.0d0 * beta * xs2 / sa2b8 - 1.d0
|
|
sx = two13 * grho / rho43 * ( - beta / dd)
|
|
v1x = - (4.d0 / 3.d0) / two13 * xs2 * beta * rho13 * ee / dd2
|
|
v2x = two13 * beta * (ee-dd) / (rho43 * dd2)
|
|
!
|
|
return
|
|
end subroutine becke88
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine ggax (rho, grho, sx, v1x, v2x)
|
|
!-----------------------------------------------------------------------
|
|
! Perdew-Wang GGA (PW91), exchange part:
|
|
! J.P. Perdew et al.,PRB 46, 6671 (1992)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rho, grho, sx, v1x, v2x
|
|
real(DP) :: f1, f2, f3, f4, f5
|
|
parameter (f1 = 0.19645d0, f2 = 7.7956d0, f3 = 0.2743d0, f4 = &
|
|
0.1508d0, f5 = 0.004d0)
|
|
real(DP) :: fp1, fp2
|
|
parameter (fp1 = -0.019292021296426d0, fp2 = 0.161620459673995d0)
|
|
! fp1 = -3/(16 pi)*(3 pi^2)^(-1/3)
|
|
! fp2 = (1/2)(3 pi^2)**(-1/3)
|
|
real(DP) :: rhom43, s, s2, s3, s4, exps, as, sa2b8, shm1, bs, das, &
|
|
dbs, dls
|
|
!
|
|
rhom43 = rho** ( - 4.d0 / 3.d0)
|
|
s = fp2 * sqrt (grho) * rhom43
|
|
s2 = s * s
|
|
s3 = s2 * s
|
|
s4 = s2 * s2
|
|
exps = f4 * exp ( - 100.d0 * s2)
|
|
as = f3 - exps - f5 * s2
|
|
sa2b8 = sqrt (1.0d0 + f2 * f2 * s2)
|
|
shm1 = log (f2 * s + sa2b8)
|
|
bs = 1.d0 + f1 * s * shm1 + f5 * s4
|
|
das = (200.d0 * exps - 2.d0 * f5) * s
|
|
dbs = f1 * (shm1 + f2 * s / sa2b8) + 4.d0 * f5 * s3
|
|
dls = (das / as - dbs / bs)
|
|
sx = fp1 * grho * rhom43 * as / bs
|
|
v1x = - 4.d0 / 3.d0 * sx / rho * (1.d0 + s * dls)
|
|
v2x = fp1 * rhom43 * as / bs * (2.d0 + s * dls)
|
|
!
|
|
return
|
|
end subroutine ggax
|
|
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine rPW86 (rho, grho, sx, v1x, v2x)
|
|
!-----------------------------------------------------------------------
|
|
! PRB 33, 8800 (1986) and J. Chem. Theory comp. 5, 2754 (2009)
|
|
!
|
|
USE kinds
|
|
implicit none
|
|
|
|
real(DP), intent(in) :: rho, grho
|
|
real(DP), intent(out) :: sx, v1x, v2x
|
|
real(DP) :: s, s_2, s_3, s_4, s_5, s_6, fs, grad_rho, df_ds
|
|
real(DP) :: a, b, c, s_prefactor, Ax, four_thirds
|
|
parameter( a = 1.851d0, b = 17.33d0, c = 0.163d0, s_prefactor = 6.18733545256027d0, &
|
|
Ax = -0.738558766382022d0, four_thirds = 4.d0/3.d0)
|
|
|
|
grad_rho = sqrt(grho)
|
|
|
|
s = grad_rho/(s_prefactor*rho**(four_thirds))
|
|
|
|
s_2 = s**2
|
|
s_3 = s_2 * s
|
|
s_4 = s_2**2
|
|
s_5 = s_3 * s_2
|
|
s_6 = s_2 * s_4
|
|
|
|
!! Calculation of energy
|
|
fs = (1 + a*s_2 + b*s_4 + c*s_6)**(1.d0/15.d0)
|
|
sx = Ax * rho**(four_thirds) * (fs -1.0D0)
|
|
|
|
|
|
!! Calculation of the potential
|
|
df_ds = (1.d0/(15.d0*fs**(14.0D0)))*(2*a*s + 4*b*s_3 + 6*c*s_5)
|
|
|
|
|
|
v1x = Ax*(four_thirds)*(rho**(1.d0/3.d0)*(fs -1.0D0) &
|
|
-grad_rho/(s_prefactor * rho)*df_ds)
|
|
|
|
v2x = Ax * df_ds/(s_prefactor*grad_rho)
|
|
|
|
end subroutine rPW86
|
|
|
|
subroutine PW86 (rho, grho, sx, v1x, v2x)
|
|
!-----------------------------------------------------------------------
|
|
! Perdew-Wang 1986 exchange gradient correction: PRB 33, 8800 (1986)
|
|
!
|
|
USE kinds
|
|
implicit none
|
|
|
|
real(DP), intent(in) :: rho, grho
|
|
real(DP), intent(out) :: sx, v1x, v2x
|
|
real(DP) :: s, s_2, s_3, s_4, s_5, s_6, fs, grad_rho, df_ds
|
|
real(DP) :: a, b, c, s_prefactor, Ax, four_thirds
|
|
parameter( a = 1.296_dp, b = 14_dp, c = 0.2_dp, s_prefactor = 6.18733545256027_dp, &
|
|
Ax = -0.738558766382022_dp, four_thirds = 4._dp/3._dp)
|
|
|
|
grad_rho = sqrt(grho)
|
|
|
|
s = grad_rho/(s_prefactor*rho**(four_thirds))
|
|
|
|
s_2 = s**2
|
|
s_3 = s_2 * s
|
|
s_4 = s_2**2
|
|
s_5 = s_3 * s_2
|
|
s_6 = s_2 * s_4
|
|
|
|
!! Calculation of energy
|
|
fs = (1 + a*s_2 + b*s_4 + c*s_6)**(1.d0/15.d0)
|
|
sx = Ax * rho**(four_thirds) * (fs-1d0)
|
|
|
|
!! Calculation of the potential
|
|
df_ds = (1.d0/(15.d0*fs**(14d0)))*(2*a*s + 4*b*s_3 + 6*c*s_5)
|
|
|
|
v1x = Ax*(four_thirds)*(rho**(1.d0/3.d0)*(fs-1d0) &
|
|
-grad_rho/(s_prefactor * rho)*df_ds)
|
|
|
|
v2x = Ax * df_ds/(s_prefactor*grad_rho)
|
|
|
|
end subroutine PW86
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine cx13 (rho, grho, sx, v1x, v2x)
|
|
!-----------------------------------------------------------------------
|
|
! The new exchange partner for a vdW-DF1-cx suggested
|
|
! by K. Berland and P. Hyldgaard, see PRB 89, 035412 (2014),
|
|
! to test the plasmon nature of the vdW-DF1 inner functional.
|
|
!
|
|
USE kinds
|
|
implicit none
|
|
real(DP), intent(in) :: rho, grho
|
|
real(DP), intent(out) :: sx, v1x, v2x
|
|
real(DP) :: s, s_2, s_3, s_4, s_5, s_6, fs, fs_rPW86, df_rPW86_ds, grad_rho, df_ds
|
|
real(DP) :: alp, beta, a, b, c, s_prefactor, Ax, four_thirds, mu_LM
|
|
parameter( alp = 0.021789d0, beta=1.15d0, a = 1.851d0, b = 17.33d0, c = 0.163d0, mu_LM = 0.09434d0, &
|
|
s_prefactor = 6.18733545256027d0, &
|
|
Ax = -0.738558766382022d0, four_thirds = 4.d0/3.d0)
|
|
|
|
grad_rho = sqrt(grho)
|
|
|
|
s = grad_rho/(s_prefactor*rho**(four_thirds))
|
|
|
|
s_2 = s*s
|
|
s_3 = s_2 * s
|
|
s_4 = s_2 * s_2
|
|
s_5 = s_3 * s_2
|
|
s_6 = s_2 * s_2 *s_2
|
|
|
|
|
|
!! Calculation of energy
|
|
fs_rPW86 = (1 + a*s_2 + b*s_4 + c*s_6)**(1.d0/15.d0)
|
|
fs = 1.d0/(1+alp*s_6) * (1 + mu_LM *s_2) &
|
|
+ alp*s_6/(beta+alp*s_6)*fs_rPW86
|
|
|
|
sx = Ax * rho**(four_thirds) * (fs -1.0D0)
|
|
|
|
|
|
!! Calculation of the potential
|
|
df_rPW86_ds = (1.d0/(15.d0*fs_rPW86**(14.0D0)))*(2*a*s + 4*b*s_3 + 6*c*s_5)
|
|
|
|
df_ds = 1.d0/(1+alp*s_6)**2*( 2.0d0*mu_LM*s*(1+alp*s_6) - 6.0d0*alp*s_5*( 1 + mu_LM*s_2)) &
|
|
+ alp*s_6/(beta+alp*s_6)*df_rPW86_ds &
|
|
+ 6.0d0*alp*s_5*fs_rPW86/(beta+alp*s_6)*(1- alp*s_6/(beta + alp*s_6))
|
|
|
|
v1x = Ax*(four_thirds)*(rho**(1.d0/3.d0)*(fs -1.0D0) &
|
|
-grad_rho/(s_prefactor * rho)*df_ds)
|
|
v2x = Ax * df_ds/(s_prefactor*grad_rho)
|
|
|
|
end subroutine cx13
|
|
!
|
|
!---------------------------------------------------------------
|
|
subroutine c09x (rho, grho, sx, v1x, v2x)
|
|
!---------------------------------------------------------------
|
|
! Cooper '09 exchange for vdW-DF (without Slater exchange):
|
|
! V. R. Cooper, Phys. Rev. B 81, 161104(R) (2010)
|
|
!
|
|
! Developed thanks to the contribution of
|
|
! Ikutaro Hamada - ikutaro@wpi-aimr.tohoku.ac.jp
|
|
! WPI-Advanced Institute of Materials Research, Tohoku University
|
|
!
|
|
USE kinds, ONLY : DP
|
|
USE constants, ONLY : pi
|
|
implicit none
|
|
real(DP) :: rho, grho, sx, v1x, v2x
|
|
! input: charge and squared gradient
|
|
! output: energy
|
|
! output: potential
|
|
! local variables
|
|
real(DP) :: kf, agrho, s1, s2, ds, dsg, exunif, fx
|
|
! (3*pi2*|rho|)^(1/3)
|
|
! |grho|
|
|
! |grho|/(2*kf*|rho|)
|
|
! s^2
|
|
! n*ds/dn
|
|
! n*ds/d(gn)
|
|
! exchange energy LDA part
|
|
! exchange energy gradient part
|
|
real(DP) :: dxunif, dfx, f1, f2, f3, dfx1, dfx2
|
|
! numerical coefficients (NB: c2=(3 pi^2)^(1/3) )
|
|
real(DP) :: third, c1, c2, c5
|
|
parameter (third = 1.d0 / 3.d0, c1 = 0.75d0 / pi , &
|
|
c2 = 3.093667726280136d0, c5 = 4.d0 * third)
|
|
! parameters of the functional
|
|
real(DP) :: kappa, mu, alpha
|
|
data kappa / 1.245d0 /, &
|
|
mu / 0.0617d0 /, &
|
|
alpha / 0.0483d0 /
|
|
!
|
|
agrho = sqrt (grho)
|
|
kf = c2 * rho**third
|
|
dsg = 0.5d0 / kf
|
|
s1 = agrho * dsg / rho
|
|
s2 = s1 * s1
|
|
ds = - c5 * s1
|
|
!
|
|
! Energy
|
|
!
|
|
f1 = exp( - alpha * s2 )
|
|
f2 = exp( - alpha * s2 / 2.0d0 )
|
|
f3 = mu * s2 * f1
|
|
fx = f3 + kappa * ( 1.0d0 - f2 )
|
|
exunif = - c1 * kf
|
|
sx = exunif * fx
|
|
!
|
|
! Potential
|
|
!
|
|
dxunif = exunif * third
|
|
dfx1 = 2.0d0 * mu * s1 * ( 1.0d0 - alpha * s2 ) * f1
|
|
dfx2 = kappa * alpha * s1 * f2
|
|
dfx = dfx1 + dfx2
|
|
v1x = sx + dxunif * fx + exunif * dfx * ds
|
|
v2x = exunif * dfx * dsg / agrho
|
|
|
|
sx = sx * rho
|
|
return
|
|
end subroutine c09x
|
|
!---------------------------------------------------------------
|
|
subroutine b86b (rho, grho, iflag, sx, v1x, v2x)
|
|
!---------------------------------------------------------------
|
|
! Becke exchange (without Slater exchange):
|
|
! iflag=1: A. D. Becke, J. Chem. Phys. 85, 7184 (1986) (B86b)
|
|
! iflag=2: J. Klimes, Phys. Rev. B 83, 195131 (2011). (OptB86b)
|
|
! iflag=3: I. Hamada, Phys. Rev. B 89, 121103(R) (B86R)
|
|
!
|
|
! Ikutaro Hamada - HAMADA.Ikutaro@nims.go.jp
|
|
! National Institute for Materials Science
|
|
!
|
|
USE kinds, ONLY : DP
|
|
USE constants, ONLY : pi
|
|
implicit none
|
|
real(DP) :: rho, grho, sx, v1x, v2x
|
|
! input: charge and squared gradient
|
|
! output: energy
|
|
! output: potential
|
|
integer :: iflag
|
|
! local variables
|
|
real(DP) :: kf, agrho, s1, s2, ds, dsg, exunif, fx
|
|
! (3*pi2*|rho|)^(1/3)
|
|
! |grho|
|
|
! |grho|/(2*kf*|rho|)
|
|
! s^2
|
|
! n*ds/dn
|
|
! n*ds/d(gn)
|
|
! exchange energy LDA part
|
|
! exchange energy gradient part
|
|
real(DP) :: dxunif, dfx, f1, f2, f3, dfx1
|
|
! numerical coefficients (NB: c2=(3 pi^2)^(1/3) )
|
|
real(DP) :: third, c1, c2, c5
|
|
parameter (third = 1.d0 / 3.d0, c1 = 0.75d0 / pi , &
|
|
c2 = 3.093667726280136d0, c5 = 4.d0 * third)
|
|
! parameters of the functional
|
|
real(DP) :: k (3), mu(3)
|
|
data k / 0.5757d0, 1.0000d0, 0.711357d0/, &
|
|
mu/ 0.2449d0, 0.1234d0, 0.1234d0 /
|
|
!
|
|
agrho = sqrt (grho)
|
|
kf = c2 * rho**third
|
|
dsg = 0.5d0 / kf
|
|
s1 = agrho * dsg / rho
|
|
s2 = s1 * s1
|
|
ds = - c5 * s1
|
|
!
|
|
! Energy
|
|
!
|
|
f1=mu(iflag)*s2
|
|
f2=1.d0+mu(iflag)*s2/k(iflag)
|
|
f3=f2**(4.d0/5.d0)
|
|
fx= f1/f3
|
|
exunif = - c1 * kf
|
|
sx = exunif * fx
|
|
!
|
|
! Potential
|
|
!
|
|
dxunif = exunif * third
|
|
dfx1 = 1.d0+(1.d0/5.d0)*mu(iflag)*s2/k(iflag)
|
|
dfx = 2.d0* mu(iflag) * s1 * dfx1 / (f2 * f3)
|
|
v1x = sx + dxunif * fx + exunif * dfx * ds
|
|
v2x = exunif * dfx * dsg / agrho
|
|
sx = sx * rho
|
|
return
|
|
end subroutine b86b
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine perdew86 (rho, grho, sc, v1c, v2c)
|
|
!-----------------------------------------------------------------------
|
|
! Perdew gradient correction on correlation: PRB 33, 8822 (1986)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rho, grho, sc, v1c, v2c
|
|
real(DP) :: p1, p2, p3, p4, pc1, pc2, pci
|
|
parameter (p1 = 0.023266d0, p2 = 7.389d-6, p3 = 8.723d0, p4 = &
|
|
0.472d0)
|
|
parameter (pc1 = 0.001667d0, pc2 = 0.002568d0, pci = pc1 + pc2)
|
|
real(DP) :: third, pi34
|
|
parameter (third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0)
|
|
! pi34=(3/4pi)^(1/3)
|
|
real(DP) :: rho13, rho43, rs, rs2, rs3, cna, cnb, cn, drs
|
|
real(DP) :: dcna, dcnb, dcn, phi, ephi
|
|
!
|
|
rho13 = rho**third
|
|
rho43 = rho13**4
|
|
rs = pi34 / rho13
|
|
rs2 = rs * rs
|
|
rs3 = rs * rs2
|
|
cna = pc2 + p1 * rs + p2 * rs2
|
|
cnb = 1.d0 + p3 * rs + p4 * rs2 + 1.d4 * p2 * rs3
|
|
cn = pc1 + cna / cnb
|
|
drs = - third * pi34 / rho43
|
|
dcna = (p1 + 2.d0 * p2 * rs) * drs
|
|
dcnb = (p3 + 2.d0 * p4 * rs + 3.d4 * p2 * rs2) * drs
|
|
dcn = dcna / cnb - cna / (cnb * cnb) * dcnb
|
|
phi = 0.192d0 * pci / cn * sqrt (grho) * rho** ( - 7.d0 / 6.d0)
|
|
! SdG: in the original paper 1.745*0.11=0.19195 is used
|
|
ephi = exp ( - phi)
|
|
sc = grho / rho43 * cn * ephi
|
|
v1c = sc * ( (1.d0 + phi) * dcn / cn - ( (4.d0 / 3.d0) - (7.d0 / &
|
|
6.d0) * phi) / rho)
|
|
v2c = cn * ephi / rho43 * (2.d0 - phi)
|
|
!
|
|
return
|
|
end subroutine perdew86
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine glyp (rho, grho, sc, v1c, v2c)
|
|
!-----------------------------------------------------------------------
|
|
! Lee Yang Parr: gradient correction part
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rho, grho, sc, v1c, v2c
|
|
real(DP) :: a, b, c, d
|
|
parameter (a = 0.04918d0, b = 0.132d0, c = 0.2533d0, d = 0.349d0)
|
|
real(DP) :: rhom13, rhom43, rhom53, om, xl, ff, dom, dxl
|
|
!
|
|
rhom13 = rho** ( - 1.d0 / 3.d0)
|
|
om = exp ( - c * rhom13) / (1.d0 + d * rhom13)
|
|
xl = 1.d0 + (7.d0 / 3.d0) * (c * rhom13 + d * rhom13 / (1.d0 + d * &
|
|
rhom13) )
|
|
ff = a * b * grho / 24.d0
|
|
rhom53 = rhom13**5
|
|
sc = ff * rhom53 * om * xl
|
|
dom = - om * (c + d+c * d * rhom13) / (1.d0 + d * rhom13)
|
|
dxl = (7.d0 / 3.d0) * (c + d+2.d0 * c * d * rhom13 + c * d * d * &
|
|
rhom13**2) / (1.d0 + d * rhom13) **2
|
|
rhom43 = rhom13**4
|
|
v1c = - ff * rhom43 / 3.d0 * (5.d0 * rhom43 * om * xl + rhom53 * &
|
|
dom * xl + rhom53 * om * dxl)
|
|
v2c = 2.d0 * sc / grho
|
|
!
|
|
return
|
|
end subroutine glyp
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine ggac (rho, grho, sc, v1c, v2c)
|
|
!-----------------------------------------------------------------------
|
|
! Perdew-Wang GGA (PW91) correlation part
|
|
!
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: rho, grho, sc, v1c, v2c
|
|
real(DP) :: al, pa, pb, pc, pd, cx, cxc0, cc0
|
|
parameter (al = 0.09d0, pa = 0.023266d0, pb = 7.389d-6, pc = &
|
|
8.723d0, pd = 0.472d0)
|
|
parameter (cx = -0.001667d0, cxc0 = 0.002568d0, cc0 = - cx + cxc0)
|
|
real(DP) :: third, pi34, nu, be, xkf, xks
|
|
parameter (third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0)
|
|
parameter (nu = 15.755920349483144d0, be = nu * cc0)
|
|
parameter (xkf = 1.919158292677513d0, xks = 1.128379167095513d0)
|
|
! pi34=(3/4pi)^(1/3), nu=(16/pi)*(3 pi^2)^(1/3)
|
|
! xkf=(9 pi/4)^(1/3), xks= sqrt(4/pi)
|
|
real(DP) :: kf, ks, rs, rs2, rs3, ec, vc, t, expe, af, bf, y, xy, &
|
|
qy, s1
|
|
real(DP) :: h0, dh0, ddh0, ee, cn, dcn, cna, dcna, cnb, dcnb, h1, &
|
|
dh1, ddh1
|
|
!
|
|
rs = pi34 / rho**third
|
|
rs2 = rs * rs
|
|
rs3 = rs * rs2
|
|
call pw (rs, 1, ec, vc)
|
|
kf = xkf / rs
|
|
ks = xks * sqrt (kf)
|
|
t = sqrt (grho) / (2.d0 * ks * rho)
|
|
expe = exp ( - 2.d0 * al * ec / (be * be) )
|
|
af = 2.d0 * al / be * (1.d0 / (expe-1.d0) )
|
|
bf = expe * (vc - ec)
|
|
y = af * t * t
|
|
xy = (1.d0 + y) / (1.d0 + y + y * y)
|
|
qy = y * y * (2.d0 + y) / (1.d0 + y + y * y) **2
|
|
s1 = 1.d0 + 2.d0 * al / be * t * t * xy
|
|
h0 = be * be / (2.d0 * al) * log (s1)
|
|
dh0 = be * t * t / s1 * ( - 7.d0 / 3.d0 * xy - qy * (af * bf / &
|
|
be-7.d0 / 3.d0) )
|
|
ddh0 = be / (2.d0 * ks * ks * rho) * (xy - qy) / s1
|
|
ee = - 100.d0 * (ks / kf * t) **2
|
|
cna = cxc0 + pa * rs + pb * rs2
|
|
dcna = pa * rs + 2.d0 * pb * rs2
|
|
cnb = 1.d0 + pc * rs + pd * rs2 + 1.d4 * pb * rs3
|
|
dcnb = pc * rs + 2.d0 * pd * rs2 + 3.d4 * pb * rs3
|
|
cn = cna / cnb - cx
|
|
dcn = dcna / cnb - cna * dcnb / (cnb * cnb)
|
|
h1 = nu * (cn - cc0 - 3.d0 / 7.d0 * cx) * t * t * exp (ee)
|
|
dh1 = - third * (h1 * (7.d0 + 8.d0 * ee) + nu * t * t * exp (ee) &
|
|
* dcn)
|
|
ddh1 = 2.d0 * h1 * (1.d0 + ee) * rho / grho
|
|
sc = rho * (h0 + h1)
|
|
v1c = h0 + h1 + dh0 + dh1
|
|
v2c = ddh0 + ddh1
|
|
!
|
|
return
|
|
end subroutine ggac
|
|
!
|
|
!---------------------------------------------------------------
|
|
subroutine pbex (rho, grho, iflag, sx, v1x, v2x)
|
|
!---------------------------------------------------------------
|
|
!
|
|
! PBE exchange (without Slater exchange):
|
|
! iflag=1 J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
|
|
! iflag=2 "revised' PBE: Y. Zhang et al., PRL 80, 890 (1998)
|
|
! iflag=3 PBEsol: J.P.Perdew et al., PRL 100, 136406 (2008)
|
|
! iflag=4 PBEQ2D: L. Chiodo et al., PRL 108, 126402 (2012)
|
|
! iflag=5 optB88: Klimes et al., J. Phys. Cond. Matter, 22, 022201 (2010)
|
|
! iflag=6 optB86b: Klimes et al., Phys. Rev. B 83, 195131 (2011)
|
|
! iflag=7 ev: Engel and Vosko, PRB 47, 13164 (1991)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
USE constants, ONLY : pi
|
|
#if defined(__LIBXC)
|
|
use xc_f90_types_m
|
|
use xc_f90_lib_m
|
|
#endif
|
|
implicit none
|
|
real(dp), intent(in) :: rho, grho
|
|
! input: charge and squared gradient
|
|
real(dp), intent(out):: sx, v1x, v2x
|
|
! output: energy, potential
|
|
integer, intent(in) :: iflag
|
|
#if defined(__LIBXC)
|
|
! local variables
|
|
integer :: func_id = -1 ! not set
|
|
integer :: size = 1
|
|
TYPE(xc_f90_pointer_t) :: xc_func
|
|
TYPE(xc_f90_pointer_t) :: xc_info
|
|
real(dp) :: exc, ex_lda = 0.0d0 , vx_lda = 0.0d0
|
|
|
|
if (iflag.eq.1) func_id = 101
|
|
if (iflag.eq.2) func_id = 102
|
|
if (iflag.eq.3) func_id = 116
|
|
if (iflag.eq.5) func_id = 141
|
|
if (func_id==-1) call errore('pbex','case not implemented with libxc',iflag)
|
|
|
|
call xc_f90_func_init(xc_func, xc_info, func_id, XC_UNPOLARIZED)
|
|
call xc_f90_gga_exc_vxc(xc_func, size, rho, grho, exc, v1x, v2x)
|
|
call xc_f90_func_end(xc_func)
|
|
|
|
! remove Slater term for compatibility with QE
|
|
call xc_f90_func_init(xc_func, xc_info, 1, XC_UNPOLARIZED)
|
|
call xc_f90_lda_exc_vxc(xc_func, size, rho, ex_lda, vx_lda)
|
|
call xc_f90_func_end(xc_func)
|
|
exc = exc - ex_lda
|
|
v1x = v1x - vx_lda
|
|
|
|
sx = exc * rho ! e_x = rho * \epsilon_x
|
|
v2x = v2x*2.0_dp
|
|
|
|
#else
|
|
! local variables
|
|
real(DP) :: kf, agrho, s1, s2, ds, dsg, exunif, fx
|
|
! (3*pi2*|rho|)^(1/3)
|
|
! |grho|
|
|
! |grho|/(2*kf*|rho|)
|
|
! s^2
|
|
! n*ds/dn
|
|
! n*ds/d(gn)
|
|
! exchange energy LDA part
|
|
! exchange energy gradient part
|
|
real(DP) :: dxunif, dfx, f1, f2, f3, dfx1
|
|
real(DP) :: p, amu, ab, c, dfxdp, dfxds, upbe, uge, s, ak, aa
|
|
! numerical coefficients (NB: c2=(3 pi^2)^(1/3) )
|
|
real(DP), parameter :: third = 1._DP / 3._DP, c1 = 0.75_DP / pi , &
|
|
c2 = 3.093667726280136_DP, c5 = 4._DP * third, &
|
|
c6 = c2*2.51984210, c7=5._DP/6._DP, c8=0.8_DP ! (3pi^2)^(1/3)*2^(4/3)
|
|
! parameters of the functional
|
|
real(DP) :: k (6), mu(6), ev(6)
|
|
! pbe rpbe pbesol pbeq2d optB88 optB86b
|
|
data k / 0.804_DP, 1.2450_DP, 0.804_DP , 0.804_DP, 0.0_dp, 0.0_dp/, &
|
|
mu/ 0.2195149727645171_DP, 0.2195149727645171_DP, 0.12345679012345679_DP, &
|
|
0.12345679012345679_DP, 0.22_dp, 0.1234_dp/, &
|
|
ev / 1.647127_DP, 0.980118_DP, 0.017399_DP, 1.523671_DP, 0.367229_DP, &
|
|
0.011282_DP / ! a and b parameters of Engel and Vosko
|
|
agrho = sqrt (grho)
|
|
kf = c2 * rho**third
|
|
dsg = 0.5_DP / kf
|
|
s1 = agrho * dsg / rho
|
|
s2 = s1 * s1
|
|
ds = - c5 * s1
|
|
!
|
|
! Energy
|
|
!
|
|
if ( iflag == 4) then
|
|
p=s1*s1
|
|
s=s1
|
|
ak=0.804_DP
|
|
amu=10._DP/81._DP
|
|
ab=0.5217_DP
|
|
c=2._DP
|
|
fx = ak - ak / (1.0_dp + amu * p / ak) + p**2 * (1 + p) &
|
|
/(10**c + p**3) * (-1.0_dp - ak + ak / (1.0_dp + amu * p / ak) &
|
|
+ ab * p ** (-0.1d1/ 0.4D1))
|
|
elseif ( iflag == 5) then
|
|
ab=mu(iflag)*c7 ! mu/ab=1.2
|
|
p=s1*c6
|
|
c=log(p+sqrt(p*p+1)) ! asinh(p)
|
|
dfx1=1+ab*s1*c
|
|
fx = mu(iflag)*s1*s1/dfx1
|
|
elseif ( iflag == 6) then
|
|
p=mu(iflag)*s1*s1
|
|
fx = p / ( 1 + p )**c8
|
|
elseif ( iflag == 7) then
|
|
s=s2*s2
|
|
f1 = 1 + ev(1)*s2 + ev(2)*s + ev(3)*s*s2
|
|
f2 = 1 + ev(4)*s2 + ev(5)*s + ev(6)*s*s2
|
|
fx = f1 / f2 - 1
|
|
else
|
|
f1 = s2 * mu(iflag) / k (iflag)
|
|
f2 = 1._DP + f1
|
|
f3 = k (iflag) / f2
|
|
fx = k (iflag) - f3
|
|
end if
|
|
exunif = - c1 * kf
|
|
sx = exunif * fx
|
|
!
|
|
! Potential
|
|
!
|
|
dxunif = exunif * third
|
|
if ( iflag == 4) then
|
|
dfxdp = dble(1 / (1 + amu * p / ak) ** 2 * amu) + dble(2 * p * (1 &
|
|
+ p) / (10 ** c + p ** 3) * (-1 - ak + ak / (1 + amu * p / ak) + ab &
|
|
* p ** (-0.1d1 / 0.4D1))) + dble(p ** 2 / (10 ** c + p ** 3) * ( &
|
|
-1 - ak + ak / (1 + amu * p / ak) + ab * p ** (-0.1d1 / 0.4D1))) - &
|
|
dble(3 * p ** 4 * (1 + p) / (10 ** c + p ** 3) ** 2 * (-1 - ak + &
|
|
ak / (1 + amu * p / ak) + ab * p ** (-0.1d1 / 0.4D1))) + dble(p ** &
|
|
2) * dble(1 + p) / dble(10 ** c + p ** 3) * (-dble(1 / (1 + amu * &
|
|
p / ak) ** 2 * amu) - dble(ab * p ** (-0.5d1 / 0.4D1)) / 0.4D1)
|
|
|
|
dfxds=dfxdp*2._DP*s
|
|
dfx=dfxds
|
|
elseif (iflag == 5) then
|
|
dfx=2*fx/s1-fx/dfx1*(ab*c+ab*s1/sqrt(p*p+1)*c6)
|
|
elseif (iflag == 6) then
|
|
dfx=2*mu(iflag)*s1*fx*(1+(1-c8)*p)/(p*(1+p))
|
|
elseif (iflag == 7) then
|
|
dfx = ev(1) + 2*ev(2)*s2 + 3*ev(3)*s
|
|
dfx1 = ev(4) + 2*ev(5)*s2 + 3*ev(6)*s
|
|
dfx = 2 * s1 * ( dfx - f1*dfx1/f2 ) / f2
|
|
else
|
|
dfx1 = f2 * f2
|
|
dfx = 2._DP * mu(iflag) * s1 / dfx1
|
|
end if
|
|
v1x = sx + dxunif * fx + exunif * dfx * ds
|
|
v2x = exunif * dfx * dsg / agrho
|
|
sx = sx * rho
|
|
#endif
|
|
return
|
|
end subroutine pbex
|
|
!
|
|
!---------------------------------------------------------------
|
|
subroutine pbex_vec (rho, grho, iflag, sx, v1x, v2x, length, small)
|
|
!---------------------------------------------------------------
|
|
!
|
|
! PBE exchange (without Slater exchange):
|
|
! iflag=1 J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
|
|
! iflag=2 "revised' PBE: Y. Zhang et al., PRL 80, 890 (1998)
|
|
! iflag=3 PBEsol: J.P.Perdew et al., PRL 100, 136406 (2008)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
USE constants, ONLY : pi
|
|
implicit none
|
|
integer, intent(in) :: length
|
|
integer, intent(in) :: iflag
|
|
real(DP), intent(in) :: small
|
|
real(DP), intent(in) :: rho(length), grho(length)
|
|
real(DP), intent(out) :: sx(length), v1x(length), v2x(length)
|
|
! local variables
|
|
integer :: i
|
|
real(DP) :: kf, agrho, s1, dsg, exunif, fx
|
|
! (3*pi2*|rho|)^(1/3)
|
|
! |grho|
|
|
! |grho|/(2*kf*|rho|)
|
|
! n*ds/d(gn)
|
|
! exchange energy LDA part
|
|
! exchange energy gradient part
|
|
real(DP) :: dfx, f1, f2
|
|
! numerical coefficients (NB: c2=(3 pi^2)^(1/3) )
|
|
real(DP) :: third, c1, c2, c5
|
|
parameter (third = 1.0_dp / 3.0_dp, c1 = 0.75_dp / pi , &
|
|
c2 = 3.093667726280136_dp, c5 = 4.0_dp * third)
|
|
! parameters of the functional
|
|
real(DP) :: k (3), mu(3)
|
|
data k / 0.804_dp, 1.245_dp, 0.804_dp /, &
|
|
mu/ 0.2195149727645171_DP, 0.2195149727645171_DP, 0.12345679012345679_DP/
|
|
!
|
|
do i=1,length
|
|
if ((rho(i).gt.small).and.(grho(i).gt.small**2)) then
|
|
agrho = sqrt(grho(i))
|
|
kf = c2 * rho(i)**third
|
|
dsg = 0.5_dp / kf
|
|
s1 = agrho * dsg / rho(i)
|
|
!
|
|
! Energy
|
|
f1 = s1*s1 * mu(iflag) / k(iflag)
|
|
f2 = 1.0_dp / (1.0_dp + f1)
|
|
fx = k(iflag) * (1.0_dp - f2)
|
|
exunif = - c1 * kf
|
|
sx(i) = exunif * fx
|
|
!
|
|
! Potential
|
|
dfx = 2.0_dp * mu(iflag) * s1 *f2*f2
|
|
|
|
v1x(i) = sx(i) + exunif * (third * fx - c5 * dfx * s1)
|
|
v2x(i) = exunif * dfx * dsg / agrho
|
|
sx(i) = sx(i) * rho(i)
|
|
|
|
else
|
|
v1x(i) = 0.0_dp
|
|
v2x(i) = 0.0_dp
|
|
sx(i) = 0.0_dp
|
|
end if
|
|
end do
|
|
|
|
end subroutine pbex_vec
|
|
!
|
|
!---------------------------------------------------------------
|
|
subroutine pbec (rho, grho, iflag, sc, v1c, v2c)
|
|
!---------------------------------------------------------------
|
|
!
|
|
! PBE correlation (without LDA part)
|
|
! iflag=1: J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996).
|
|
! iflag=2: J.P.Perdew et al., PRL 100, 136406 (2008).
|
|
! iflag=3: L. Chiodo et al, PRL 108, 126402 (2012) (PBEQ2D)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
#if defined(__LIBXC)
|
|
use xc_f90_types_m
|
|
use xc_f90_lib_m
|
|
#endif
|
|
implicit none
|
|
integer, intent(in) :: iflag
|
|
real(DP), intent(in) :: rho, grho
|
|
real(DP), intent(out):: sc, v1c, v2c
|
|
#if defined(__LIBXC)
|
|
! local variables
|
|
integer :: func_id = -1 ! not set
|
|
integer :: size = 1
|
|
TYPE(xc_f90_pointer_t) :: xc_func
|
|
TYPE(xc_f90_pointer_t) :: xc_info
|
|
real(dp) :: exc, ec_lda = 0.0d0 , vc_lda = 0.0d0
|
|
|
|
if (iflag.eq.1) func_id = 130
|
|
if (iflag.eq.2) func_id = 133
|
|
if (iflag.eq.3) call errore('pbec','case not implemented with libxc',iflag)
|
|
|
|
call xc_f90_func_init(xc_func, xc_info, func_id, XC_UNPOLARIZED)
|
|
call xc_f90_gga_exc_vxc(xc_func, size, rho, grho, exc, v1c, v2c)
|
|
call xc_f90_func_end(xc_func)
|
|
! remove PW correlation for compatibility with QE
|
|
call xc_f90_func_init(xc_func, xc_info, 12, XC_UNPOLARIZED)
|
|
call xc_f90_lda_exc_vxc(xc_func,size , rho, ec_lda, vc_lda)
|
|
call xc_f90_func_end(xc_func)
|
|
exc = exc - ec_lda
|
|
v1c = v1c - vc_lda
|
|
|
|
sc = exc * rho ! e_x = rho * \epsilon_x
|
|
v2c = v2c*2.0_dp
|
|
|
|
#else
|
|
real(DP), parameter :: ga = 0.0310906908696548950_dp
|
|
real(DP) :: be (3)
|
|
! pbe pbesol pbeq2d
|
|
data be / 0.06672455060314922_dp, 0.046_dp, 0.06672455060314922_dp/
|
|
real(DP), parameter :: third = 1.d0 / 3.d0, pi34 = 0.6203504908994d0
|
|
real(DP), parameter :: xkf = 1.919158292677513d0, xks = 1.128379167095513d0
|
|
! pi34=(3/4pi)^(1/3), xkf=(9 pi/4)^(1/3), xks= sqrt(4/pi)
|
|
real(DP) :: kf, ks, rs, ec, vc, t, expe, af, bf, y, xy, qy
|
|
real(DP) :: s1, h0, dh0, ddh0, sc2D, v1c2D, v2c2D
|
|
!
|
|
rs = pi34 / rho**third
|
|
call pw (rs, 1, ec, vc)
|
|
kf = xkf / rs
|
|
ks = xks * sqrt (kf)
|
|
t = sqrt (grho) / (2.d0 * ks * rho)
|
|
expe = exp ( - ec / ga)
|
|
af = be(iflag) / ga * (1.d0 / (expe-1.d0) )
|
|
bf = expe * (vc - ec)
|
|
y = af * t * t
|
|
xy = (1.d0 + y) / (1.d0 + y + y * y)
|
|
qy = y * y * (2.d0 + y) / (1.d0 + y + y * y) **2
|
|
s1 = 1.d0 + be(iflag) / ga * t * t * xy
|
|
h0 = ga * log (s1)
|
|
dh0 = be(iflag) * t * t / s1 * ( - 7.d0 / 3.d0 * xy - qy * (af * bf / &
|
|
be(iflag)-7.d0 / 3.d0) )
|
|
ddh0 = be(iflag) / (2.d0 * ks * ks * rho) * (xy - qy) / s1
|
|
sc = rho * h0
|
|
v1c = h0 + dh0
|
|
v2c = ddh0
|
|
! q2D
|
|
if (iflag == 3)then
|
|
call cpbe2d(rho,grho,sc2D,v1c2D,v2c2D)
|
|
sc=sc+sc2D
|
|
v1c=v1c+v1c2D
|
|
v2c=v2c+v2c2D
|
|
endif
|
|
#endif
|
|
!
|
|
return
|
|
end subroutine pbec
|
|
|
|
!---------------------------------------------------------------
|
|
subroutine cpbe2d(rho,grho,sc,v1c,v2c)
|
|
!---------------------------------------------------------------
|
|
|
|
! 2D correction (last term of Eq. 5, PRL 108, 126402 (2012))
|
|
|
|
USE kinds, ONLY : dp
|
|
USE constants, ONLY : pi
|
|
IMPLICIT NONE
|
|
!
|
|
REAL(dp), INTENT(in) :: rho, grho
|
|
REAL(dp), INTENT(OUT) :: sc, v1c, v2c
|
|
!
|
|
REAL(dp), PARAMETER:: ex1=0.333333333333333333_dp, ex2=1.166666666666667_dp
|
|
REAL(dp), PARAMETER:: ex3=ex2+1.0_dp
|
|
REAL(dp) :: fac1, fac2, zeta, phi, gr, rs, drsdn, akf, aks, t, dtdn, dtdgr
|
|
REAL(dp) :: p, a, g, alpha1, beta1,beta2,beta3,beta4, dgdrs, epsc, depscdrs
|
|
REAL(dp) :: c, gamma1, beta, aa, cg, adddepsc, h, dhdaa, dhdt, dhdrs
|
|
REAL(dp) :: epscpbe, depscpbedrs, depscpbedt, a0,a1,a2, b0,b1,b2, c0,c1,c2
|
|
REAL(dp) :: e0,e1,e2, f0,f1,f2, g0,g1,g2, h0,h1,h2, d0,d1,d2, ff, dffdt
|
|
REAL(dp) :: rs3d, rs2d, drs2ddrs3d, eps2d, deps2ddrs2, depsGGAdrs, depsGGAdt
|
|
REAL(dp) :: drs2ddt, rs2, ec, decdn, decdgr, daadepsc
|
|
!
|
|
fac1=(3.d0*pi*pi)**ex1
|
|
fac2=sqrt(4.d0*fac1/pi)
|
|
|
|
zeta=0.d0
|
|
phi=1.d0
|
|
!
|
|
gr=sqrt (grho)
|
|
!
|
|
rs=(3.d0/4.d0/pi/rho)**ex1
|
|
drsdn = -dble(3 ** (0.1D1 / 0.3D1)) * dble(2 ** (0.1D1 / 0.3D1)) * &
|
|
0.3141592654D1 ** (-0.1D1 / 0.3D1) * (0.1D1 / rho) ** (-0.2D1 / &
|
|
0.3D1) / rho ** 2 / 0.6D1
|
|
!
|
|
akf=(3.d0*pi*pi*rho)**(1.d0/3.d0)
|
|
aks=dsqrt(4.d0*akf/pi)
|
|
t=gr/2.d0/phi/aks/rho
|
|
dtdn=-7.d0/6.d0*gr/2.d0/phi/dsqrt(4.d0/pi)/ &
|
|
((3.d0*pi*pi)**(1.d0/6.d0))/(rho**(13.d0/6.d0))
|
|
dtdgr=1.d0/2.d0/phi/aks/rho
|
|
!
|
|
! for the LDA correlation
|
|
p=1.d0
|
|
A=0.0310906908696548950_dp
|
|
alpha1=0.21370d0
|
|
beta1=7.5957d0
|
|
beta2=3.5876d0
|
|
beta3=1.6382d0
|
|
beta4=0.49294d0
|
|
G = -0.2D1 * A * dble(1 + alpha1 * rs) * log(0.1D1 + 0.1D1 / A / ( &
|
|
beta1 * sqrt(dble(rs)) + dble(beta2 * rs) + dble(beta3 * rs ** ( &
|
|
0.3D1 / 0.2D1)) + dble(beta4 * rs ** (p + 1))) / 0.2D1)
|
|
|
|
dGdrs = -0.2D1 * A * alpha1 * log(0.1D1 + 0.1D1 / A / (beta1 * sqrt(rs) &
|
|
+ beta2 * rs + beta3 * rs ** (0.3D1 / 0.2D1) + beta4 * rs ** &
|
|
(p + 1)) / 0.2D1) + (0.1D1 + alpha1 * rs) / (beta1 * sqrt(rs) + &
|
|
beta2 * rs + beta3 * rs ** (0.3D1 / 0.2D1) + beta4 * rs ** (p + 1)) &
|
|
** 2 * (beta1 * rs ** (-0.1D1 / 0.2D1) / 0.2D1 + beta2 + 0.3D1 / &
|
|
0.2D1 * beta3 * sqrt(rs) + beta4 * rs ** (p + 1) * dble(p + 1) / &
|
|
rs) / (0.1D1 + 0.1D1 / A / (beta1 * sqrt(rs) + beta2 * rs + beta3 * &
|
|
rs ** (0.3D1 / 0.2D1) + beta4 * rs ** (p + 1)) / 0.2D1)
|
|
!
|
|
epsc=G
|
|
depscdrs=dGdrs
|
|
!
|
|
! PBE
|
|
c=1.d0
|
|
gamma1=0.0310906908696548950_dp
|
|
beta=0.06672455060314922_dp
|
|
!
|
|
AA = beta / gamma1 / (exp(-epsc / gamma1 / phi ** 3) - 0.1D1)
|
|
cg = beta / gamma1 ** 2 / (exp(-epsc/ gamma1 / phi ** 3) - 0.1D1) &
|
|
** 2 / phi ** 3 * exp(-epsc / gamma1 / phi ** 3)
|
|
dAAdepsc=cg
|
|
!
|
|
if(t.le.10.d0)then
|
|
H = dble(gamma1) * phi ** 3 * log(dble(1 + beta / gamma1 * t ** 2 &
|
|
* (1 + AA * t ** 2) / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4)))
|
|
!
|
|
dHdAA = gamma1 * phi ** 3 * (beta / gamma1 * t ** 4 / (1 + c * AA &
|
|
* t ** 2 + AA ** 2 * t ** 4) - beta / gamma1 * t ** 2 * (1 + AA * &
|
|
t ** 2) / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4) ** 2 * (c * t **&
|
|
2 + 2 * AA * t ** 4)) / (1 + beta / gamma1 * t ** 2 * (1 + AA * &
|
|
t ** 2) / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4))
|
|
!
|
|
dHdt = gamma1 * phi ** 3 * (2 * beta / gamma1 * t * (1 + AA * t ** &
|
|
2) / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4) + 2 * beta / gamma1 &
|
|
* t ** 3 * AA / (1 + c * AA * t ** 2 + AA ** 2 * t ** 4) - beta / &
|
|
gamma1 * t ** 2 * (1 + AA * t ** 2) / (1 + c * AA * t ** 2 + AA ** &
|
|
2 * t ** 4) ** 2 * (2 * c * AA * t + 4 * AA ** 2 * t ** 3)) / (1 &
|
|
+ beta / gamma1 * t ** 2 * (1 + AA * t ** 2) / (1 + c * AA * t ** &
|
|
2 + AA ** 2 * t ** 4))
|
|
|
|
else
|
|
|
|
H=gamma1*(phi**3)*dlog(1.d0+(beta/gamma1)*(1.d0/AA))
|
|
!
|
|
dHdAA =gamma1*(phi**3)*1.d0/(1.d0+(beta/gamma1)*(1.d0/AA))* &
|
|
(beta/gamma1)*(-1.d0/AA/AA)
|
|
!
|
|
dHdt=0.d0
|
|
endif
|
|
!
|
|
dHdrs=dHdAA*dAAdepsc*depscdrs
|
|
!
|
|
epscPBE=epsc+H
|
|
depscPBEdrs=depscdrs+dHdrs
|
|
depscPBEdt=dHdt
|
|
!
|
|
! START THE 2D CORRECTION
|
|
!
|
|
beta=1.3386d0
|
|
a0=-0.1925d0
|
|
a1=0.117331d0
|
|
a2=0.0234188d0
|
|
b0=0.0863136d0
|
|
b1=-0.03394d0
|
|
b2=-0.037093d0
|
|
c0=0.057234d0
|
|
c1=-0.00766765d0
|
|
c2=0.0163618d0
|
|
e0=1.0022d0
|
|
e1=0.4133d0
|
|
e2=1.424301d0
|
|
f0=-0.02069d0
|
|
f1=0.d0
|
|
f2=0.d0
|
|
g0=0.340d0
|
|
g1=0.0668467d0
|
|
g2=0.d0
|
|
h0=0.01747d0
|
|
h1=0.0007799d0
|
|
h2=1.163099d0
|
|
d0=-a0*h0
|
|
d1=-a1*h1
|
|
d2=-a2*h2
|
|
!
|
|
ff = t ** 4 * (1 + t ** 2) / (1000000 + t ** 6)
|
|
dffdt = 4 * t ** 3 * (1 + t ** 2) / (1000000 + t ** 6) + 2 * t ** &
|
|
5 / (1000000 + t ** 6) - 6 * t ** 9 * (1 + t ** 2) / (1000000 + t &
|
|
** 6) ** 2
|
|
!
|
|
rs3d=rs
|
|
rs2d = 0.4552100000D0 * dble(3 ** (0.7D1 / 0.12D2)) * dble(4 ** ( &
|
|
0.5D1 / 0.12D2)) * (0.1D1 / pi) ** (-0.5D1 / 0.12D2) * rs3d ** ( &
|
|
0.5D1 / 0.4D1) * sqrt(t)
|
|
|
|
cg = 0.5690125000D0 * dble(3 ** (0.7D1 / 0.12D2)) * dble(4 ** ( &
|
|
0.5D1 / 0.12D2)) * (0.1D1 / pi) ** (-0.5D1 / 0.12D2) * rs3d ** (0.1D1 &
|
|
/ 0.4D1) * sqrt(t)
|
|
drs2ddrs3d=cg
|
|
|
|
cg = 0.2276050000D0 * dble(3 ** (0.7D1 / 0.12D2)) * dble(4 ** ( &
|
|
0.5D1 / 0.12D2)) * dble((1 / pi) ** (-0.5D1 / 0.12D2)) * dble(rs3d ** &
|
|
(0.5D1 / 0.4D1)) * dble(t ** (-0.1D1 / 0.2D1))
|
|
drs2ddt=cg
|
|
rs2=rs2d
|
|
!
|
|
eps2d = (exp(-beta * rs2) - 0.1D1) * (-0.2D1 / 0.3D1 * sqrt(0.2D1) &
|
|
* dble((1 + zeta) ** (0.3D1 / 0.2D1) + (1 - zeta) ** (0.3D1 / &
|
|
0.2D1)) / pi / rs2 + 0.4D1 / 0.3D1 * (0.1D1 + 0.3D1 / 0.8D1 * dble( &
|
|
zeta ** 2) + 0.3D1 / 0.128D3 * dble(zeta ** 4)) * sqrt(0.2D1) / pi / &
|
|
rs2) + a0 + (b0 * rs2 + c0 * rs2 ** 2 + d0 * rs2 ** 3) * log(0.1D1 &
|
|
+ 0.1D1 / (e0 * rs2 + f0 * rs2 ** (0.3D1 / 0.2D1) + g0 * rs2 ** &
|
|
2 + h0 * rs2 ** 3)) + (a1 + (b1 * rs2 + c1 * rs2 ** 2 + d1 * rs2 ** &
|
|
3) * log(0.1D1 + 0.1D1 / (e1 * rs2 + f1 * rs2 ** (0.3D1 / 0.2D1) &
|
|
+ g1 * rs2 ** 2 + h1 * rs2 ** 3))) * dble(zeta ** 2) + (a2 + (b2 &
|
|
* rs2 + c2 * rs2 ** 2 + d2 * rs2 ** 3) * log(0.1D1 + 0.1D1 / (e2 * &
|
|
rs2 + f2 * rs2 ** (0.3D1 / 0.2D1) + g2 * rs2 ** 2 + h2 * rs2 ** 3 &
|
|
))) * dble(zeta ** 4)
|
|
!
|
|
cg = -beta * exp(-beta * rs2) * (-0.2D1 / 0.3D1 * sqrt(0.2D1) * &
|
|
dble((1 + zeta) ** (0.3D1 / 0.2D1) + (1 - zeta) ** (0.3D1 / 0.2D1)) &
|
|
/ pi / rs2 + 0.4D1 / 0.3D1 * (0.1D1 + 0.3D1 / 0.8D1 * dble(zeta ** &
|
|
2) + 0.3D1 / 0.128D3 * dble(zeta ** 4)) * sqrt(0.2D1) / pi / rs2) &
|
|
+ (exp(-beta * rs2) - 0.1D1) * (0.2D1 / 0.3D1 * sqrt(0.2D1) * dble &
|
|
((1 + zeta) ** (0.3D1 / 0.2D1) + (1 - zeta) ** (0.3D1 / 0.2D1)) / &
|
|
pi / rs2 ** 2 - 0.4D1 / 0.3D1 * (0.1D1 + 0.3D1 / 0.8D1 * dble(zeta &
|
|
** 2) + 0.3D1 / 0.128D3 * dble(zeta ** 4)) * sqrt(0.2D1) / pi / &
|
|
rs2 ** 2) + (b0 + 0.2D1 * c0 * rs2 + 0.3D1 * d0 * rs2 ** 2) * log( &
|
|
0.1D1 + 0.1D1 / (e0 * rs2 + f0 * rs2 ** (0.3D1 / 0.2D1) + g0 * rs2 &
|
|
** 2 + h0 * rs2 ** 3)) - (b0 * rs2 + c0 * rs2 ** 2 + d0 * rs2 ** &
|
|
3) / (e0 * rs2 + f0 * rs2 ** (0.3D1 / 0.2D1) + g0 * rs2 ** 2 + h0 &
|
|
* rs2 ** 3) ** 2 * (e0 + 0.3D1 / 0.2D1 * f0 * sqrt(rs2) + 0.2D1 * &
|
|
g0 * rs2 + 0.3D1 * h0 * rs2 ** 2) / (0.1D1 + 0.1D1 / (e0 * rs2 + f0 &
|
|
* rs2 ** (0.3D1 / 0.2D1) + g0 * rs2 ** 2 + h0 * rs2 ** 3)) + (( &
|
|
b1 + 0.2D1 * c1 * rs2 + 0.3D1 * d1 * rs2 ** 2) * log(0.1D1 + 0.1D1 &
|
|
/ (e1 * rs2 + f1 * rs2 ** (0.3D1 / 0.2D1) + g1 * rs2 ** 2 + h1 * &
|
|
rs2 ** 3)) - (b1 * rs2 + c1 * rs2 ** 2 + d1 * rs2 ** 3) / (e1 * rs2 &
|
|
+ f1 * rs2 ** (0.3D1 / 0.2D1) + g1 * rs2 ** 2 + h1 * rs2 ** 3) ** &
|
|
2 * (e1 + 0.3D1 / 0.2D1 * f1 * sqrt(rs2) + 0.2D1 * g1 * rs2 + &
|
|
0.3D1 * h1 * rs2 ** 2) / (0.1D1 + 0.1D1 / (e1 * rs2 + f1 * rs2 ** ( &
|
|
0.3D1 / 0.2D1) + g1 * rs2 ** 2 + h1 * rs2 ** 3))) * dble(zeta ** 2) &
|
|
+ ((b2 + 0.2D1 * c2 * rs2 + 0.3D1 * d2 * rs2 ** 2) * log(0.1D1 + &
|
|
0.1D1 / (e2 * rs2 + f2 * rs2 ** (0.3D1 / 0.2D1) + g2 * rs2 ** 2 + h2 &
|
|
* rs2 ** 3)) - (b2 * rs2 + c2 * rs2 ** 2 + d2 * rs2 ** 3) / (e2 &
|
|
* rs2 + f2 * rs2 ** (0.3D1 / 0.2D1) + g2 * rs2 ** 2 + h2 * rs2 ** &
|
|
3) ** 2 * (e2 + 0.3D1 / 0.2D1 * f2 * sqrt(rs2) + 0.2D1 * g2 * rs2 &
|
|
+ 0.3D1 * h2 * rs2 ** 2) / (0.1D1 + 0.1D1 / (e2 * rs2 + f2 * rs2 ** &
|
|
(0.3D1 / 0.2D1) + g2 * rs2 ** 2 + h2 * rs2 ** 3))) * dble(zeta ** &
|
|
4)
|
|
deps2ddrs2=cg
|
|
!
|
|
! GGA-2D
|
|
!
|
|
depsGGAdrs=ff*(-depscPBEdrs+deps2ddrs2*drs2ddrs3d)
|
|
depsGGAdt=dffdt*(-epscPBE+eps2d)+ff* &
|
|
(-depscPBEdt+deps2ddrs2*drs2ddt)
|
|
!
|
|
ec=rho*(ff*(-epscPBE+eps2d))
|
|
!
|
|
decdn=ff*(-epscPBE+eps2d)+rho*depsGGAdrs*drsdn+ &
|
|
rho*depsGGAdt*dtdn
|
|
!
|
|
decdgr=rho*depsGGAdt*dtdgr
|
|
!
|
|
sc=ec
|
|
v1c=decdn
|
|
v2c=decdgr/gr
|
|
!
|
|
RETURN
|
|
END subroutine cpbe2d
|
|
!
|
|
!---------------------------------------------------------------
|
|
subroutine sogga (rho, grho, sx, v1x, v2x)
|
|
!-------------------------------------------------------------
|
|
!
|
|
! SOGGA exchange
|
|
!
|
|
!
|
|
USE kinds
|
|
USE constants, ONLY : pi
|
|
|
|
implicit none
|
|
|
|
real(dp), intent(in) :: rho, grho
|
|
real(dp), intent(out) :: sx, v1x, v2x
|
|
! input: charge and abs gradient
|
|
! output: energy
|
|
! output: potential
|
|
|
|
! local variables
|
|
real(dp) :: rho43, xs, xs2, dxs2_drho, dxs2_dgrho2
|
|
real(dp) :: CX, denom, C1, C2, Fso, Fpbe, ex, Fx, dFx_dxs2, dex_drho
|
|
|
|
real(dp), parameter :: one = 1.0_dp, two=2.0_dp, three = 3.0_dp, &
|
|
& four = 4.0_dp, eight = 8.0_dp, &
|
|
& f13 = one/three, f23 = two/three, f43 = four/three, &
|
|
& f34=three/four, f83 = eight/three, f12 = one/two
|
|
|
|
real(dp), parameter :: mu=0.12346d0, kapa=0.552d0
|
|
!
|
|
!_____________________________________________________________________
|
|
|
|
|
|
CX = f34 * (three/pi)**f13 ! Cx LDA
|
|
denom = four * (three*pi**two)**f23
|
|
C1 = mu / denom
|
|
C2 = mu / (kapa * denom)
|
|
|
|
rho43 = rho**f43
|
|
xs = grho / rho43
|
|
xs2 = xs * xs
|
|
|
|
dxs2_drho = -f83 * xs2 / rho
|
|
dxs2_dgrho2 = one /rho**f83
|
|
|
|
ex = - CX * rho43
|
|
dex_drho = - f43 * CX * rho**f13
|
|
|
|
Fso = kapa * (one - exp(-C2*xs2))
|
|
Fpbe = C1 * xs2 / (one + C2*xs2)
|
|
|
|
Fx = f12 * (Fpbe + Fso)
|
|
dFx_dxs2 = f12 * (C1 / ((one + C2*xs2)**2) + C1*exp(-C2*xs2))
|
|
|
|
!
|
|
! Energy
|
|
!
|
|
sx = Fx * ex
|
|
!
|
|
! Potential
|
|
!
|
|
v1x = dex_drho * Fx + ex * dFx_dxs2 * dxs2_drho
|
|
v2x = two * ex * dFx_dxs2 * dxs2_dgrho2
|
|
|
|
end subroutine sogga
|
|
!
|
|
!
|
|
! ==================================================================
|
|
subroutine hcth(rho,grho,sx,v1x,v2x)
|
|
! ==================================================================
|
|
! HCTH/120, JCP 109, p. 6264 (1998)
|
|
! Parameters set-up after N.L. Doltsisnis & M. Sprik (1999)
|
|
! Present release: Mauro Boero, Tsukuba, 11/05/2004
|
|
!--------------------------------------------------------------------------
|
|
! rhoa = rhob = 0.5 * rho
|
|
! grho is the SQUARE of the gradient of rho! --> gr=sqrt(grho)
|
|
! sx : total exchange correlation energy at point r
|
|
! v1x : d(sx)/drho (eq. dfdra = dfdrb in original)
|
|
! v2x : 1/gr*d(sx)/d(gr) (eq. 0.5 * dfdza = 0.5 * dfdzb in original)
|
|
!--------------------------------------------------------------------------
|
|
USE kinds, ONLY : DP
|
|
USE constants, ONLY: pi
|
|
implicit none
|
|
real(DP) :: rho, grho, sx, v1x, v2x
|
|
|
|
real(DP), parameter :: o3=1.0d0/3.0d0, o34=4.0d0/3.0d0, fr83=8.d0/3.d0
|
|
real(DP) :: cg0(6), cg1(6), caa(6), cab(6), cx(6)
|
|
real(DP) :: r3q2, r3pi, gr, rho_o3, rho_o34, xa, xa2, ra, rab, &
|
|
dra_drho, drab_drho, g, dg, era1, dera1_dra, erab0, derab0_drab, &
|
|
ex, dex_drho, uaa, uab, ux, ffaa, ffab, dffaa_drho, dffab_drho,&
|
|
denaa, denab, denx, f83rho, bygr, gaa, gab, gx, taa, tab, txx, &
|
|
dgaa_drho, dgab_drho, dgx_drho, dgaa_dgr, dgab_dgr, dgx_dgr
|
|
!
|
|
r3q2=2.d0**(-o3)
|
|
r3pi=(3.d0/pi)**o3
|
|
!.....coefficients for pw correlation......................................
|
|
cg0(1)= 0.031091d0
|
|
cg0(2)= 0.213700d0
|
|
cg0(3)= 7.595700d0
|
|
cg0(4)= 3.587600d0
|
|
cg0(5)= 1.638200d0
|
|
cg0(6)= 0.492940d0
|
|
cg1(1)= 0.015545d0
|
|
cg1(2)= 0.205480d0
|
|
cg1(3)=14.118900d0
|
|
cg1(4)= 6.197700d0
|
|
cg1(5)= 3.366200d0
|
|
cg1(6)= 0.625170d0
|
|
!......hcth-19-4.....................................
|
|
caa(1)= 0.489508d+00
|
|
caa(2)= -0.260699d+00
|
|
caa(3)= 0.432917d+00
|
|
caa(4)= -0.199247d+01
|
|
caa(5)= 0.248531d+01
|
|
caa(6)= 0.200000d+00
|
|
cab(1)= 0.514730d+00
|
|
cab(2)= 0.692982d+01
|
|
cab(3)= -0.247073d+02
|
|
cab(4)= 0.231098d+02
|
|
cab(5)= -0.113234d+02
|
|
cab(6)= 0.006000d+00
|
|
cx(1) = 0.109163d+01
|
|
cx(2) = -0.747215d+00
|
|
cx(3) = 0.507833d+01
|
|
cx(4) = -0.410746d+01
|
|
cx(5) = 0.117173d+01
|
|
cx(6)= 0.004000d+00
|
|
!...........................................................................
|
|
gr=DSQRT(grho)
|
|
rho_o3=rho**(o3)
|
|
rho_o34=rho**(o34)
|
|
xa=1.25992105d0*gr/rho_o34
|
|
xa2=xa*xa
|
|
ra=0.781592642d0/rho_o3
|
|
rab=r3q2*ra
|
|
dra_drho=-0.260530881d0/rho_o34
|
|
drab_drho=r3q2*dra_drho
|
|
call pwcorr(ra,cg1,g,dg)
|
|
era1=g
|
|
dera1_dra=dg
|
|
call pwcorr(rab,cg0,g,dg)
|
|
erab0=g
|
|
derab0_drab=dg
|
|
ex=-0.75d0*r3pi*rho_o34
|
|
dex_drho=-r3pi*rho_o3
|
|
uaa=caa(6)*xa2
|
|
uaa=uaa/(1.0d0+uaa)
|
|
uab=cab(6)*xa2
|
|
uab=uab/(1.0d0+uab)
|
|
ux=cx(6)*xa2
|
|
ux=ux/(1.0d0+ux)
|
|
ffaa=rho*era1
|
|
ffab=rho*erab0-ffaa
|
|
dffaa_drho=era1+rho*dera1_dra*dra_drho
|
|
dffab_drho=erab0+rho*derab0_drab*drab_drho-dffaa_drho
|
|
! mb-> i-loop removed
|
|
denaa=1.d0/(1.0d0+caa(6)*xa2)
|
|
denab=1.d0/(1.0d0+cab(6)*xa2)
|
|
denx =1.d0/(1.0d0+cx(6)*xa2)
|
|
f83rho=fr83/rho
|
|
bygr=2.0d0/gr
|
|
gaa=caa(1)+uaa*(caa(2)+uaa*(caa(3)+uaa*(caa(4)+uaa*caa(5))))
|
|
gab=cab(1)+uab*(cab(2)+uab*(cab(3)+uab*(cab(4)+uab*cab(5))))
|
|
gx=cx(1)+ux*(cx(2)+ux*(cx(3)+ux*(cx(4)+ux*cx(5))))
|
|
taa=denaa*uaa*(caa(2)+uaa*(2.d0*caa(3)+uaa &
|
|
*(3.d0*caa(4)+uaa*4.d0*caa(5))))
|
|
tab=denab*uab*(cab(2)+uab*(2.d0*cab(3)+uab &
|
|
*(3.d0*cab(4)+uab*4.d0*cab(5))))
|
|
txx=denx*ux*(cx(2)+ux*(2.d0*cx(3)+ux &
|
|
*(3.d0*cx(4)+ux*4.d0*cx(5))))
|
|
dgaa_drho=-f83rho*taa
|
|
dgab_drho=-f83rho*tab
|
|
dgx_drho=-f83rho*txx
|
|
dgaa_dgr=bygr*taa
|
|
dgab_dgr=bygr*tab
|
|
dgx_dgr=bygr*txx
|
|
! mb
|
|
sx=ex*gx+ffaa*gaa+ffab*gab
|
|
v1x=dex_drho*gx+ex*dgx_drho &
|
|
+dffaa_drho*gaa+ffaa*dgaa_drho &
|
|
+dffab_drho*gab+ffab*dgab_drho
|
|
v2x=(ex*dgx_dgr+ffaa*dgaa_dgr+ffab*dgab_dgr)/gr
|
|
return
|
|
end subroutine hcth
|
|
!-------------------------------------------------------------------=
|
|
subroutine pwcorr(r,c,g,dg)
|
|
USE kinds, ONLY : DP
|
|
implicit none
|
|
real(DP) :: r, g, dg, c(6)
|
|
real(DP) :: r12, r32, r2, rb, drb, sb
|
|
|
|
r12=dsqrt(r)
|
|
r32=r*r12
|
|
r2=r*r
|
|
rb=c(3)*r12+c(4)*r+c(5)*r32+c(6)*r2
|
|
sb=1.0d0+1.0d0/(2.0d0*c(1)*rb)
|
|
g=-2.0d0*c(1)*(1.0d0+c(2)*r)*dlog(sb)
|
|
drb=c(3)/(2.0d0*r12)+c(4)+1.5d0*c(5)*r12+2.0d0*c(6)*r
|
|
dg=(1.0d0+c(2)*r)*drb/(rb*rb*sb)-2.0d0*c(1)*c(2)*dlog(sb)
|
|
|
|
return
|
|
end subroutine pwcorr
|
|
!-----------------------------------------------------------------------------
|
|
! ==================================================================
|
|
subroutine optx(rho,grho,sx,v1x,v2x)
|
|
! OPTX, Handy et al. JCP 116, p. 5411 (2002) and refs. therein
|
|
! Present release: Mauro Boero, Tsukuba, 10/9/2002
|
|
!--------------------------------------------------------------------------
|
|
! rhoa = rhob = 0.5 * rho in LDA implementation
|
|
! grho is the SQUARE of the gradient of rho! --> gr=sqrt(grho)
|
|
! sx : total exchange correlation energy at point r
|
|
! v1x : d(sx)/drho
|
|
! v2x : 1/gr*d(sx)/d(gr)
|
|
!--------------------------------------------------------------------------
|
|
use kinds, only: DP
|
|
implicit none
|
|
real(DP) :: rho, grho, sx, v1x, v2x
|
|
|
|
real(DP), parameter :: small=1.D-30, smal2=1.D-10
|
|
!.......coefficients and exponents....................
|
|
real(DP), parameter :: o43=4.0d0/3.0d0, two13=1.259921049894873D0, &
|
|
two53=3.174802103936399D0, gam=0.006D0, a1cx=0.9784571170284421D0,&
|
|
a2=1.43169D0
|
|
real(DP) :: gr, rho43, xa, gamx2, uden, uu
|
|
!.......OPTX in compact form..........................
|
|
if(rho <= small) then
|
|
sx=0.0D0
|
|
v1x=0.0D0
|
|
v2x=0.0D0
|
|
else
|
|
gr = max(grho,SMAL2)
|
|
rho43=rho**o43
|
|
xa=two13*DSQRT(gr)/rho43
|
|
gamx2=gam*xa*xa
|
|
uden=1.d+00/(1.d+00+gamx2)
|
|
uu=a2*gamx2*gamx2*uden*uden
|
|
uden=rho43*uu*uden
|
|
sx=-rho43*(a1cx+uu)/two13
|
|
v1x=o43*(sx+two53*uden)/rho
|
|
v2x=-two53*uden/gr
|
|
endif
|
|
return
|
|
end subroutine optx
|
|
!
|
|
!---------------------------------------------------------------
|
|
subroutine wcx (rho, grho, sx, v1x, v2x)
|
|
!---------------------------------------------------------------
|
|
!
|
|
! Wu-Cohen exchange (without Slater exchange):
|
|
! Z. Wu and R. E. Cohen, PRB 73, 235116 (2006)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
USE constants, ONLY : pi
|
|
implicit none
|
|
real(DP) :: rho, grho, sx, v1x, v2x
|
|
! input: charge and squared gradient
|
|
! output: energy
|
|
! output: potential
|
|
! local variables
|
|
real(DP) :: kf, agrho, s1, s2, es2, ds, dsg, exunif, fx
|
|
! (3*pi2*|rho|)^(1/3)
|
|
! |grho|
|
|
! |grho|/(2*kf*|rho|)
|
|
! s^2
|
|
! n*ds/dn
|
|
! n*ds/d(gn)
|
|
! exchange energy LDA part
|
|
! exchange energy gradient part
|
|
real(DP) :: dxunif, dfx, f1, f2, f3, dfx1, x1, x2, x3, &
|
|
dxds1, dxds2, dxds3
|
|
! numerical coefficients (NB: c2=(3 pi^2)^(1/3) )
|
|
real(DP) :: third, c1, c2, c5, c6, teneightyone
|
|
parameter (third = 1.d0 / 3.d0, c1 = 0.75d0 / pi , &
|
|
c2 = 3.093667726280136d0, c5 = 4.d0 * third, &
|
|
teneightyone = 0.123456790123d0)
|
|
! parameters of the functional
|
|
real(DP) :: k, mu, cwc
|
|
parameter (k = 0.804d0, mu = 0.2195149727645171d0, cwc = 0.00793746933516d0)
|
|
!
|
|
agrho = sqrt (grho)
|
|
kf = c2 * rho**third
|
|
dsg = 0.5d0 / kf
|
|
s1 = agrho * dsg / rho
|
|
s2 = s1 * s1
|
|
es2 = exp(-s2)
|
|
ds = - c5 * s1
|
|
!
|
|
! Energy
|
|
!
|
|
! x = 10/81 s^2 + (mu - 10/81) s^2 e^-s^2 + ln (1 + c s^4)
|
|
x1 = teneightyone * s2
|
|
x2 = (mu - teneightyone) * s2 * es2
|
|
x3 = log(1.d0 + cwc * s2 * s2)
|
|
f1 = (x1 + x2 + x3) / k
|
|
f2 = 1.d0 + f1
|
|
f3 = k / f2
|
|
fx = k - f3
|
|
exunif = - c1 * kf
|
|
sx = exunif * fx
|
|
!
|
|
! Potential
|
|
!
|
|
dxunif = exunif * third
|
|
dfx1 = f2 * f2
|
|
dxds1 = teneightyone
|
|
dxds2 = (mu - teneightyone) * es2 * (1.d0 - s2)
|
|
dxds3 = 2.d0 * cwc * s2 / (1.d0 + cwc * s2 *s2)
|
|
dfx = 2.d0 * s1 * (dxds1 + dxds2 + dxds3) / dfx1
|
|
v1x = sx + dxunif * fx + exunif * dfx * ds
|
|
v2x = exunif * dfx * dsg / agrho
|
|
|
|
sx = sx * rho
|
|
return
|
|
end subroutine wcx
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
function dpz (rs, iflg)
|
|
!-----------------------------------------------------------------------
|
|
! derivative of the correlation potential with respect to local density
|
|
! Perdew and Zunger parameterization of the Ceperley-Alder functional
|
|
!
|
|
use kinds, only: DP
|
|
USE constants, ONLY: pi, fpi
|
|
!
|
|
implicit none
|
|
!
|
|
real(DP), intent (in) :: rs
|
|
integer, intent(in) :: iflg
|
|
real(DP) :: dpz
|
|
!
|
|
! local variables
|
|
! a,b,c,d,gc,b1,b2 are the parameters defining the functional
|
|
!
|
|
real(DP), parameter :: a = 0.0311d0, b = -0.048d0, c = 0.0020d0, &
|
|
d = -0.0116d0, gc = -0.1423d0, b1 = 1.0529d0, b2 = 0.3334d0,&
|
|
a1 = 7.0d0 * b1 / 6.d0, a2 = 4.d0 * b2 / 3.d0
|
|
real(DP) :: x, den, dmx, dmrs
|
|
!
|
|
!
|
|
if (iflg == 1) then
|
|
dmrs = a / rs + 2.d0 / 3.d0 * c * (log (rs) + 1.d0) + &
|
|
(2.d0 * d-c) / 3.d0
|
|
else
|
|
x = sqrt (rs)
|
|
den = 1.d0 + x * (b1 + x * b2)
|
|
dmx = gc * ( (a1 + 2.d0 * a2 * x) * den - 2.d0 * (b1 + 2.d0 * &
|
|
b2 * x) * (1.d0 + x * (a1 + x * a2) ) ) / den**3
|
|
dmrs = 0.5d0 * dmx / x
|
|
endif
|
|
!
|
|
dpz = - fpi * rs**4.d0 / 9.d0 * dmrs
|
|
return
|
|
!
|
|
end function dpz
|
|
!----------------------------------------------------------------------
|
|
!
|
|
! HSE (wPBE) stabbing starts HERE
|
|
!
|
|
! Note, that you can get PBEhole functional,
|
|
! M. Ernzerhof, J. Chem. Phys. 109, 3313 (1998),
|
|
! from this by just setting OMEGA=0
|
|
!
|
|
! These are wrappers to the reference implementation
|
|
!-----------------------------------------------------------------------
|
|
SUBROUTINE pbexsr_lsd(RHOA,RHOB,GRHOAA,GRHOBB,sx, &
|
|
V1XA,V2XA,V1XB,V2XB,OMEGA)
|
|
! ==--------------------------------------------------------------==
|
|
IMPLICIT REAL*8 (A-H,O-Z)
|
|
PARAMETER(SMALL=1.D-20)
|
|
! ==--------------------------------------------------------------==
|
|
SXA=0.0D0
|
|
SXB=0.0D0
|
|
V1XA=0.0D0
|
|
V2XA=0.0D0
|
|
V1XB=0.0D0
|
|
V2XB=0.0D0
|
|
IF(RHOA.GT.SMALL.AND.GRHOAA.GT.SMALL) THEN
|
|
CALL pbexsr(2.D0*RHOA, 4.D0*GRHOAA, SXA, V1XA, V2XA, OMEGA)
|
|
ENDIF
|
|
IF(RHOB.GT.SMALL.AND.GRHOBB.GT.SMALL) THEN
|
|
CALL pbexsr(2.D0*RHOB, 4.D0*GRHOBB, SXB, V1XB, V2XB, OMEGA)
|
|
ENDIF
|
|
sx = 0.5D0*(SXA+SXB)
|
|
V2XA = 2.D0*V2XA
|
|
V2XB = 2.D0*V2XB ! I HOPE THIS WORKS JUST LIKE THIS
|
|
|
|
! ==--------------------------------------------------------------==
|
|
RETURN
|
|
END SUBROUTINE pbexsr_lsd
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
SUBROUTINE pbexsr(RHO,GRHO,sx,V1X,V2X,OMEGA)
|
|
!-----------------------------------------------------------------------
|
|
!
|
|
! INCLUDE 'cnst.inc'
|
|
use kinds, ONLY : DP
|
|
|
|
IMPLICIT REAL*8 (A-H,O-Z)
|
|
|
|
PARAMETER(SMALL=1.D-20,SMAL2=1.D-08)
|
|
PARAMETER(US=0.161620459673995492D0,AX=-0.738558766382022406D0, &
|
|
UM=0.2195149727645171D0,UK=0.8040D0,UL=UM/UK)
|
|
REAL(DP), PARAMETER :: f1 = -1.10783814957303361_DP, alpha = 2.0_DP/3.0_DP
|
|
! ==--------------------------------------------------------------==
|
|
|
|
! CALL XC(RHO,EX,EC,VX,VC)
|
|
RS = RHO**(1.0_DP/3.0_DP)
|
|
VX = (4.0_DP/3.0_DP)*f1*alpha*RS
|
|
|
|
! AA = DMAX1(GRHO,SMAL2)
|
|
AA = GRHO
|
|
! RR = RHO**(-4.0_DP/3.0_DP)
|
|
RR = 1.0_DP/(RHO*RS)
|
|
EX = AX/RR
|
|
S2 = AA*RR*RR*US*US
|
|
|
|
S = SQRT(S2)
|
|
IF(S.GT.8.3D0) THEN
|
|
S = 8.572844D0 - 18.796223D0/S2
|
|
ENDIF
|
|
CALL wpbe_analy_erfc_approx_grad(RHO,S,OMEGA,FX,D1X,D2X)
|
|
sx = EX*FX ! - EX
|
|
DSDN = -4.D0/3.D0*S/RHO
|
|
V1X = VX*FX + (DSDN*D2X+D1X)*EX ! - VX
|
|
DSDG = US*RR
|
|
V2X = EX*1.D0/SQRT(AA)*DSDG*D2X
|
|
|
|
! NOTE, here sx is the total energy density,
|
|
! not just the gradient correction energy density as e.g. in pbex()
|
|
! And the same goes for the potentials V1X, V2X
|
|
|
|
! ==--------------------------------------------------------------==
|
|
RETURN
|
|
END SUBROUTINE pbexsr
|
|
!
|
|
! gau-pbe in
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
SUBROUTINE pbexgau_lsd(RHOA,RHOB,GRHOAA,GRHOBB,sx, &
|
|
V1XA,V2XA,V1XB,V2XB,alpha_gau)
|
|
! ==--------------------------------------------------------------==
|
|
IMPLICIT REAL*8 (A-H,O-Z)
|
|
PARAMETER(SMALL=1.D-20)
|
|
! ==--------------------------------------------------------------==
|
|
SXA=0.0D0
|
|
SXB=0.0D0
|
|
V1XA=0.0D0
|
|
V2XA=0.0D0
|
|
V1XB=0.0D0
|
|
V2XB=0.0D0
|
|
IF(RHOA.GT.SMALL.AND.GRHOAA.GT.SMALL) THEN
|
|
CALL pbexgau(2.D0*RHOA, 4.D0*GRHOAA, SXA, V1XA, V2XA, &
|
|
alpha_gau)
|
|
ENDIF
|
|
IF(RHOB.GT.SMALL.AND.GRHOBB.GT.SMALL) THEN
|
|
CALL pbexgau(2.D0*RHOB, 4.D0*GRHOBB, SXB, V1XB, V2XB, &
|
|
alpha_gau)
|
|
ENDIF
|
|
sx = 0.5D0*(SXA+SXB)
|
|
V2XA = 2.D0*V2XA
|
|
V2XB = 2.D0*V2XB ! I HOPE THIS WORKS JUST LIKE THIS
|
|
|
|
! ==--------------------------------------------------------------==
|
|
RETURN
|
|
END SUBROUTINE pbexgau_lsd
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
SUBROUTINE pbexgau(RHO,GRHO,sxsr,v1xsr,v2xsr,alpha_gau)
|
|
!-----------------------------------------------------------------------
|
|
!
|
|
use kinds, ONLY : DP
|
|
|
|
IMPLICIT REAL*8 (A-H,O-Z)
|
|
|
|
PARAMETER(SMALL=1.D-20,SMAL2=1.D-08)
|
|
PARAMETER(US=0.161620459673995492D0,AX=-0.738558766382022406D0, &
|
|
UM=0.2195149727645171D0,UK=0.8040D0,UL=UM/UK)
|
|
REAL(DP), PARAMETER :: f1 = -1.10783814957303361_DP, alpha = 2.0_DP/3.0_DP
|
|
! ==--------------------------------------------------------------==
|
|
|
|
RS = RHO**(1.0_DP/3.0_DP)
|
|
VX = (4.0_DP/3.0_DP)*f1*alpha*RS
|
|
AA = GRHO
|
|
RR = 1.0_DP/(RHO*RS)
|
|
EX = AX/RR
|
|
! AX is 3/4/PI*(3*PI*PI)**(1/3). This is the same as -c1*c2 in pbex().
|
|
S2 = AA*RR*RR*US*US
|
|
S = SQRT(S2)
|
|
IF(S.GT.10.D0) THEN
|
|
S = 10.D0
|
|
ENDIF
|
|
CALL pbe_gauscheme(RHO,S,alpha_gau,FX,D1X,D2X)
|
|
sxsr = EX*FX ! - EX
|
|
DSDN = -4.D0/3.D0*S/RHO
|
|
V1Xsr = VX*FX + (DSDN*D2X+D1X)*EX ! - VX
|
|
DSDG = US*RR
|
|
V2Xsr = EX*1.D0/SQRT(AA)*DSDG*D2X
|
|
|
|
! NOTE, here sx is the total energy density,
|
|
! not just the gradient correction energy density as e.g. in pbex()
|
|
! And the same goes for the potentials V1X, V2X
|
|
|
|
! ==--------------------------------------------------------------==
|
|
RETURN
|
|
END SUBROUTINE pbexgau
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
SUBROUTINE pbe_gauscheme(rho,s,alpha_gau,Fx,dFxdr,dFxds)
|
|
!--------------------------------------------------------------------
|
|
|
|
Implicit None
|
|
Real*8 rho,s,alpha_gau,Fx,dFxdr,dFxds
|
|
! input: charge and squared gradient and alpha_gau
|
|
! output: GGA enhancement factor of gau-PBE
|
|
! output: d(Fx)/d(s) , d(Fx)/d(rho)
|
|
|
|
Real*8 Kx, Nx
|
|
! PBE96 GGA enhancement factor
|
|
! GGA enhancement factor of Gaussian Function
|
|
|
|
Real*8 bx, cx, PI, sqrtpial, Prefac, term_PBE, Third, KsF
|
|
Real*8 d1sdr, d1Kxds, d1Kxdr, d1bxdr, d1bxds, d1bxdKx, &
|
|
d1Nxdbx,d1Nxdr, d1Nxds
|
|
|
|
Real*8, external :: qe_erf,TayExp
|
|
|
|
Real*8 Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten
|
|
|
|
Save Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten
|
|
Data Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten &
|
|
/ 0D0,1D0,2D0,3D0,4D0,5D0,6D0,7D0,8D0,9D0,10D0 /
|
|
|
|
Real*8 k , mu
|
|
Data k / 0.804d0 / , mu / 0.21951d0 /
|
|
! parameters of PBE functional
|
|
|
|
Third = One/Three
|
|
PI = ACos(-One)
|
|
KsF = (Three*PI*PI*rho)**Third
|
|
sqrtpial = sqrt(PI/alpha_gau)
|
|
Prefac = Two *sqrt(PI/alpha_gau) / Three
|
|
|
|
! PBE96 GGA enhancement factor part
|
|
term_PBE = One / (One + s*s*mu/k)
|
|
Kx = One + k - k * term_PBE
|
|
|
|
! GGA enhancement factor of Gaussian Function part
|
|
bx = sqrt(Kx*alpha_gau) / KsF
|
|
|
|
! cx = exp(-One/Four/bx/bx) - One
|
|
If(Abs(One/bx/bx) .lt. 1.0D-4) then
|
|
cx = TayExp(-One/bx/bx)
|
|
else
|
|
cx = exp(-One/bx/bx) - One
|
|
endIf
|
|
|
|
Nx = bx * Prefac * ( sqrt(PI) * qe_erf(One/bx) + &
|
|
(bx - Two*bx*bx*bx)*cx - Two*bx )
|
|
|
|
! for convergency
|
|
If(Abs(Nx) .lt. 1.0D-15)then
|
|
Nx = Zero
|
|
else if ((One - Abs(Nx)) .lt. 1.0D-15)then
|
|
Nx = One
|
|
else
|
|
Nx = Nx
|
|
endIf
|
|
! for convergency end
|
|
|
|
Fx = Kx * Nx
|
|
|
|
! 1st derivatives
|
|
d1sdr = - Four / Three * s / rho
|
|
|
|
d1Kxds = Two * s * mu * term_PBE * term_PBE
|
|
d1Kxdr = d1Kxds * d1sdr
|
|
d1bxdKx = bx / (Two* Kx)
|
|
|
|
d1bxdr = - bx /(Three*rho) + d1Kxdr * d1bxdKx
|
|
|
|
d1bxds = d1bxdKx * d1Kxds
|
|
|
|
d1Nxdbx = Nx/bx - Prefac * bx * Three * &
|
|
( cx*(One + Two*bx*bx) + Two )
|
|
|
|
d1Nxdr = d1Nxdbx * d1bxdr
|
|
d1Nxds = d1Nxdbx * d1bxds
|
|
|
|
dFxdr = d1Kxdr * Nx + Kx * d1Nxdr
|
|
dFxds = d1Kxds * Nx + Kx * d1Nxds
|
|
|
|
RETURN
|
|
END SUBROUTINE pbe_gauscheme
|
|
!
|
|
FUNCTION TayExp(X)
|
|
Real*8 TAYEXP,X
|
|
INTEGER NTERM,I
|
|
Real*8 SUMVAL,IVAL,COEF
|
|
PARAMETER (NTERM=16)
|
|
|
|
SUMVAL = X
|
|
IVAL = X
|
|
COEF = 1.0D0
|
|
DO 10 I = 2,NTERM
|
|
COEF = COEF * I
|
|
IVAL = IVAL * (X / COEF)
|
|
SUMVAL = SUMVAL + IVAL
|
|
10 CONTINUE
|
|
TAYEXP = SUMVAL
|
|
RETURN
|
|
END FUNCTION TayExp
|
|
! gau-pbe out
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
SUBROUTINE wpbe_analy_erfc_approx_grad(rho,s,omega,Fx_wpbe, &
|
|
d1rfx,d1sfx)
|
|
!--------------------------------------------------------------------
|
|
!
|
|
! wPBE Enhancement Factor (erfc approx.,analytical, gradients)
|
|
!
|
|
!--------------------------------------------------------------------
|
|
|
|
Implicit None
|
|
|
|
Real*8 rho,s,omega,Fx_wpbe,d1sfx,d1rfx
|
|
|
|
Real*8 f12,f13,f14,f18,f23,f43,f32,f72,f34,f94,f1516,f98
|
|
Real*8 pi,pi2,pi_23,srpi
|
|
Real*8 Three_13
|
|
|
|
Real*8 ea1,ea2,ea3,ea4,ea5,ea6,ea7,ea8
|
|
Real*8 eb1
|
|
Real*8 A,B,C,D,E
|
|
Real*8 Ha1,Ha2,Ha3,Ha4,Ha5
|
|
Real*8 Fc1,Fc2
|
|
Real*8 EGa1,EGa2,EGa3
|
|
Real*8 EGscut,wcutoff,expfcutoff
|
|
|
|
Real*8 xkf, xkfrho
|
|
Real*8 w,w2,w3,w4,w5,w6,w7,w8
|
|
Real*8 d1rw
|
|
Real*8 A2,A3,A4,A12,A32,A52,A72
|
|
Real*8 X
|
|
Real*8 s2,s3,s4,s5,s6
|
|
|
|
Real*8 H,F
|
|
Real*8 Hnum,Hden,d1sHnum,d1sHden
|
|
Real*8 d1sH,d1sF
|
|
Real*8 G_a,G_b,EG
|
|
Real*8 d1sG_a,d1sG_b,d1sEG
|
|
|
|
Real*8 Hsbw,Hsbw2,Hsbw3,Hsbw4,Hsbw12,Hsbw32,Hsbw52,Hsbw72
|
|
Real*8 DHsbw,DHsbw2,DHsbw3,DHsbw4,DHsbw5
|
|
Real*8 DHsbw12,DHsbw32,DHsbw52,DHsbw72,DHsbw92
|
|
Real*8 d1sHsbw,d1rHsbw
|
|
Real*8 d1sDHsbw,d1rDHsbw
|
|
Real*8 HsbwA94,HsbwA9412
|
|
Real*8 HsbwA942,HsbwA943,HsbwA945
|
|
Real*8 piexperf,expei
|
|
Real*8 piexperfd1,expeid1
|
|
Real*8 d1spiexperf,d1sexpei
|
|
Real*8 d1rpiexperf,d1rexpei
|
|
Real*8 expei1,expei2,expei3,expei4
|
|
|
|
Real*8 DHs,DHs2,DHs3,DHs4,DHs72,DHs92,DHsw,DHsw2,DHsw52,DHsw72
|
|
Real*8 d1sDHs,d1rDHsw
|
|
|
|
Real*8 np1,np2
|
|
Real*8 d1rnp1,d1rnp2
|
|
Real*8 t1,t2t9,t10,t10d1
|
|
Real*8 f2,f3,f4,f5,f6,f7,f8,f9
|
|
Real*8 f2d1,f3d1,f4d1,f5d1,f6d1,f8d1,f9d1
|
|
Real*8 d1sf2,d1sf3,d1sf4,d1sf5,d1sf6,d1sf7,d1sf8,d1sf9
|
|
Real*8 d1rf2,d1rf3,d1rf4,d1rf5,d1rf6,d1rf7,d1rf8,d1rf9
|
|
Real*8 d1st1,d1rt1
|
|
Real*8 d1st2t9,d1rt2t9
|
|
Real*8 d1st10,d1rt10
|
|
Real*8 d1sterm1,d1rterm1,term1d1
|
|
Real*8 d1sterm2
|
|
Real*8 d1sterm3,d1rterm3
|
|
Real*8 d1sterm4,d1rterm4
|
|
Real*8 d1sterm5,d1rterm5
|
|
|
|
Real*8 term1,term2,term3,term4,term5
|
|
|
|
Real*8 ax,um,uk,ul
|
|
Real*8 gc1,gc2
|
|
|
|
Real*8, external :: qe_erf, qe_erfc
|
|
! Real*8 ei
|
|
Real*8, external :: expint
|
|
|
|
Real*8 Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten
|
|
Real*8 Fifteen,Sixteen
|
|
Real*8 r12,r64,r36,r81,r256,r384,r864,r1944,r4374
|
|
Real*8 r20,r25,r27,r48,r120,r128,r144,r288,r324,r512,r729
|
|
Real*8 r30,r32,r75,r243,r2187,r6561,r40,r105,r54,r135
|
|
Real*8 r1215,r15309
|
|
|
|
Save Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten
|
|
Data Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten &
|
|
/ 0D0,1D0,2D0,3D0,4D0,5D0,6D0,7D0,8D0,9D0,10D0 /
|
|
Save Fifteen,Sixteen
|
|
Data Fifteen,Sixteen / 1.5D1, 1.6D1 /
|
|
Save r36,r64,r81,r256,r384,r864,r1944,r4374
|
|
Data r36,r64,r81,r256,r384,r864,r1944,r4374 &
|
|
/ 3.6D1,6.4D1,8.1D1,2.56D2,3.84D2,8.64D2,1.944D3,4.374D3 /
|
|
Save r27,r48,r120,r128,r144,r288,r324,r512,r729
|
|
Data r27,r48,r120,r128,r144,r288,r324,r512,r729 &
|
|
/ 2.7D1,4.8D1,1.2D2,1.28D2,1.44D2,2.88D2,3.24D2,5.12D2,7.29D2 /
|
|
Save r20,r32,r243,r2187,r6561,r40
|
|
Data r20,r32,r243,r2187,r6561,r40 &
|
|
/ 2.0d1,3.2D1,2.43D2,2.187D3,6.561D3,4.0d1 /
|
|
Save r12,r25,r30,r54,r75,r105,r135,r1215,r15309
|
|
Data r12,r25,r30,r54,r75,r105,r135,r1215,r15309 &
|
|
/ 1.2D1,2.5d1,3.0d1,5.4D1,7.5d1,1.05D2,1.35D2,1.215D3,1.5309D4 /
|
|
|
|
! General constants
|
|
|
|
f12 = 0.5d0
|
|
f13 = One/Three
|
|
f14 = 0.25d0
|
|
f18 = 0.125d0
|
|
|
|
f23 = Two * f13
|
|
f43 = Two * f23
|
|
|
|
f32 = 1.5d0
|
|
f72 = 3.5d0
|
|
f34 = 0.75d0
|
|
f94 = 2.25d0
|
|
f98 = 1.125d0
|
|
f1516 = Fifteen / Sixteen
|
|
|
|
pi = ACos(-One)
|
|
pi2 = pi*pi
|
|
pi_23 = pi2**f13
|
|
srpi = sqrt(pi)
|
|
|
|
Three_13 = Three**f13
|
|
|
|
! Constants from fit
|
|
|
|
ea1 = -1.128223946706117d0
|
|
ea2 = 1.452736265762971d0
|
|
ea3 = -1.243162299390327d0
|
|
ea4 = 0.971824836115601d0
|
|
ea5 = -0.568861079687373d0
|
|
ea6 = 0.246880514820192d0
|
|
ea7 = -0.065032363850763d0
|
|
ea8 = 0.008401793031216d0
|
|
|
|
eb1 = 1.455915450052607d0
|
|
|
|
! Constants for PBE hole
|
|
|
|
A = 1.0161144d0
|
|
B = -3.7170836d-1
|
|
C = -7.7215461d-2
|
|
D = 5.7786348d-1
|
|
E = -5.1955731d-2
|
|
X = - Eight/Nine
|
|
|
|
! Constants for fit of H(s) (PBE)
|
|
|
|
Ha1 = 9.79681d-3
|
|
Ha2 = 4.10834d-2
|
|
Ha3 = 1.87440d-1
|
|
Ha4 = 1.20824d-3
|
|
Ha5 = 3.47188d-2
|
|
|
|
! Constants for F(H) (PBE)
|
|
|
|
Fc1 = 6.4753871d0
|
|
Fc2 = 4.7965830d-1
|
|
|
|
! Constants for polynomial expansion for EG for small s
|
|
|
|
EGa1 = -2.628417880d-2
|
|
EGa2 = -7.117647788d-2
|
|
EGa3 = 8.534541323d-2
|
|
|
|
! Constants for large x expansion of exp(x)*ei(-x)
|
|
|
|
expei1 = 4.03640D0
|
|
expei2 = 1.15198D0
|
|
expei3 = 5.03627D0
|
|
expei4 = 4.19160D0
|
|
|
|
! Cutoff criterion below which to use polynomial expansion
|
|
|
|
EGscut = 8.0d-2
|
|
wcutoff = 1.4D1
|
|
expfcutoff = 7.0D2
|
|
|
|
! Calculate prelim variables
|
|
|
|
xkf = (Three*pi2*rho) ** f13
|
|
xkfrho = xkf * rho
|
|
|
|
A2 = A*A
|
|
A3 = A2*A
|
|
A4 = A3*A
|
|
A12 = Sqrt(A)
|
|
A32 = A12*A
|
|
A52 = A32*A
|
|
A72 = A52*A
|
|
|
|
w = omega / xkf
|
|
w2 = w * w
|
|
w3 = w2 * w
|
|
w4 = w2 * w2
|
|
w5 = w3 * w2
|
|
w6 = w5 * w
|
|
w7 = w6 * w
|
|
w8 = w7 * w
|
|
|
|
d1rw = -(One/(Three*rho))*w
|
|
|
|
X = - Eight/Nine
|
|
|
|
s2 = s*s
|
|
s3 = s2*s
|
|
s4 = s2*s2
|
|
s5 = s4*s
|
|
s6 = s5*s
|
|
|
|
! Calculate wPBE enhancement factor
|
|
|
|
Hnum = Ha1*s2 + Ha2*s4
|
|
Hden = One + Ha3*s4 + Ha4*s5 + Ha5*s6
|
|
|
|
H = Hnum/Hden
|
|
|
|
d1sHnum = Two*Ha1*s + Four*Ha2*s3
|
|
d1sHden = Four*Ha3*s3 + Five*Ha4*s4 + Six*Ha5*s5
|
|
|
|
d1sH = (Hden*d1sHnum - Hnum*d1sHden) / (Hden*Hden)
|
|
|
|
F = Fc1*H + Fc2
|
|
d1sF = Fc1*d1sH
|
|
|
|
! Change exponent of Gaussian if we're using the simple approx.
|
|
|
|
if(w .gt. wcutoff) then
|
|
|
|
eb1 = 2.0d0
|
|
|
|
endif
|
|
|
|
! Calculate helper variables (should be moved later on...)
|
|
|
|
Hsbw = s2*H + eb1*w2
|
|
Hsbw2 = Hsbw*Hsbw
|
|
Hsbw3 = Hsbw2*Hsbw
|
|
Hsbw4 = Hsbw3*Hsbw
|
|
Hsbw12 = Sqrt(Hsbw)
|
|
Hsbw32 = Hsbw12*Hsbw
|
|
Hsbw52 = Hsbw32*Hsbw
|
|
Hsbw72 = Hsbw52*Hsbw
|
|
|
|
d1sHsbw = d1sH*s2 + Two*s*H
|
|
d1rHsbw = Two*eb1*d1rw*w
|
|
|
|
DHsbw = D + s2*H + eb1*w2
|
|
DHsbw2 = DHsbw*DHsbw
|
|
DHsbw3 = DHsbw2*DHsbw
|
|
DHsbw4 = DHsbw3*DHsbw
|
|
DHsbw5 = DHsbw4*DHsbw
|
|
DHsbw12 = Sqrt(DHsbw)
|
|
DHsbw32 = DHsbw12*DHsbw
|
|
DHsbw52 = DHsbw32*DHsbw
|
|
DHsbw72 = DHsbw52*DHsbw
|
|
DHsbw92 = DHsbw72*DHsbw
|
|
|
|
HsbwA94 = f94 * Hsbw / A
|
|
HsbwA942 = HsbwA94*HsbwA94
|
|
HsbwA943 = HsbwA942*HsbwA94
|
|
HsbwA945 = HsbwA943*HsbwA942
|
|
HsbwA9412 = Sqrt(HsbwA94)
|
|
|
|
DHs = D + s2*H
|
|
DHs2 = DHs*DHs
|
|
DHs3 = DHs2*DHs
|
|
DHs4 = DHs3*DHs
|
|
DHs72 = DHs3*sqrt(DHs)
|
|
DHs92 = DHs72*DHs
|
|
|
|
d1sDHs = Two*s*H + s2*d1sH
|
|
|
|
DHsw = DHs + w2
|
|
DHsw2 = DHsw*DHsw
|
|
DHsw52 = sqrt(DHsw)*DHsw2
|
|
DHsw72 = DHsw52*DHsw
|
|
|
|
d1rDHsw = Two*d1rw*w
|
|
|
|
if(s .gt. EGscut) then
|
|
|
|
G_a = srpi * (Fifteen*E + Six*C*(One+F*s2)*DHs + &
|
|
Four*B*(DHs2) + Eight*A*(DHs3)) &
|
|
* (One / (Sixteen * DHs72)) &
|
|
- f34*pi*sqrt(A) * exp(f94*H*s2/A) * &
|
|
(One - qe_erf(f32*s*sqrt(H/A)))
|
|
|
|
d1sG_a = (One/r32)*srpi * &
|
|
((r36*(Two*H + d1sH*s) / (A12*sqrt(H/A))) &
|
|
+ (One/DHs92) * &
|
|
(-Eight*A*d1sDHs*DHs3 - r105*d1sDHs*E &
|
|
-r30*C*d1sDHs*DHs*(One+s2*F) &
|
|
+r12*DHs2*(-B*d1sDHs + C*s*(d1sF*s + Two*F))) &
|
|
- ((r54*exp(f94*H*s2/A)*srpi*s*(Two*H+d1sH*s)* &
|
|
qe_erfc(f32*sqrt(H/A)*s)) &
|
|
/ A12))
|
|
|
|
G_b = (f1516 * srpi * s2) / DHs72
|
|
|
|
d1sG_b = (Fifteen*srpi*s*(Four*DHs - Seven*d1sDHs*s)) &
|
|
/ (r32*DHs92)
|
|
|
|
EG = - (f34*pi + G_a) / G_b
|
|
|
|
d1sEG = (-Four*d1sG_a*G_b + d1sG_b*(Four*G_a + Three*pi)) &
|
|
/ (Four*G_b*G_b)
|
|
|
|
else
|
|
|
|
EG = EGa1 + EGa2*s2 + EGa3*s4
|
|
d1sEG = Two*EGa2*s + Four*EGa3*s3
|
|
|
|
endif
|
|
|
|
! Calculate the terms needed in any case
|
|
|
|
|
|
term2 = (DHs2*B + DHs*C + Two*E + DHs*s2*C*F + Two*s2*EG) / &
|
|
(Two*DHs3)
|
|
|
|
d1sterm2 = (-Six*d1sDHs*(EG*s2 + E) &
|
|
+ DHs2 * (-d1sDHs*B + s*C*(d1sF*s + Two*F)) &
|
|
+ Two*DHs * (Two*EG*s - d1sDHs*C &
|
|
+ s2 * (d1sEG - d1sDHs*C*F))) &
|
|
/ (Two*DHs4)
|
|
|
|
term3 = - w * (Four*DHsw2*B + Six*DHsw*C + Fifteen*E &
|
|
+ Six*DHsw*s2*C*F + Fifteen*s2*EG) / &
|
|
(Eight*DHs*DHsw52)
|
|
|
|
d1sterm3 = w * (Two*d1sDHs*DHsw * (Four*DHsw2*B &
|
|
+ Six*DHsw*C + Fifteen*E &
|
|
+ Three*s2*(Five*EG + Two*DHsw*C*F)) &
|
|
+ DHs * (r75*d1sDHs*(EG*s2 + E) &
|
|
+ Four*DHsw2*(d1sDHs*B &
|
|
- Three*s*C*(d1sF*s + Two*F)) &
|
|
- Six*DHsw*(-Three*d1sDHs*C &
|
|
+ s*(Ten*EG + Five*d1sEG*s &
|
|
- Three*d1sDHs*s*C*F)))) &
|
|
/ (Sixteen*DHs2*DHsw72)
|
|
|
|
d1rterm3 = (-Two*d1rw*DHsw * (Four*DHsw2*B &
|
|
+ Six*DHsw*C + Fifteen*E &
|
|
+ Three*s2*(Five*EG + Two*DHsw*C*F)) &
|
|
+ w * d1rDHsw * (r75*(EG*s2 + E) &
|
|
+ Two*DHsw*(Two*DHsw*B + Nine*C &
|
|
+ Nine*s2*C*F))) &
|
|
/ (Sixteen*DHs*DHsw72)
|
|
|
|
term4 = - w3 * (DHsw*C + Five*E + DHsw*s2*C*F + Five*s2*EG) / &
|
|
(Two*DHs2*DHsw52)
|
|
|
|
d1sterm4 = (w3 * (Four*d1sDHs*DHsw * (DHsw*C + Five*E &
|
|
+ s2 * (Five*EG + DHsw*C*F)) &
|
|
+ DHs * (r25*d1sDHs*(EG*s2 + E) &
|
|
- Two*DHsw2*s*C*(d1sF*s + Two*F) &
|
|
+ DHsw * (Three*d1sDHs*C + s*(-r20*EG &
|
|
- Ten*d1sEG*s &
|
|
+ Three*d1sDHs*s*C*F))))) &
|
|
/ (Four*DHs3*DHsw72)
|
|
|
|
d1rterm4 = (w2 * (-Six*d1rw*DHsw * (DHsw*C + Five*E &
|
|
+ s2 * (Five*EG + DHsw*C*F)) &
|
|
+ w * d1rDHsw * (r25*(EG*s2 + E) + &
|
|
Three*DHsw*C*(One + s2*F)))) &
|
|
/ (Four*DHs2*DHsw72)
|
|
|
|
term5 = - w5 * (E + s2*EG) / &
|
|
(DHs3*DHsw52)
|
|
|
|
d1sterm5 = (w5 * (Six*d1sDHs*DHsw*(EG*s2 + E) &
|
|
+ DHs * (-Two*DHsw*s * (Two*EG + d1sEG*s) &
|
|
+ Five*d1sDHs * (EG*s2 + E)))) &
|
|
/ (Two*DHs4*DHsw72)
|
|
|
|
d1rterm5 = (w4 * Five*(EG*s2 + E) * (-Two*d1rw*DHsw &
|
|
+ d1rDHsw * w)) &
|
|
/ (Two*DHs3*DHsw72)
|
|
|
|
|
|
if((s.gt.0.0d0).or.(w.gt.0.0d0)) then
|
|
|
|
t10 = (f12)*A*Log(Hsbw / DHsbw)
|
|
t10d1 = f12*A*(One/Hsbw - One/DHsbw)
|
|
d1st10 = d1sHsbw*t10d1
|
|
d1rt10 = d1rHsbw*t10d1
|
|
|
|
endif
|
|
|
|
! Calculate exp(x)*f(x) depending on size of x
|
|
|
|
if(HsbwA94 .lt. expfcutoff) then
|
|
|
|
piexperf = pi*Exp(HsbwA94)*qe_erfc(HsbwA9412)
|
|
! expei = Exp(HsbwA94)*Ei(-HsbwA94)
|
|
expei = Exp(HsbwA94)*(-expint(1,HsbwA94))
|
|
|
|
else
|
|
|
|
! print *,rho,s," LARGE HsbwA94"
|
|
|
|
piexperf = pi*(One/(srpi*HsbwA9412) &
|
|
- One/(Two*Sqrt(pi*HsbwA943)) &
|
|
+ Three/(Four*Sqrt(pi*HsbwA945)))
|
|
|
|
expei = - (One/HsbwA94) * &
|
|
(HsbwA942 + expei1*HsbwA94 + expei2) / &
|
|
(HsbwA942 + expei3*HsbwA94 + expei4)
|
|
|
|
endif
|
|
|
|
! Calculate the derivatives (based on the orig. expression)
|
|
! --> Is this ok? ==> seems to be ok...
|
|
|
|
piexperfd1 = - (Three*srpi*sqrt(Hsbw/A))/(Two*Hsbw) &
|
|
+ (Nine*piexperf)/(Four*A)
|
|
d1spiexperf = d1sHsbw*piexperfd1
|
|
d1rpiexperf = d1rHsbw*piexperfd1
|
|
|
|
expeid1 = f14*(Four/Hsbw + (Nine*expei)/A)
|
|
d1sexpei = d1sHsbw*expeid1
|
|
d1rexpei = d1rHsbw*expeid1
|
|
|
|
if (w .eq. Zero) then
|
|
|
|
! Fall back to original expression for the PBE hole
|
|
|
|
t1 = -f12*A*expei
|
|
d1st1 = -f12*A*d1sexpei
|
|
d1rt1 = -f12*A*d1rexpei
|
|
|
|
! write(*,*) s, t1, t10, d1st1,d1rt1,d1rt10
|
|
|
|
if(s .gt. 0.0D0) then
|
|
|
|
term1 = t1 + t10
|
|
d1sterm1 = d1st1 + d1st10
|
|
d1rterm1 = d1rt1 + d1rt10
|
|
|
|
Fx_wpbe = X * (term1 + term2)
|
|
|
|
d1sfx = X * (d1sterm1 + d1sterm2)
|
|
d1rfx = X * d1rterm1
|
|
|
|
else
|
|
|
|
Fx_wpbe = 1.0d0
|
|
|
|
! TODO This is checked to be true for term1
|
|
! How about the other terms???
|
|
|
|
d1sfx = 0.0d0
|
|
d1rfx = 0.0d0
|
|
|
|
endif
|
|
|
|
|
|
elseif(w .gt. wcutoff) then
|
|
|
|
! Use simple Gaussian approximation for large w
|
|
|
|
! print *,rho,s," LARGE w"
|
|
|
|
term1 = -f12*A*(expei+log(DHsbw)-log(Hsbw))
|
|
|
|
term1d1 = - A/(Two*DHsbw) - f98*expei
|
|
d1sterm1 = d1sHsbw*term1d1
|
|
d1rterm1 = d1rHsbw*term1d1
|
|
|
|
Fx_wpbe = X * (term1 + term2 + term3 + term4 + term5)
|
|
|
|
d1sfx = X * (d1sterm1 + d1sterm2 + d1sterm3 &
|
|
+ d1sterm4 + d1sterm5)
|
|
|
|
d1rfx = X * (d1rterm1 + d1rterm3 + d1rterm4 + d1rterm5)
|
|
|
|
else
|
|
|
|
! For everything else, use the full blown expression
|
|
|
|
! First, we calculate the polynomials for the first term
|
|
|
|
np1 = -f32*ea1*A12*w + r27*ea3*w3/(Eight*A12) &
|
|
- r243*ea5*w5/(r32*A32) + r2187*ea7*w7/(r128*A52)
|
|
|
|
d1rnp1 = - f32*ea1*d1rw*A12 + (r81*ea3*d1rw*w2)/(Eight*A12) &
|
|
- (r1215*ea5*d1rw*w4)/(r32*A32) &
|
|
+ (r15309*ea7*d1rw*w6)/(r128*A52)
|
|
|
|
np2 = -A + f94*ea2*w2 - r81*ea4*w4/(Sixteen*A) &
|
|
+ r729*ea6*w6/(r64*A2) - r6561*ea8*w8/(r256*A3)
|
|
|
|
|
|
d1rnp2 = f12*(Nine*ea2*d1rw*w) &
|
|
- (r81*ea4*d1rw*w3)/(Four*A) &
|
|
+ (r2187*ea6*d1rw*w5)/(r32*A2) &
|
|
- (r6561*ea8*d1rw*w7)/(r32*A3)
|
|
|
|
! The first term is
|
|
|
|
t1 = f12*(np1*piexperf + np2*expei)
|
|
d1st1 = f12*(d1spiexperf*np1 + d1sexpei*np2)
|
|
d1rt1 = f12*(d1rnp2*expei + d1rpiexperf*np1 + &
|
|
d1rexpei*np2 + d1rnp1*piexperf)
|
|
|
|
! The factors for the main polynomoal in w and their derivatives
|
|
|
|
f2 = (f12)*ea1*srpi*A / DHsbw12
|
|
f2d1 = - ea1*srpi*A / (Four*DHsbw32)
|
|
d1sf2 = d1sHsbw*f2d1
|
|
d1rf2 = d1rHsbw*f2d1
|
|
|
|
f3 = (f12)*ea2*A / DHsbw
|
|
f3d1 = - ea2*A / (Two*DHsbw2)
|
|
d1sf3 = d1sHsbw*f3d1
|
|
d1rf3 = d1rHsbw*f3d1
|
|
|
|
f4 = ea3*srpi*(-f98 / Hsbw12 &
|
|
+ f14*A / DHsbw32)
|
|
f4d1 = ea3*srpi*((Nine/(Sixteen*Hsbw32))- &
|
|
(Three*A/(Eight*DHsbw52)))
|
|
d1sf4 = d1sHsbw*f4d1
|
|
d1rf4 = d1rHsbw*f4d1
|
|
|
|
f5 = ea4*(One/r128) * (-r144*(One/Hsbw) &
|
|
+ r64*(One/DHsbw2)*A)
|
|
f5d1 = ea4*((f98/Hsbw2)-(A/DHsbw3))
|
|
d1sf5 = d1sHsbw*f5d1
|
|
d1rf5 = d1rHsbw*f5d1
|
|
|
|
f6 = ea5*(Three*srpi*(Three*DHsbw52*(Nine*Hsbw-Two*A) &
|
|
+ Four*Hsbw32*A2)) &
|
|
/ (r32*DHsbw52*Hsbw32*A)
|
|
f6d1 = ea5*srpi*((r27/(r32*Hsbw52))- &
|
|
(r81/(r64*Hsbw32*A))- &
|
|
((Fifteen*A)/(Sixteen*DHsbw72)))
|
|
d1sf6 = d1sHsbw*f6d1
|
|
d1rf6 = d1rHsbw*f6d1
|
|
|
|
f7 = ea6*(((r32*A)/DHsbw3 &
|
|
+ (-r36 + (r81*s2*H)/A)/Hsbw2)) / r32
|
|
d1sf7 = ea6*(Three*(r27*d1sH*DHsbw4*Hsbw*s2 + &
|
|
Eight*d1sHsbw*A*(Three*DHsbw4 - Four*Hsbw3*A) + &
|
|
r54*DHsbw4*s*(Hsbw - d1sHsbw*s)*H))/ &
|
|
(r32*DHsbw4*Hsbw3*A)
|
|
d1rf7 = ea6*d1rHsbw*((f94/Hsbw3)-((Three*A)/DHsbw4) &
|
|
-((r81*s2*H)/(Sixteen*Hsbw3*A)))
|
|
|
|
f8 = ea7*(-Three*srpi*(-r40*Hsbw52*A3 &
|
|
+Nine*DHsbw72*(r27*Hsbw2-Six*Hsbw*A+Four*A2))) &
|
|
/ (r128 * DHsbw72*Hsbw52*A2)
|
|
f8d1 = ea7*srpi*((r135/(r64*Hsbw72)) + (r729/(r256*Hsbw32*A2)) &
|
|
-(r243/(r128*Hsbw52*A)) &
|
|
-((r105*A)/(r32*DHsbw92)))
|
|
d1sf8 = d1sHsbw*f8d1
|
|
d1rf8 = d1rHsbw*f8d1
|
|
|
|
f9 = (r324*ea6*eb1*DHsbw4*Hsbw*A &
|
|
+ ea8*(r384*Hsbw3*A3 + DHsbw4*(-r729*Hsbw2 &
|
|
+ r324*Hsbw*A - r288*A2))) / (r128*DHsbw4*Hsbw3*A2)
|
|
f9d1 = -((r81*ea6*eb1)/(Sixteen*Hsbw3*A)) &
|
|
+ ea8*((r27/(Four*Hsbw4))+(r729/(r128*Hsbw2*A2)) &
|
|
-(r81/(Sixteen*Hsbw3*A)) &
|
|
-((r12*A/DHsbw5)))
|
|
d1sf9 = d1sHsbw*f9d1
|
|
d1rf9 = d1rHsbw*f9d1
|
|
|
|
t2t9 = f2*w + f3*w2 + f4*w3 + f5*w4 + f6*w5 &
|
|
+ f7*w6 + f8*w7 + f9*w8
|
|
d1st2t9 = d1sf2*w + d1sf3*w2 + d1sf4*w3 + d1sf5*w4 &
|
|
+ d1sf6*w5 + d1sf7*w6 + d1sf8*w7 &
|
|
+ d1sf9*w8
|
|
d1rt2t9 = d1rw*f2 + d1rf2*w + Two*d1rw*f3*w &
|
|
+ d1rf3*w2 + Three*d1rw*f4*w2 &
|
|
+ d1rf4*w3 + Four*d1rw*f5*w3 &
|
|
+ d1rf5*w4 + Five*d1rw*f6*w4 &
|
|
+ d1rf6*w5 + Six*d1rw*f7*w5 &
|
|
+ d1rf7*w6 + Seven*d1rw*f8*w6 &
|
|
+ d1rf8*w7 + Eight*d1rw*f9*w7 + d1rf9*w8
|
|
|
|
! The final value of term1 for 0 < omega < wcutoff is:
|
|
|
|
term1 = t1 + t2t9 + t10
|
|
|
|
d1sterm1 = d1st1 + d1st2t9 + d1st10
|
|
d1rterm1 = d1rt1 + d1rt2t9 + d1rt10
|
|
|
|
! The final value for the enhancement factor and its
|
|
! derivatives is:
|
|
|
|
Fx_wpbe = X * (term1 + term2 + term3 + term4 + term5)
|
|
|
|
d1sfx = X * (d1sterm1 + d1sterm2 + d1sterm3 &
|
|
+ d1sterm4 + d1sterm5)
|
|
|
|
d1rfx = X * (d1rterm1 + d1rterm3 + d1rterm4 + d1rterm5)
|
|
|
|
endif
|
|
|
|
END SUBROUTINE wpbe_analy_erfc_approx_grad
|