mirror of https://gitlab.com/QEF/q-e.git
247 lines
8.4 KiB
Fortran
247 lines
8.4 KiB
Fortran
!
|
|
! Copyright (C) 2001-2016 Quantum ESPRESSO group
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!
|
|
!--------------------------------------------------------------------
|
|
subroutine dgradcorr (dfft, rho, grho, dvxc_rr, dvxc_sr, dvxc_ss, &
|
|
dvxc_s, xq, drho, nspin, nspin0, g, dvxc)
|
|
!--------------------------------------------------------------------
|
|
!
|
|
! Add gradient correction contribution to
|
|
! the responce exchange-correlation potential dvxc.
|
|
! LSDA is allowed. ADC (September 1999)
|
|
! Noncollinear is allowed. ADC (June 2007)
|
|
!
|
|
USE kinds, ONLY : DP
|
|
USE noncollin_module, ONLY : noncolin
|
|
USE spin_orb, ONLY : domag
|
|
USE gc_lr, ONLY : gmag, vsgga, segni
|
|
USE fft_types, ONLY : fft_type_descriptor
|
|
!
|
|
IMPLICIT NONE
|
|
!
|
|
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
|
|
INTEGER, INTENT(IN) :: nspin, nspin0
|
|
!
|
|
REAL(DP), INTENT(IN) ::rho (dfft%nnr, nspin), grho (3, dfft%nnr, nspin0), &
|
|
g (3, dfft%ngm), xq(3)
|
|
REAL(DP), INTENT(IN) :: &
|
|
dvxc_rr(dfft%nnr, nspin0, nspin0), dvxc_sr (dfft%nnr, nspin0, nspin0), &
|
|
dvxc_ss (dfft%nnr,nspin0, nspin0), dvxc_s (dfft%nnr, nspin0, nspin0)
|
|
COMPLEX(DP), INTENT(IN) :: drho (dfft%nnr, nspin)
|
|
COMPLEX(DP), INTENT(INOUT) :: dvxc (dfft%nnr, nspin)
|
|
|
|
real(DP), parameter :: epsr = 1.0d-6, epsg = 1.0d-10
|
|
real(DP) :: grho2, seg, seg0, amag, sgn(2)
|
|
complex(DP) :: s1, fact, term
|
|
complex(DP) :: a (2, 2, 2), b (2, 2, 2, 2), c (2, 2, 2), &
|
|
ps (2, 2), ps1 (3, 2, 2), ps2 (3, 2, 2, 2)
|
|
complex(DP), allocatable :: gdrho (:,:,:), h (:,:,:), dh (:)
|
|
complex(DP), allocatable :: gdmag (:,:,:), dvxcsave(:,:), vgg(:,:)
|
|
complex(DP), allocatable :: drhoout(:,:)
|
|
real(DP), allocatable :: rhoout(:,:)
|
|
integer :: k, ipol, jpol, is, js, ks, ls
|
|
|
|
if (noncolin.and.domag) then
|
|
allocate (gdmag(3, dfft%nnr, nspin))
|
|
allocate (dvxcsave(dfft%nnr, nspin))
|
|
allocate (vgg(dfft%nnr, nspin0))
|
|
dvxcsave=dvxc
|
|
dvxc=(0.0_dp,0.0_dp)
|
|
endif
|
|
allocate (rhoout( dfft%nnr, nspin0))
|
|
allocate (drhoout( dfft%nnr, nspin0))
|
|
allocate (gdrho( 3, dfft%nnr, nspin0))
|
|
allocate (h( 3, dfft%nnr, nspin0))
|
|
allocate (dh( dfft%nnr))
|
|
|
|
sgn(1)=1.d0 ; sgn(2)=-1.d0
|
|
|
|
h (:, :, :) = (0.d0, 0.d0)
|
|
if (noncolin.and.domag) then
|
|
do is = 1, nspin
|
|
call fft_qgradient (dfft, drho(1,is), xq, g, gdmag (1, 1, is) )
|
|
enddo
|
|
DO is=1,nspin0
|
|
IF (is==1) seg0=0.5_dp
|
|
IF (is==2) seg0=-0.5_dp
|
|
rhoout(:,is) = 0.5_dp*rho(:,1)
|
|
drhoout(:,is) = 0.5_dp*drho(:,1)
|
|
DO ipol=1,3
|
|
gdrho(ipol,:,is) = 0.5_dp*gdmag(ipol,:,1)
|
|
ENDDO
|
|
DO k=1,dfft%nnr
|
|
seg=seg0*segni(k)
|
|
amag=sqrt(rho(k,2)**2+rho(k,3)**2+rho(k,4)**2)
|
|
IF (amag>1.d-12) THEN
|
|
rhoout(k,is) = rhoout(k,is)+seg*amag
|
|
DO jpol=2,4
|
|
drhoout(k,is) = drhoout(k,is)+seg*rho(k,jpol)* &
|
|
drho(k,jpol)/amag
|
|
END DO
|
|
DO ipol=1,3
|
|
fact=(0.0_dp,0.0_dp)
|
|
DO jpol=2,4
|
|
fact=fact+rho(k,jpol)*drho(k,jpol)
|
|
END DO
|
|
DO jpol=2,4
|
|
gdrho(ipol,k,is) = gdrho(ipol,k,is)+ seg*( &
|
|
drho(k,jpol)*gmag(ipol,k,jpol)+ &
|
|
rho(k,jpol)*gdmag(ipol,k,jpol))/amag &
|
|
-seg*(rho(k,jpol)*gmag(ipol,k,jpol)*fact)/amag**3
|
|
END DO
|
|
END DO
|
|
END IF
|
|
END DO
|
|
END DO
|
|
ELSE
|
|
DO is = 1, nspin0
|
|
CALL fft_qgradient (dfft, drho(1,is), xq, g, gdrho (1, 1, is) )
|
|
!
|
|
! rhoout, if LSDA, is in (up,down) format
|
|
!
|
|
rhoout(:,is)=( rho(:,1) + sgn(is)*rho(:,nspin0) )*0.5_dp
|
|
drhoout(:,is)=drho(:,is)
|
|
ENDDO
|
|
ENDIF
|
|
|
|
do k = 1, dfft%nnr
|
|
grho2 = grho(1, k, 1)**2 + grho(2, k, 1)**2 + grho(3, k, 1)**2
|
|
if (nspin == 1) then
|
|
!
|
|
! LDA case
|
|
!
|
|
if (abs (rho (k, 1) ) > epsr .and. grho2 > epsg) then
|
|
s1 = grho (1, k, 1) * gdrho (1, k, 1) + &
|
|
grho (2, k, 1) * gdrho (2, k, 1) + &
|
|
grho (3, k, 1) * gdrho (3, k, 1)
|
|
!
|
|
! linear variation of the first term
|
|
!
|
|
dvxc (k, 1) = dvxc (k, 1) + dvxc_rr (k, 1, 1) * drho (k, 1) &
|
|
+ dvxc_sr (k, 1, 1) * s1
|
|
do ipol = 1, 3
|
|
h (ipol, k, 1) = (dvxc_sr(k, 1, 1) * drho(k, 1) + &
|
|
dvxc_ss(k, 1, 1) * s1 )*grho(ipol, k, 1) + &
|
|
dvxc_s (k, 1, 1) * gdrho (ipol, k, 1)
|
|
enddo
|
|
else
|
|
do ipol = 1, 3
|
|
h (ipol, k, 1) = (0.d0, 0.d0)
|
|
enddo
|
|
endif
|
|
else
|
|
!
|
|
! LSDA case
|
|
!
|
|
ps (:,:) = (0.d0, 0.d0)
|
|
do is = 1, nspin0
|
|
do js = 1, nspin0
|
|
do ipol = 1, 3
|
|
ps1(ipol, is, js) = drhoout (k, is) * grho (ipol, k, js)
|
|
ps(is, js) = ps(is, js) + grho(ipol,k,is)*gdrho(ipol,k,js)
|
|
enddo
|
|
do ks = 1, nspin0
|
|
if (is == js .and. js == ks) then
|
|
a (is, js, ks) = dvxc_sr (k, is, is)
|
|
c (is, js, ks) = dvxc_sr (k, is, is)
|
|
else
|
|
if (is == 1) then
|
|
a (is, js, ks) = dvxc_sr (k, 1, 2)
|
|
else
|
|
a (is, js, ks) = dvxc_sr (k, 2, 1)
|
|
endif
|
|
if (js == 1) then
|
|
c (is, js, ks) = dvxc_sr (k, 1, 2)
|
|
else
|
|
c (is, js, ks) = dvxc_sr (k, 2, 1)
|
|
endif
|
|
endif
|
|
do ipol = 1, 3
|
|
ps2 (ipol, is, js, ks) = ps (is, js) * grho (ipol, k, ks)
|
|
enddo
|
|
do ls = 1, nspin0
|
|
if (is == js .and. js == ks .and. ks == ls) then
|
|
b (is, js, ks, ls) = dvxc_ss (k, is, is)
|
|
else
|
|
if (is == 1) then
|
|
b (is, js, ks, ls) = dvxc_ss (k, 1, 2)
|
|
else
|
|
b (is, js, ks, ls) = dvxc_ss (k, 2, 1)
|
|
endif
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
do is = 1, nspin0
|
|
do js = 1, nspin0
|
|
dvxc (k, is) = dvxc (k, is) + dvxc_rr (k,is,js)*drhoout(k, js)
|
|
do ipol = 1, 3
|
|
h (ipol, k, is) = h (ipol, k, is) + &
|
|
dvxc_s (k, is, js) * gdrho(ipol, k, js)
|
|
enddo
|
|
do ks = 1, nspin0
|
|
dvxc (k, is) = dvxc (k, is) + a (is, js, ks) * ps (js, ks)
|
|
do ipol = 1, 3
|
|
h (ipol, k, is) = h (ipol, k, is) + &
|
|
c (is, js, ks) * ps1 (ipol, js, ks)
|
|
enddo
|
|
do ls = 1, nspin0
|
|
do ipol = 1, 3
|
|
h (ipol, k, is) = h (ipol, k, is) + &
|
|
b (is, js, ks, ls) * ps2 (ipol, js, ks, ls)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
endif
|
|
enddo
|
|
! linear variation of the second term
|
|
do is = 1, nspin0
|
|
call fft_qgraddot (dfft, h (1, 1, is), xq, g, dh)
|
|
do k = 1, dfft%nnr
|
|
dvxc (k, is) = dvxc (k, is) - dh (k)
|
|
enddo
|
|
enddo
|
|
IF (noncolin.AND.domag) THEN
|
|
DO is=1,nspin0
|
|
vgg(:,is)=dvxc(:,is)
|
|
ENDDO
|
|
dvxc=dvxcsave
|
|
DO k=1,dfft%nnr
|
|
dvxc(k,1)=dvxc(k,1)+0.5d0*(vgg(k,1)+vgg(k,2))
|
|
amag=sqrt(rho(k,2)**2+rho(k,3)**2+rho(k,4)**2)
|
|
IF (amag.GT.1.d-12) THEN
|
|
DO is=2,4
|
|
term=(0.0_dp,0.0_dp)
|
|
DO jpol=2,4
|
|
term=term+rho(k,jpol)*drho(k,jpol)
|
|
ENDDO
|
|
term=term*rho(k,is)/amag**2
|
|
dvxc(k,is)=dvxc(k,is)+0.5d0*segni(k)*((vgg(k,1)-vgg(k,2)) &
|
|
*rho(k,is)+vsgga(k)*(drho(k,is)-term))/amag
|
|
ENDDO
|
|
ENDIF
|
|
ENDDO
|
|
ENDIF
|
|
|
|
deallocate (dh)
|
|
deallocate (h)
|
|
deallocate (gdrho)
|
|
deallocate (rhoout)
|
|
deallocate (drhoout)
|
|
if (noncolin.and.domag) then
|
|
deallocate (gdmag)
|
|
deallocate (dvxcsave)
|
|
deallocate (vgg)
|
|
endif
|
|
|
|
return
|
|
|
|
end subroutine dgradcorr
|