quantum-espresso/KS_Solvers/CG/rotate_wfc_k.f90

431 lines
13 KiB
Fortran

!
! Copyright (C) 2001-2007 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!----------------------------------------------------------------------------
SUBROUTINE rotate_wfc_k( h_psi, s_psi, overlap, &
npwx, npw, nstart, nbnd, npol, psi, evc, e )
!----------------------------------------------------------------------------
!
! ... Serial version of rotate_wfc for colinear, k-point calculations
!
USE cg_param, ONLY : DP
USE mp_bands_util, ONLY : intra_bgrp_comm, inter_bgrp_comm, root_bgrp_id,&
nbgrp, my_bgrp_id
USE mp, ONLY : mp_sum
!
IMPLICIT NONE
!
! ... I/O variables
!
INTEGER, INTENT(IN) :: npw, npwx, nstart, nbnd, npol
! dimension of the matrix to be diagonalized
! leading dimension of matrix psi, as declared in the calling pgm unit
! input number of states
! output number of states
! number of spin polarizations
LOGICAL :: overlap
! if .FALSE. : S|psi> not needed
COMPLEX(DP) :: psi(npwx*npol,nstart), evc(npwx*npol,nbnd)
! input and output eigenvectors (may overlap)
REAL(DP) :: e(nbnd)
! eigenvalues
!
! ... local variables
!
INTEGER :: kdim, kdmx
COMPLEX(DP), ALLOCATABLE :: aux(:,:)
COMPLEX(DP), ALLOCATABLE :: hc(:,:), sc(:,:), vc(:,:)
REAL(DP), ALLOCATABLE :: en(:)
INTEGER :: n_start, n_end, my_n
!
EXTERNAL h_psi, s_psi
! h_psi(npwx,npw,nvec,psi,hpsi)
! calculates H|psi>
! s_psi(npwx,npw,nvec,spsi)
! calculates S|psi> (if needed)
! Vectors psi,hpsi,spsi are dimensioned (npwx,npol,nvec)
IF ( npol == 1 ) THEN
!
kdim = npw
kdmx = npwx
!
ELSE
!
kdim = npwx*npol
kdmx = npwx*npol
!
END IF
!
ALLOCATE( aux(kdmx, nstart ) )
ALLOCATE( hc( nstart, nstart) )
ALLOCATE( sc( nstart, nstart) )
ALLOCATE( vc( nstart, nstart) )
ALLOCATE( en( nstart ) )
call start_clock('rotwfck'); !write(*,*) 'start rotwfck';FLUSH(6)
!
! ... Set up the Hamiltonian and Overlap matrix on the subspace :
!
! ... H_ij = <psi_i| H |psi_j> S_ij = <psi_i| S |psi_j>
!
call start_clock('rotwfck:hpsi'); !write(*,*) 'start rotwfck:hpsi';FLUSH(6)
CALL h_psi( npwx, npw, nstart, psi, aux )
call stop_clock('rotwfck:hpsi') ; !write(*,*) 'stop rotwfck:hpsi';FLUSH(6)
!
call start_clock('rotwfck:hc'); !write(*,*) 'start rotwfck:hc';FLUSH(6)
hc=(0.D0,0.D0)
CALL divide(inter_bgrp_comm,nstart,n_start,n_end)
my_n = n_end - n_start + 1; !write (*,*) nstart,n_start,n_end
if (n_start .le. n_end) &
call ZGEMM( 'C','N', nstart, my_n, kdim, (1.D0,0.D0), psi, kdmx, aux(1,n_start), kdmx, (0.D0,0.D0), hc(1,n_start), nstart )
CALL mp_sum( hc, inter_bgrp_comm )
!
CALL mp_sum( hc, intra_bgrp_comm )
!
sc=(0.D0,0.D0)
IF ( overlap ) THEN
!
CALL s_psi( npwx, npw, nstart, psi, aux )
if (n_start .le. n_end) &
CALL ZGEMM( 'C','N', nstart, my_n, kdim, (1.D0,0.D0), psi, kdmx, aux(1,n_start), kdmx, (0.D0,0.D0), sc(1,n_start), nstart )
!
ELSE
!
if (n_start .le. n_end) &
CALL ZGEMM( 'C','N', nstart, my_n, kdim, (1.D0,0.D0), psi, kdmx, psi(1,n_start), kdmx, (0.D0,0.D0), sc(1,n_start), nstart )
!
END IF
CALL mp_sum( sc, inter_bgrp_comm )
!
CALL mp_sum( sc, intra_bgrp_comm )
call stop_clock('rotwfck:hc'); !write(*,*) 'stop rotwfck:hc';FLUSH(6)
!
! ... Diagonalize
!
call start_clock('rotwfck:diag'); !write(*,*) 'start rotwfck:diag';FLUSH(6)
CALL cdiaghg( nstart, nbnd, hc, sc, nstart, en, vc )
call stop_clock('rotwfck:diag'); !write(*,*) 'stop rotwfck:diag';FLUSH(6)
call start_clock('rotwfck:evc'); !write(*,*) 'start rotwfck:evc';FLUSH(6)
!
e(:) = en(1:nbnd)
!
! ... update the basis set
!
aux=(0.D0,0.D0)
if (n_start .le. n_end) &
CALL ZGEMM( 'N','N', kdim, nbnd, my_n, (1.D0,0.D0), psi(1,n_start), kdmx, vc(n_start,1), nstart, (0.D0,0.D0), aux, kdmx )
CALL mp_sum( aux, inter_bgrp_comm )
!
evc(:,:) = aux(:,1:nbnd)
call stop_clock('rotwfck:evc') ; !write(*,*) 'start rotwfck;evc';FLUSH(6)
!
DEALLOCATE( en )
DEALLOCATE( vc )
DEALLOCATE( sc )
DEALLOCATE( hc )
DEALLOCATE( aux )
call stop_clock('rotwfck'); !write(*,*) 'stop rotwfck';FLUSH(6)
!call print_clock('rotwfck')
!call print_clock('rotwfck:hpsi')
!call print_clock('rotwfck:hc')
!call print_clock('rotwfck:diag')
!call print_clock('rotwfck:evc')
!
RETURN
!
END SUBROUTINE rotate_wfc_k
!
!
!----------------------------------------------------------------------------
SUBROUTINE protate_wfc_k( h_psi, s_psi, overlap, &
npwx, npw, nstart, nbnd, npol, psi, evc, e )
!----------------------------------------------------------------------------
!
! ... Parallel version of rotate_wfc for colinear, k-point calculations
! ... Subroutine with distributed matrices, written by Carlo Cavazzoni
!
USE cg_param, ONLY : DP
USE mp_bands_util, ONLY : intra_bgrp_comm, inter_bgrp_comm, root_bgrp_id,&
nbgrp, my_bgrp_id
USE mp_diag, ONLY : ortho_comm, np_ortho, me_ortho, ortho_comm_id, leg_ortho, &
ortho_parent_comm, ortho_cntx, do_distr_diag_inside_bgrp
USE descriptors, ONLY : la_descriptor, descla_init
USE parallel_toolkit, ONLY : zsqmher
USE mp, ONLY : mp_bcast, mp_root_sum, mp_sum, mp_barrier
!
IMPLICIT NONE
!
! ... I/O variables
!
INTEGER :: npw, npwx, nstart, nbnd, npol
! dimension of the matrix to be diagonalized
! leading dimension of matrix psi, as declared in the calling pgm unit
! input number of states
! output number of states
! number of spin polarizations
LOGICAL :: overlap
! if .FALSE. : S|psi> not needed
COMPLEX(DP) :: psi(npwx*npol,nstart), evc(npwx*npol,nbnd)
! input and output eigenvectors (may overlap)
REAL(DP) :: e(nbnd)
! eigenvalues
!
! ... local variables
!
INTEGER :: kdim, kdmx
COMPLEX(DP), ALLOCATABLE :: aux(:,:)
COMPLEX(DP), ALLOCATABLE :: hc(:,:), sc(:,:), vc(:,:)
REAL(DP), ALLOCATABLE :: en(:)
!
TYPE(la_descriptor) :: desc
! matrix distribution descriptors
INTEGER :: nx
! maximum local block dimension
LOGICAL :: la_proc
! flag to distinguish procs involved in linear algebra
TYPE(la_descriptor), ALLOCATABLE :: desc_ip( :, : )
INTEGER, ALLOCATABLE :: rank_ip( :, : )
!
EXTERNAL h_psi, s_psi
! h_psi(npwx,npw,nvec,psi,hpsi)
! calculates H|psi>
! s_psi(npwx,npw,nvec,spsi)
! calculates S|psi> (if needed)
! Vectors psi,hpsi,spsi are dimensioned (npwx,npol,nvec)
call start_clock('protwfck')
!
ALLOCATE( desc_ip( np_ortho(1), np_ortho(2) ) )
ALLOCATE( rank_ip( np_ortho(1), np_ortho(2) ) )
!
CALL desc_init( nstart, desc, desc_ip )
!
IF ( npol == 1 ) THEN
!
kdim = npw
kdmx = npwx
!
ELSE
!
kdim = npwx*npol
kdmx = npwx*npol
!
END IF
!
ALLOCATE( aux(kdmx, nstart ) )
ALLOCATE( hc( nx, nx) )
ALLOCATE( sc( nx, nx) )
ALLOCATE( vc( nx, nx) )
ALLOCATE( en( nstart ) )
aux=(0.0_DP,0.0_DP)
!
! ... Set up the Hamiltonian and Overlap matrix on the subspace :
!
! ... H_ij = <psi_i| H |psi_j> S_ij = <psi_i| S |psi_j>
!
call start_clock('protwfck:hpsi')
CALL h_psi( npwx, npw, nstart, psi, aux )
call stop_clock('protwfck:hpsi')
!
call start_clock('protwfck:hc')
CALL compute_distmat( hc, psi, aux )
!
IF ( overlap ) THEN
!
CALL s_psi( npwx, npw, nstart, psi, aux )
CALL compute_distmat( sc, psi, aux )
!
ELSE
!
CALL compute_distmat( sc, psi, psi )
!
END IF
call stop_clock('protwfck:hc')
!
! ... Diagonalize
!
call start_clock('protwfck:diag')
IF ( do_distr_diag_inside_bgrp ) THEN ! NB on output of pcdiaghg en and vc are the same across ortho_parent_comm
! only the first bgrp performs the diagonalization
IF( my_bgrp_id == root_bgrp_id ) CALL pcdiaghg( nstart, hc, sc, nx, en, vc, desc )
IF( nbgrp > 1 ) THEN ! results must be brodcast to the other band groups
CALL mp_bcast( vc, root_bgrp_id, inter_bgrp_comm )
CALL mp_bcast( en, root_bgrp_id, inter_bgrp_comm )
ENDIF
ELSE
CALL pcdiaghg( nstart, hc, sc, nx, en, vc, desc )
END IF
call stop_clock('protwfck:diag')
!
e(:) = en(1:nbnd)
!
! ... update the basis set
!
call start_clock('protwfck:evc')
CALL refresh_evc()
!
evc(:,:) = aux(:,1:nbnd)
call stop_clock('protwfck:evc')
!
DEALLOCATE( en )
DEALLOCATE( vc )
DEALLOCATE( sc )
DEALLOCATE( hc )
DEALLOCATE( aux )
!
DEALLOCATE( desc_ip )
DEALLOCATE( rank_ip )
call stop_clock('protwfck')
!call print_clock('protwfck')
!call print_clock('protwfck:hpsi')
!call print_clock('protwfck:hc')
!call print_clock('protwfck:diag')
!call print_clock('protwfck:evc')
!
RETURN
!
!
CONTAINS
!
SUBROUTINE desc_init( nsiz, desc, desc_ip )
!
INTEGER, INTENT(IN) :: nsiz
TYPE(la_descriptor), INTENT(OUT) :: desc
TYPE(la_descriptor), INTENT(OUT) :: desc_ip(:,:)
INTEGER :: i, j, rank
INTEGER :: coor_ip( 2 )
!
CALL descla_init( desc, nsiz, nsiz, np_ortho, me_ortho, ortho_comm, ortho_cntx, ortho_comm_id )
!
nx = desc%nrcx
!
DO j = 0, desc%npc - 1
DO i = 0, desc%npr - 1
coor_ip( 1 ) = i
coor_ip( 2 ) = j
CALL descla_init( desc_ip(i+1,j+1), desc%n, desc%nx, &
np_ortho, coor_ip, ortho_comm, ortho_cntx, 1 )
CALL GRID2D_RANK( 'R', desc%npr, desc%npc, i, j, rank )
rank_ip( i+1, j+1 ) = rank * leg_ortho
END DO
END DO
!
la_proc = .FALSE.
IF( desc%active_node > 0 ) la_proc = .TRUE.
!
RETURN
END SUBROUTINE desc_init
!
!
SUBROUTINE compute_distmat( dm, v, w )
!
! This subroutine compute <vi|wj> and store the
! result in distributed matrix dm
!
INTEGER :: ipc, ipr
INTEGER :: nr, nc, ir, ic, root
COMPLEX(DP), INTENT(OUT) :: dm( :, : )
COMPLEX(DP) :: v(:,:), w(:,:)
COMPLEX(DP), ALLOCATABLE :: work( :, : )
!
ALLOCATE( work( nx, nx ) )
!
work = ( 0.0_DP, 0.0_DP )
!
DO ipc = 1, desc%npc ! loop on column procs
!
nc = desc_ip( 1, ipc )%nc
ic = desc_ip( 1, ipc )%ic
!
DO ipr = 1, ipc ! desc%npr ! ipc ! use symmetry for the loop on row procs
!
nr = desc_ip( ipr, ipc )%nr
ir = desc_ip( ipr, ipc )%ir
!
! rank of the processor for which this block (ipr,ipc) is destinated
!
root = rank_ip( ipr, ipc )
! use blas subs. on the matrix block
CALL ZGEMM( 'C', 'N', nr, nc, kdim, ( 1.D0, 0.D0 ), v(1,ir), kdmx, w(1,ic), kdmx, ( 0.D0, 0.D0 ), work, nx )
! accumulate result on dm of root proc.
CALL mp_root_sum( work, dm, root, ortho_parent_comm )
END DO
!
END DO
if (ortho_parent_comm.ne.intra_bgrp_comm .and. nbgrp > 1) dm = dm/nbgrp
!
CALL zsqmher( nstart, dm, nx, desc )
!
DEALLOCATE( work )
!
RETURN
END SUBROUTINE compute_distmat
SUBROUTINE refresh_evc( )
!
INTEGER :: ipc, ipr
INTEGER :: nr, nc, ir, ic, root
COMPLEX(DP), ALLOCATABLE :: vtmp( :, : )
COMPLEX(DP) :: beta
ALLOCATE( vtmp( nx, nx ) )
!
DO ipc = 1, desc%npc
!
nc = desc_ip( 1, ipc )%nc
ic = desc_ip( 1, ipc )%ic
!
IF( ic <= nbnd ) THEN
!
nc = min( nc, nbnd - ic + 1 )
!
beta = ( 0.D0, 0.D0 )
DO ipr = 1, desc%npr
!
nr = desc_ip( ipr, ipc )%nr
ir = desc_ip( ipr, ipc )%ir
!
root = rank_ip( ipr, ipc )
IF( ipr-1 == desc%myr .AND. ipc-1 == desc%myc .AND. la_proc ) THEN
!
! this proc sends his block
!
CALL mp_bcast( vc(:,1:nc), root, ortho_parent_comm )
CALL ZGEMM( 'N', 'N', kdim, nc, nr, ( 1.D0, 0.D0 ), psi(1,ir), kdmx, vc, nx, beta, aux(1,ic), kdmx )
ELSE
!
! all other procs receive
!
CALL mp_bcast( vtmp(:,1:nc), root, ortho_parent_comm )
CALL ZGEMM( 'N', 'N', kdim, nc, nr, ( 1.D0, 0.D0 ), psi(1,ir), kdmx, vtmp, nx, beta, aux(1,ic), kdmx )
END IF
!
beta = ( 1.D0, 0.D0 )
END DO
!
END IF
!
END DO
!
DEALLOCATE( vtmp )
RETURN
END SUBROUTINE refresh_evc
END SUBROUTINE protate_wfc_k