quantum-espresso/HP/examples/example08/reference/NiO2.hp.out

940 lines
37 KiB
Plaintext

Program HP v.6.3 starts on 7Sep2018 at 10:18:19
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 8 processors
MPI processes distributed on 1 nodes
R & G space division: proc/nbgrp/npool/nimage = 8
=--------------------------------------------------------------------------=
Calculation of Hubbard parameters from DFPT; please cite this program as
I. Timrov, N. Marzari, and M. Cococcioni, Phys. Rev. B 98, 085127 (2018)
=--------------------------------------------------------------------------=
Reading data from directory:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/tempdir/NiO2.save/
IMPORTANT: XC functional enforced from input :
Exchange-correlation = PBE ( 1 4 3 4 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
file Ni.pbe-n-rrkjus_psl.0.1.UPF: wavefunction(s) 3D renormalized
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 87 44 13 14663 5209 863
Max 88 47 14 14688 5219 886
Sum 703 361 109 117447 41709 7021
Check: negative core charge= -0.000022
negative rho (up, down): 6.875E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0000
-------
bravais-lattice index = 0
lattice parameter (alat) = 5.3370 (a.u.)
unit-cell volume = 1020.0352 (a.u.)^3
number of atoms/cell = 3
number of atomic types = 2
kinetic-energy cut-off = 45.00 (Ry)
charge density cut-off = 360.00 (Ry)
conv. thresh. for NSCF = 1.0E-11
conv. thresh. for chi = 1.0E-08
Input Hubbard parameters (in eV):
U ( 1) = 1.00000E-08
celldm(1) = 5.33697 celldm(2) = 0.00000 celldm(3) = 7.74819
celldm(4) = 0.00000 celldm(5) = 0.00000 celldm(6) = 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.0000 0.0000 0.0000 )
a(2) = ( -0.5000 0.8660 0.0000 )
a(3) = ( 0.0000 0.0000 7.7482 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.0000 0.5774 0.0000 )
b(2) = ( 0.0000 1.1547 0.0000 )
b(3) = ( 0.0000 0.0000 0.1291 )
Atoms inside the unit cell (Cartesian axes):
site n. atom mass positions (alat units)
1 Ni 58.6934 tau( 1) = ( 0.00000 0.00000 3.87409 )
2 O 15.9994 tau( 2) = ( 0.50000 0.28868 3.54104 )
3 O 15.9994 tau( 3) = ( 0.00000 0.57735 4.20714 )
Atom which will be perturbed:
1 Ni 58.6934 tau( 1) = ( 0.00000 0.00000 3.87409 )
=====================================================================
PERTURBED ATOM # 1
site n. atom mass positions (alat units)
1 Ni 58.6934 tau( 1) = ( 0.00000 0.00000 3.87409 )
=====================================================================
The perturbed atom has a type which is unique!
The grid of q-points ( 2, 2, 1) ( 2 q-points ) :
N xq(1) xq(2) xq(3) wq
1 0.000000000 0.000000000 0.000000000 0.250000000
2 0.000000000 -0.577350269 0.000000000 0.750000000
=-------------------------------------------------------------=
Calculation for q # 1 = ( 0.0000000 0.0000000 0.0000000 )
=-------------------------------------------------------------=
WRITING LINEAR-RESPONSE SUMMARY:
Number of symmetries in the small group of q, nsymq = 12
+ the symmetry q -> -q+G
Symmetry matrices (and vectors of fractional translations if f/=0):
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 180 deg rotation - cart. axis [1,0,0]
cryst. s( 2) = ( 1 0 0 )
( -1 -1 0 )
( 0 0 -1 )
cart. s( 2) = ( 1.0000000 -0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 3 120 deg rotation - cryst. axis [0,0,1]
cryst. s( 3) = ( 0 1 0 )
( -1 -1 0 )
( 0 0 1 )
cart. s( 3) = ( -0.5000000 -0.8660254 0.0000000 )
( 0.8660254 -0.5000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 4 120 deg rotation - cryst. axis [0,0,-1]
cryst. s( 4) = ( -1 -1 0 )
( 1 0 0 )
( 0 0 1 )
cart. s( 4) = ( -0.5000000 0.8660254 0.0000000 )
( -0.8660254 -0.5000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 5 180 deg rotation - cryst. axis [0,1,0]
cryst. s( 5) = ( -1 -1 0 )
( 0 1 0 )
( 0 0 -1 )
cart. s( 5) = ( -0.5000000 -0.8660254 0.0000000 )
( -0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 6 180 deg rotation - cryst. axis [1,1,0]
cryst. s( 6) = ( 0 1 0 )
( 1 0 0 )
( 0 0 -1 )
cart. s( 6) = ( -0.5000000 0.8660254 0.0000000 )
( 0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 7 inversion
cryst. s( 7) = ( -1 0 0 )
( 0 -1 0 )
( 0 0 -1 )
cart. s( 7) = ( -1.0000000 -0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 8 inv. 180 deg rotation - cart. axis [1,0,0]
cryst. s( 8) = ( -1 0 0 )
( 1 1 0 )
( 0 0 1 )
cart. s( 8) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 9 inv. 120 deg rotation - cryst. axis [0,0,1]
cryst. s( 9) = ( 0 -1 0 )
( 1 1 0 )
( 0 0 -1 )
cart. s( 9) = ( 0.5000000 0.8660254 0.0000000 )
( -0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 10 inv. 120 deg rotation - cryst. axis [0,0,-1]
cryst. s(10) = ( 1 1 0 )
( -1 0 0 )
( 0 0 -1 )
cart. s(10) = ( 0.5000000 -0.8660254 0.0000000 )
( 0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 11 inv. 180 deg rotation - cryst. axis [0,1,0]
cryst. s(11) = ( 1 1 0 )
( 0 -1 0 )
( 0 0 1 )
cart. s(11) = ( 0.5000000 0.8660254 0.0000000 )
( 0.8660254 -0.5000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 12 inv. 180 deg rotation - cryst. axis [1,1,0]
cryst. s(12) = ( 0 -1 0 )
( -1 0 0 )
( 0 0 1 )
cart. s(12) = ( 0.5000000 -0.8660254 0.0000000 )
( -0.8660254 -0.5000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
This transformation sends q -> -q+G
isym = 13 identity
cryst. s(13) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s(13) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
G cutoff = 259.7362 ( 14688 G-vectors) FFT grid: ( 36, 36,250)
G cutoff = 129.8681 ( 5209 G-vectors) smooth grid: ( 24, 24,180)
Number of k (and k+q if q/=0) points = 4
cart. coord. (in units 2pi/alat)
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 2) = ( 0.0000000 0.2886751 0.0000000), wk = 0.7500000
k ( 3) = ( 0.0000000 -0.5773503 0.0000000), wk = 0.3750000
k ( 4) = ( 0.2500000 0.4330127 0.0000000), wk = 0.7500000
cryst. coord.
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 2) = ( 0.0000000 0.2500000 0.0000000), wk = 0.7500000
k ( 3) = ( 0.0000000 -0.5000000 0.0000000), wk = 0.3750000
k ( 4) = ( 0.2500000 0.2500000 0.0000000), wk = 0.7500000
Atomic wfc used for the DFT+U projector are orthogonalized
Total time spent up to now is:
HP : 0.94s CPU 0.96s WALL
=--------------------------------------------=
START SOLVING THE LINEAR SYSTEM
=--------------------------------------------=
atom # 1 q point # 1 iter # 1
chi: 1 -0.3260381632
Average number of iter. to solve lin. system: 28.2
Total CPU time : 1.8 s
atom # 1 q point # 1 iter # 2
chi: 1 0.3169122664 residue: 0.6429504297
Average number of iter. to solve lin. system: 12.8
Total CPU time : 2.4 s
atom # 1 q point # 1 iter # 3
chi: 1 -0.0943826070 residue: 0.4112948734
Average number of iter. to solve lin. system: 11.8
Total CPU time : 3.2 s
atom # 1 q point # 1 iter # 4
chi: 1 -0.0903511493 residue: 0.0040314576
Average number of iter. to solve lin. system: 11.2
Total CPU time : 3.9 s
atom # 1 q point # 1 iter # 5
chi: 1 -0.0866078034 residue: 0.0037433459
Average number of iter. to solve lin. system: 12.0
Total CPU time : 4.5 s
atom # 1 q point # 1 iter # 6
chi: 1 -0.0862223031 residue: 0.0003855003
Average number of iter. to solve lin. system: 12.8
Total CPU time : 5.1 s
atom # 1 q point # 1 iter # 7
chi: 1 -0.0862189383 residue: 0.0000033648
Average number of iter. to solve lin. system: 12.8
Total CPU time : 5.8 s
atom # 1 q point # 1 iter # 8
chi: 1 -0.0862234779 residue: 0.0000045396
Average number of iter. to solve lin. system: 12.8
Total CPU time : 6.4 s
atom # 1 q point # 1 iter # 9
chi: 1 -0.0862411535 residue: 0.0000176756
Average number of iter. to solve lin. system: 12.2
Total CPU time : 6.9 s
atom # 1 q point # 1 iter # 10
chi: 1 -0.0862383739 residue: 0.0000027795
Average number of iter. to solve lin. system: 11.8
Total CPU time : 7.5 s
atom # 1 q point # 1 iter # 11
chi: 1 -0.0862407246 residue: 0.0000023507
Average number of iter. to solve lin. system: 12.8
Total CPU time : 8.1 s
atom # 1 q point # 1 iter # 12
chi: 1 -0.0862388858 residue: 0.0000018388
Average number of iter. to solve lin. system: 12.2
Total CPU time : 8.6 s
atom # 1 q point # 1 iter # 13
chi: 1 -0.0862392185 residue: 0.0000003328
Average number of iter. to solve lin. system: 12.5
Total CPU time : 9.2 s
atom # 1 q point # 1 iter # 14
chi: 1 -0.0862395485 residue: 0.0000003300
Average number of iter. to solve lin. system: 12.8
Total CPU time : 9.8 s
atom # 1 q point # 1 iter # 15
chi: 1 -0.0862394127 residue: 0.0000001358
Average number of iter. to solve lin. system: 12.0
Total CPU time : 10.3 s
atom # 1 q point # 1 iter # 16
chi: 1 -0.0862393886 residue: 0.0000000241
Average number of iter. to solve lin. system: 12.0
Total CPU time : 10.9 s
atom # 1 q point # 1 iter # 17
chi: 1 -0.0862393929 residue: 0.0000000043
Average number of iter. to solve lin. system: 13.2
Total CPU time : 11.5 s
=--------------------------------------------=
CONVERGENCE HAS BEEN REACHED
=--------------------------------------------=
=-------------------------------------------------------------=
Calculation for q # 2 = ( 0.0000000 -0.5773503 0.0000000 )
=-------------------------------------------------------------=
Performing NSCF calculation at all points k and k+q...
Subspace diagonalization in iterative solution of the eigenvalue problem:
a serial algorithm will be used
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 87 44 15 14663 5209 1115
Max 88 47 16 14688 5219 1150
Sum 703 361 121 117447 41709 8999
bravais-lattice index = 0
lattice parameter (alat) = 5.3370 a.u.
unit-cell volume = 1020.0352 (a.u.)^3
number of atoms/cell = 3
number of atomic types = 2
number of electrons = 22.00
number of Kohn-Sham states= 11
kinetic-energy cutoff = 45.0000 Ry
charge density cutoff = 360.0000 Ry
Exchange-correlation = PBE ( 1 4 3 4 0 0)
celldm(1)= 5.336971 celldm(2)= 0.000000 celldm(3)= 7.748186
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.000000 0.000000 0.000000 )
a(2) = ( -0.500000 0.866025 0.000000 )
a(3) = ( 0.000000 0.000000 7.748186 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.000000 0.577350 0.000000 )
b(2) = ( 0.000000 1.154701 0.000000 )
b(3) = ( 0.000000 0.000000 0.129062 )
PseudoPot. # 1 for Ni read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/Ni.pbe-n-rrkjus_psl.0.1.UPF
MD5 check sum: a128b0288b8c2a77f60c629508f0875a
Pseudo is Ultrasoft + core correction, Zval = 10.0
Generated using "atomic" code by A. Dal Corso v.5.0.2 svn rev. 9415
Using radial grid of 1195 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
Q(r) pseudized with 0 coefficients
PseudoPot. # 2 for O read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/O.pbe-n-rrkjus_psl.0.1.UPF
MD5 check sum: 2d9b751e792dc3e2bf7510553724b146
Pseudo is Ultrasoft + core correction, Zval = 6.0
Generated using "atomic" code by A. Dal Corso v.6.3MaX
Using radial grid of 1095 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
atomic species valence mass pseudopotential
Ni 10.00 58.69340 Ni( 1.00)
O 6.00 15.99940 O ( 1.00)
Simplified LDA+U calculation (l_max = 2) with parameters (eV):
atomic species L U alpha J0 beta
Ni 2 0.0000 0.0000 0.0000 0.0000
12 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Ni tau( 1) = ( 0.0000000 0.0000000 3.8740930 )
2 O tau( 2) = ( 0.5000000 0.2886751 3.5410443 )
3 O tau( 3) = ( 0.0000000 0.5773503 4.2071418 )
number of k points= 14
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k( 2) = ( 0.0000000 -0.5773503 0.0000000), wk = 0.0000000
k( 3) = ( 0.0000000 0.2886751 0.0000000), wk = 0.2500000
k( 4) = ( 0.0000000 -0.2886751 0.0000000), wk = 0.0000000
k( 5) = ( 0.0000000 -0.5773503 0.0000000), wk = 0.1250000
k( 6) = ( 0.0000000 -1.1547005 0.0000000), wk = 0.0000000
k( 7) = ( 0.2500000 0.4330127 0.0000000), wk = 0.5000000
k( 8) = ( 0.2500000 -0.1443376 0.0000000), wk = 0.0000000
k( 9) = ( -0.2500000 0.1443376 0.0000000), wk = 0.5000000
k( 10) = ( -0.2500000 -0.4330127 0.0000000), wk = 0.0000000
k( 11) = ( 0.5000000 -0.2886751 0.0000000), wk = 0.2500000
k( 12) = ( 0.5000000 -0.8660254 0.0000000), wk = 0.0000000
k( 13) = ( -0.5000000 0.0000000 0.0000000), wk = 0.2500000
k( 14) = ( -0.5000000 -0.5773503 0.0000000), wk = 0.0000000
Dense grid: 117447 G-vectors FFT dimensions: ( 36, 36, 250)
Smooth grid: 41709 G-vectors FFT dimensions: ( 24, 24, 180)
Estimated max dynamical RAM per process > 50.59 MB
Estimated total dynamical RAM > 404.70 MB
Check: negative core charge= -0.000022
The potential is recalculated from file :
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/tempdir/HP/NiO2.save/charge-density
negative rho (up, down): 6.875E-04 0.000E+00
Number of +U iterations with fixed ns = 0
Starting occupations:
--- enter write_ns ---
LDA+U parameters:
U( 1) = 0.00000001
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 8.13145
eigenvalues:
0.558 0.558 0.978 0.986 0.986
eigenvectors:
0.000 0.000 1.000 0.000 0.000
0.490 0.106 0.000 0.019 0.385
0.106 0.490 0.000 0.385 0.019
0.072 0.331 0.000 0.569 0.028
0.331 0.072 0.000 0.028 0.569
occupations:
0.978 0.000 -0.000 0.000 0.000
0.000 0.730 0.000 -0.000 -0.210
-0.000 0.000 0.730 -0.210 0.000
0.000 -0.000 -0.210 0.813 -0.000
0.000 -0.210 0.000 -0.000 0.813
N of occupied +U levels = 8.131450
--- exit write_ns ---
Atomic wfc used for LDA+U Projector are orthogonalized
Starting wfcs are 17 atomic wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 1.00E-11, avg # of iterations = 15.3
total cpu time spent up to now is -1.0 secs
End of band structure calculation
k = 0.0000 0.0000 0.0000 ( 5225 PWs) bands (ev):
-24.5643 -22.2762 -10.5226 -10.5226 -10.4238 -7.2656 -7.2656 -6.4438
-6.1612 -6.1612 -5.4165
k = 0.0000-0.5774 0.0000 ( 5232 PWs) bands (ev):
-22.7789 -22.6530 -11.6129 -9.8100 -9.6604 -8.7974 -7.8186 -6.9159
-6.8568 -6.8053 -6.2245
k = 0.0000 0.2887 0.0000 ( 5222 PWs) bands (ev):
-23.8612 -22.3276 -10.7658 -10.0979 -9.8295 -9.0108 -8.0408 -6.6144
-5.9769 -5.8555 -5.5522
k = 0.0000-0.2887 0.0000 ( 5222 PWs) bands (ev):
-23.8612 -22.3276 -10.7658 -10.0979 -9.8295 -9.0108 -8.0408 -6.6144
-5.9769 -5.8555 -5.5522
k = 0.0000-0.5774 0.0000 ( 5232 PWs) bands (ev):
-22.7789 -22.6530 -11.6129 -9.8100 -9.6604 -8.7974 -7.8186 -6.9159
-6.8568 -6.8053 -6.2245
k = 0.0000-1.1547 0.0000 ( 5225 PWs) bands (ev):
-24.5643 -22.2762 -10.5226 -10.5226 -10.4238 -7.2656 -7.2656 -6.4438
-6.1612 -6.1612 -5.4165
k = 0.2500 0.4330 0.0000 ( 5180 PWs) bands (ev):
-22.9694 -22.4610 -10.7089 -10.5854 -9.5983 -8.8467 -8.5873 -7.2094
-6.7443 -6.2870 -5.6169
k = 0.2500-0.1443 0.0000 ( 5222 PWs) bands (ev):
-23.8612 -22.3276 -10.7658 -10.0979 -9.8295 -9.0108 -8.0408 -6.6144
-5.9769 -5.8555 -5.5522
k =-0.2500 0.1443 0.0000 ( 5222 PWs) bands (ev):
-23.8612 -22.3276 -10.7658 -10.0979 -9.8295 -9.0108 -8.0408 -6.6144
-5.9769 -5.8555 -5.5522
k =-0.2500-0.4330 0.0000 ( 5180 PWs) bands (ev):
-22.9694 -22.4610 -10.7089 -10.5854 -9.5983 -8.8467 -8.5873 -7.2094
-6.7443 -6.2870 -5.6169
k = 0.5000-0.2887 0.0000 ( 5232 PWs) bands (ev):
-22.7789 -22.6530 -11.6129 -9.8100 -9.6604 -8.7974 -7.8186 -6.9159
-6.8568 -6.8053 -6.2245
k = 0.5000-0.8660 0.0000 ( 5232 PWs) bands (ev):
-22.7789 -22.6530 -11.6129 -9.8100 -9.6604 -8.7974 -7.8186 -6.9159
-6.8568 -6.8053 -6.2245
k =-0.5000 0.0000 0.0000 ( 5180 PWs) bands (ev):
-22.9694 -22.4610 -10.7089 -10.5854 -9.5983 -8.8467 -8.5873 -7.2094
-6.7443 -6.2870 -5.6169
k =-0.5000-0.5774 0.0000 ( 5180 PWs) bands (ev):
-22.9694 -22.4610 -10.7089 -10.5854 -9.5983 -8.8467 -8.5873 -7.2094
-6.7443 -6.2870 -5.6169
highest occupied level (ev): -5.4165
Writing output data file NiO2.save/
Done!
WRITING LINEAR-RESPONSE SUMMARY:
Number of symmetries in the small group of q, nsymq = 4
+ the symmetry q -> -q+G
Symmetry matrices (and vectors of fractional translations if f/=0):
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 180 deg rotation - cart. axis [1,0,0]
cryst. s( 2) = ( 1 0 0 )
( -1 -1 0 )
( 0 0 -1 )
cart. s( 2) = ( 1.0000000 -0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 3 inversion
cryst. s( 3) = ( -1 0 0 )
( 0 -1 0 )
( 0 0 -1 )
cart. s( 3) = ( -1.0000000 -0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 4 inv. 180 deg rotation - cart. axis [1,0,0]
cryst. s( 4) = ( -1 0 0 )
( 1 1 0 )
( 0 0 1 )
cart. s( 4) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
This transformation sends q -> -q+G
isym = 5 identity
cryst. s( 5) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 5) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
G cutoff = 259.7362 ( 14688 G-vectors) FFT grid: ( 36, 36,250)
G cutoff = 129.8681 ( 5209 G-vectors) smooth grid: ( 24, 24,180)
Number of k (and k+q if q/=0) points = 14
cart. coord. (in units 2pi/alat)
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 2) = ( 0.0000000 -0.5773503 0.0000000), wk = 0.0000000
k ( 3) = ( 0.0000000 0.2886751 0.0000000), wk = 0.2500000
k ( 4) = ( 0.0000000 -0.2886751 0.0000000), wk = 0.0000000
k ( 5) = ( 0.0000000 -0.5773503 0.0000000), wk = 0.1250000
k ( 6) = ( 0.0000000 -1.1547005 0.0000000), wk = 0.0000000
k ( 7) = ( 0.2500000 0.4330127 0.0000000), wk = 0.5000000
k ( 8) = ( 0.2500000 -0.1443376 0.0000000), wk = 0.0000000
k ( 9) = ( -0.2500000 0.1443376 0.0000000), wk = 0.5000000
k ( 10) = ( -0.2500000 -0.4330127 0.0000000), wk = 0.0000000
k ( 11) = ( 0.5000000 -0.2886751 0.0000000), wk = 0.2500000
k ( 12) = ( 0.5000000 -0.8660254 0.0000000), wk = 0.0000000
k ( 13) = ( -0.5000000 0.0000000 0.0000000), wk = 0.2500000
k ( 14) = ( -0.5000000 -0.5773503 0.0000000), wk = 0.0000000
cryst. coord.
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 2) = ( 0.0000000 -0.5000000 0.0000000), wk = 0.0000000
k ( 3) = ( 0.0000000 0.2500000 0.0000000), wk = 0.2500000
k ( 4) = ( 0.0000000 -0.2500000 0.0000000), wk = 0.0000000
k ( 5) = ( 0.0000000 -0.5000000 0.0000000), wk = 0.1250000
k ( 6) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0000000
k ( 7) = ( 0.2500000 0.2500000 0.0000000), wk = 0.5000000
k ( 8) = ( 0.2500000 -0.2500000 0.0000000), wk = 0.0000000
k ( 9) = ( -0.2500000 0.2500000 0.0000000), wk = 0.5000000
k ( 10) = ( -0.2500000 -0.2500000 0.0000000), wk = 0.0000000
k ( 11) = ( 0.5000000 -0.5000000 0.0000000), wk = 0.2500000
k ( 12) = ( 0.5000000 -1.0000000 0.0000000), wk = 0.0000000
k ( 13) = ( -0.5000000 0.2500000 0.0000000), wk = 0.2500000
k ( 14) = ( -0.5000000 -0.2500000 0.0000000), wk = 0.0000000
Atomic wfc used for the DFT+U projector are orthogonalized
Total time spent up to now is:
HP : 12.93s CPU 13.18s WALL
=--------------------------------------------=
START SOLVING THE LINEAR SYSTEM
=--------------------------------------------=
atom # 1 q point # 2 iter # 1
chi: 1 -0.4321950797
Average number of iter. to solve lin. system: 29.9
Total CPU time : 14.3 s
atom # 1 q point # 2 iter # 2
chi: 1 0.7097685594 residue: 1.1419636390
Average number of iter. to solve lin. system: 14.4
Total CPU time : 15.0 s
atom # 1 q point # 2 iter # 3
chi: 1 -0.0967698594 residue: 0.8065384188
Average number of iter. to solve lin. system: 13.1
Total CPU time : 15.7 s
atom # 1 q point # 2 iter # 4
chi: 1 -0.0965547306 residue: 0.0002151289
Average number of iter. to solve lin. system: 13.7
Total CPU time : 16.5 s
atom # 1 q point # 2 iter # 5
chi: 1 -0.0927179661 residue: 0.0038367645
Average number of iter. to solve lin. system: 13.4
Total CPU time : 17.1 s
atom # 1 q point # 2 iter # 6
chi: 1 -0.0905207582 residue: 0.0021972079
Average number of iter. to solve lin. system: 14.6
Total CPU time : 17.9 s
atom # 1 q point # 2 iter # 7
chi: 1 -0.0909511313 residue: 0.0004303731
Average number of iter. to solve lin. system: 14.1
Total CPU time : 18.6 s
atom # 1 q point # 2 iter # 8
chi: 1 -0.0909180708 residue: 0.0000330605
Average number of iter. to solve lin. system: 13.9
Total CPU time : 19.3 s
atom # 1 q point # 2 iter # 9
chi: 1 -0.0909120531 residue: 0.0000060177
Average number of iter. to solve lin. system: 14.6
Total CPU time : 20.0 s
atom # 1 q point # 2 iter # 10
chi: 1 -0.0909077642 residue: 0.0000042888
Average number of iter. to solve lin. system: 14.9
Total CPU time : 20.8 s
atom # 1 q point # 2 iter # 11
chi: 1 -0.0909119383 residue: 0.0000041741
Average number of iter. to solve lin. system: 13.4
Total CPU time : 21.5 s
atom # 1 q point # 2 iter # 12
chi: 1 -0.0909125025 residue: 0.0000005642
Average number of iter. to solve lin. system: 14.3
Total CPU time : 22.4 s
atom # 1 q point # 2 iter # 13
chi: 1 -0.0909122105 residue: 0.0000002921
Average number of iter. to solve lin. system: 15.1
Total CPU time : 23.2 s
atom # 1 q point # 2 iter # 14
chi: 1 -0.0909124432 residue: 0.0000002327
Average number of iter. to solve lin. system: 13.9
Total CPU time : 23.9 s
atom # 1 q point # 2 iter # 15
chi: 1 -0.0909123936 residue: 0.0000000496
Average number of iter. to solve lin. system: 14.9
Total CPU time : 24.9 s
atom # 1 q point # 2 iter # 16
chi: 1 -0.0909124576 residue: 0.0000000640
Average number of iter. to solve lin. system: 13.6
Total CPU time : 25.5 s
atom # 1 q point # 2 iter # 17
chi: 1 -0.0909124480 residue: 0.0000000095
Average number of iter. to solve lin. system: 13.4
Total CPU time : 26.2 s
=--------------------------------------------=
CONVERGENCE HAS BEEN REACHED
=--------------------------------------------=
Computing the sum over q of the response occupation matrices...
q # 1 = 0.000000000 0.000000000 0.000000000
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
q # 2 = 0.000000000 -0.577350269 0.000000000
Number of q in the star = 3
List of q in the star:
1 0.000000000 -0.577350269 0.000000000
2 0.500000000 -0.288675135 0.000000000
3 -0.500000000 -0.288675135 0.000000000
Post-processing calculation of Hubbard parameters ...
PRINTING TIMING FROM PWSCF ROUTINES:
init_run : 0.55s CPU 0.55s WALL ( 1 calls)
electrons : 1.01s CPU 1.03s WALL ( 1 calls)
Called by init_run:
wfcinit : 0.02s CPU 0.02s WALL ( 1 calls)
wfcinit:atom : 0.00s CPU 0.00s WALL ( 14 calls)
wfcinit:wfcr : 0.09s CPU 0.09s WALL ( 14 calls)
potinit : 0.03s CPU 0.03s WALL ( 1 calls)
hinit0 : 0.26s CPU 0.26s WALL ( 1 calls)
Called by electrons:
c_bands : 1.01s CPU 1.03s WALL ( 1 calls)
v_of_rho : 0.05s CPU 0.05s WALL ( 2 calls)
v_h : 0.00s CPU 0.00s WALL ( 2 calls)
v_xc : 0.05s CPU 0.05s WALL ( 2 calls)
newd : 0.10s CPU 0.10s WALL ( 2 calls)
Called by c_bands:
init_us_2 : 0.06s CPU 0.06s WALL ( 244 calls)
cegterg : 0.89s CPU 0.91s WALL ( 14 calls)
Called by sum_band:
Called by *egterg:
h_psi : 11.58s CPU 11.88s WALL ( 3904 calls)
s_psi : 0.53s CPU 0.49s WALL ( 7785 calls)
g_psi : 0.01s CPU 0.01s WALL ( 214 calls)
cdiaghg : 0.07s CPU 0.07s WALL ( 228 calls)
cegterg:over : 0.04s CPU 0.04s WALL ( 214 calls)
cegterg:upda : 0.02s CPU 0.03s WALL ( 214 calls)
cegterg:last : 0.02s CPU 0.02s WALL ( 60 calls)
Called by h_psi:
h_psi:pot : 11.38s CPU 11.64s WALL ( 3904 calls)
h_psi:calbec : 0.39s CPU 0.36s WALL ( 3904 calls)
vloc_psi : 10.76s CPU 11.01s WALL ( 3904 calls)
add_vuspsi : 0.22s CPU 0.25s WALL ( 3904 calls)
vhpsi : 0.17s CPU 0.20s WALL ( 3904 calls)
General routines
calbec : 0.87s CPU 0.86s WALL ( 11887 calls)
fft : 0.87s CPU 0.88s WALL ( 544 calls)
ffts : 0.02s CPU 0.02s WALL ( 71 calls)
fftw : 11.36s CPU 11.28s WALL ( 73492 calls)
interpolate : 0.09s CPU 0.10s WALL ( 71 calls)
davcio : 0.27s CPU 0.35s WALL ( 5655 calls)
Parallel routines
fft_scatt_xy : 1.16s CPU 1.34s WALL ( 74107 calls)
fft_scatt_yz : 3.40s CPU 3.15s WALL ( 74107 calls)
Hubbard U routines
vhpsi : 0.17s CPU 0.20s WALL ( 3904 calls)
init_vloc : 0.11s CPU 0.11s WALL ( 2 calls)
init_us_1 : 0.14s CPU 0.14s WALL ( 2 calls)
newd : 0.10s CPU 0.10s WALL ( 2 calls)
add_vuspsi : 0.22s CPU 0.25s WALL ( 3904 calls)
PRINTING TIMING FROM HP ROUTINES:
hp_setup_q : 0.06s CPU 0.07s WALL ( 2 calls)
hp_init_q : 0.06s CPU 0.06s WALL ( 2 calls)
hp_solve_lin : 23.09s CPU 23.60s WALL ( 2 calls)
hp_dvpsi_per : 0.01s CPU 0.01s WALL ( 187 calls)
hp_dnsq : 0.03s CPU 0.04s WALL ( 34 calls)
hp_symdnsq : 0.00s CPU 0.00s WALL ( 34 calls)
hp_dnstot_su : 0.00s CPU 0.00s WALL ( 1 calls)
hp_rotate_dn : 0.00s CPU 0.00s WALL ( 4 calls)
hp_calc_chi : 0.00s CPU 0.00s WALL ( 1 calls)
hp_vpsifft : 0.66s CPU 0.70s WALL ( 176 calls)
hp_sphi : 0.02s CPU 0.02s WALL ( 2 calls)
hp_run_nscf : 1.57s CPU 1.59s WALL ( 1 calls)
hp_psymdvscf : 3.85s CPU 3.85s WALL ( 34 calls)
PRINTING TIMING FROM LR MODULE:
ortho : 0.05s CPU 0.06s WALL ( 187 calls)
cgsolve : 12.55s CPU 12.87s WALL ( 187 calls)
ch_psi : 12.18s CPU 12.53s WALL ( 3662 calls)
incdrhoscf : 0.74s CPU 0.76s WALL ( 187 calls)
dv_of_drho : 0.88s CPU 0.88s WALL ( 34 calls)
mix_pot : 0.14s CPU 0.23s WALL ( 34 calls)
setup_dgc : 0.05s CPU 0.05s WALL ( 2 calls)
setup_dmuxc : 0.01s CPU 0.01s WALL ( 2 calls)
setup_nbnd_o : 0.00s CPU 0.00s WALL ( 2 calls)
cft_wave : 0.62s CPU 0.64s WALL ( 3872 calls)
USPP ROUTINES:
newdq : 1.98s CPU 1.99s WALL ( 34 calls)
adddvscf : 0.03s CPU 0.03s WALL ( 176 calls)
addusdbec : 0.03s CPU 0.02s WALL ( 187 calls)
HP : 25.67s CPU 26.21s WALL
This run was terminated on: 10:18:45 7Sep2018
=------------------------------------------------------------------------------=
JOB DONE.
=------------------------------------------------------------------------------=