quantum-espresso/HP/examples/example04/reference/Ni.hp.out

2055 lines
78 KiB
Plaintext

Program HP v.6.3 starts on 6Sep2018 at 15:57:29
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 8 processors
MPI processes distributed on 1 nodes
R & G space division: proc/nbgrp/npool/nimage = 8
=--------------------------------------------------------------------------=
Calculation of Hubbard parameters from DFPT; please cite this program as
I. Timrov, N. Marzari, and M. Cococcioni, Phys. Rev. B 98, 085127 (2018)
=--------------------------------------------------------------------------=
Reading data from directory:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/tempdir/Ni.save/
IMPORTANT: XC functional enforced from input :
Exchange-correlation = PBESOL ( 1 4 10 8 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
file Ni.pbesol-n-rrkjus_psl.0.1.UPF: wavefunction(s) 3D renormalized
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 72 36 11 1156 410 76
Max 73 37 12 1158 412 77
Sum 583 295 91 9257 3287 609
Generating pointlists ...
new r_m : 0.2917 (alat units) 1.8901 (a.u.) for type 1
--- in v_hubbard ---
Hubbard energy 0.0000
-------
bravais-lattice index = 2
lattice parameter (alat) = 6.4800 (a.u.)
unit-cell volume = 68.0244 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 50.00 (Ry)
charge density cut-off = 400.00 (Ry)
conv. thresh. for NSCF = 1.0E-11
conv. thresh. for chi = 1.0E-08
Input Hubbard parameters (in eV):
U ( 1) = 1.00000E-08
celldm(1) = 6.48000 celldm(2) = 0.00000 celldm(3) = 0.00000
celldm(4) = 0.00000 celldm(5) = 0.00000 celldm(6) = 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell (Cartesian axes):
site n. atom mass positions (alat units)
1 Ni 58.6930 tau( 1) = ( 0.00000 0.00000 0.00000 )
Atom which will be perturbed:
1 Ni 58.6930 tau( 1) = ( 0.00000 0.00000 0.00000 )
=====================================================================
PERTURBED ATOM # 1
site n. atom mass positions (alat units)
1 Ni 58.6930 tau( 1) = ( 0.00000 0.00000 0.00000 )
=====================================================================
The perturbed atom has a type which is unique!
The grid of q-points ( 2, 2, 2) ( 3 q-points ) :
N xq(1) xq(2) xq(3) wq
1 0.000000000 0.000000000 0.000000000 0.125000000
2 0.500000000 -0.500000000 0.500000000 0.500000000
3 0.000000000 -1.000000000 0.000000000 0.375000000
=-------------------------------------------------------------=
Calculation for q # 1 = ( 0.0000000 0.0000000 0.0000000 )
=-------------------------------------------------------------=
WRITING LINEAR-RESPONSE SUMMARY:
Number of symmetries in the small group of q, nsymq = 48
+ the symmetry q -> -q+G
Symmetry matrices (and vectors of fractional translations if f/=0):
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 180 deg rotation - cart. axis [0,0,1]
cryst. s( 2) = ( 0 1 -1 )
( 1 0 -1 )
( 0 0 -1 )
cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 3 180 deg rotation - cart. axis [0,1,0]
cryst. s( 3) = ( -1 0 0 )
( -1 0 1 )
( -1 1 0 )
cart. s( 3) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 4 180 deg rotation - cart. axis [1,0,0]
cryst. s( 4) = ( 0 -1 1 )
( 0 -1 0 )
( 1 -1 0 )
cart. s( 4) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 5 180 deg rotation - cart. axis [1,1,0]
cryst. s( 5) = ( 0 -1 0 )
( -1 0 0 )
( 0 0 -1 )
cart. s( 5) = ( 0.0000000 1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 6 180 deg rotation - cart. axis [1,-1,0]
cryst. s( 6) = ( -1 0 1 )
( 0 -1 1 )
( 0 0 1 )
cart. s( 6) = ( 0.0000000 -1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 7 90 deg rotation - cart. axis [0,0,-1]
cryst. s( 7) = ( 0 1 0 )
( 0 1 -1 )
( -1 1 0 )
cart. s( 7) = ( 0.0000000 1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 8 90 deg rotation - cart. axis [0,0,1]
cryst. s( 8) = ( 1 0 -1 )
( 1 0 0 )
( 1 -1 0 )
cart. s( 8) = ( 0.0000000 -1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 9 180 deg rotation - cart. axis [1,0,1]
cryst. s( 9) = ( -1 0 0 )
( 0 0 -1 )
( 0 -1 0 )
cart. s( 9) = ( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 10 180 deg rotation - cart. axis [-1,0,1]
cryst. s(10) = ( 1 0 0 )
( 1 -1 0 )
( 1 0 -1 )
cart. s(10) = ( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 11 90 deg rotation - cart. axis [0,1,0]
cryst. s(11) = ( 0 1 -1 )
( -1 1 0 )
( 0 1 0 )
cart. s(11) = ( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 12 90 deg rotation - cart. axis [0,-1,0]
cryst. s(12) = ( 0 -1 1 )
( 0 0 1 )
( -1 0 1 )
cart. s(12) = ( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 13 180 deg rotation - cart. axis [0,1,1]
cryst. s(13) = ( -1 1 0 )
( 0 1 0 )
( 0 1 -1 )
cart. s(13) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
isym = 14 180 deg rotation - cart. axis [0,1,-1]
cryst. s(14) = ( 0 0 -1 )
( 0 -1 0 )
( -1 0 0 )
cart. s(14) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
isym = 15 90 deg rotation - cart. axis [-1,0,0]
cryst. s(15) = ( 0 0 1 )
( -1 0 1 )
( 0 -1 1 )
cart. s(15) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
isym = 16 90 deg rotation - cart. axis [1,0,0]
cryst. s(16) = ( 1 -1 0 )
( 1 0 -1 )
( 1 0 0 )
cart. s(16) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
isym = 17 120 deg rotation - cart. axis [-1,-1,-1]
cryst. s(17) = ( -1 0 1 )
( -1 1 0 )
( -1 0 0 )
cart. s(17) = ( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 18 120 deg rotation - cart. axis [-1,1,1]
cryst. s(18) = ( 0 1 0 )
( 0 0 1 )
( 1 0 0 )
cart. s(18) = ( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 19 120 deg rotation - cart. axis [1,1,-1]
cryst. s(19) = ( 1 0 -1 )
( 0 0 -1 )
( 0 1 -1 )
cart. s(19) = ( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 20 120 deg rotation - cart. axis [1,-1,1]
cryst. s(20) = ( 0 -1 0 )
( 1 -1 0 )
( 0 -1 1 )
cart. s(20) = ( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 21 120 deg rotation - cart. axis [1,1,1]
cryst. s(21) = ( 0 0 -1 )
( 0 1 -1 )
( 1 0 -1 )
cart. s(21) = ( 0.0000000 0.0000000 1.0000000 )
( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
isym = 22 120 deg rotation - cart. axis [-1,1,-1]
cryst. s(22) = ( -1 1 0 )
( -1 0 0 )
( -1 0 1 )
cart. s(22) = ( 0.0000000 0.0000000 1.0000000 )
( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
isym = 23 120 deg rotation - cart. axis [1,-1,-1]
cryst. s(23) = ( 0 0 1 )
( 1 0 0 )
( 0 1 0 )
cart. s(23) = ( 0.0000000 0.0000000 -1.0000000 )
( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
isym = 24 120 deg rotation - cart. axis [-1,-1,1]
cryst. s(24) = ( 1 -1 0 )
( 0 -1 1 )
( 0 -1 0 )
cart. s(24) = ( 0.0000000 0.0000000 -1.0000000 )
( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
isym = 25 inversion
cryst. s(25) = ( -1 0 0 )
( 0 -1 0 )
( 0 0 -1 )
cart. s(25) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 26 inv. 180 deg rotation - cart. axis [0,0,1]
cryst. s(26) = ( 0 -1 1 )
( -1 0 1 )
( 0 0 1 )
cart. s(26) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 27 inv. 180 deg rotation - cart. axis [0,1,0]
cryst. s(27) = ( 1 0 0 )
( 1 0 -1 )
( 1 -1 0 )
cart. s(27) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 28 inv. 180 deg rotation - cart. axis [1,0,0]
cryst. s(28) = ( 0 1 -1 )
( 0 1 0 )
( -1 1 0 )
cart. s(28) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 29 inv. 180 deg rotation - cart. axis [1,1,0]
cryst. s(29) = ( 0 1 0 )
( 1 0 0 )
( 0 0 1 )
cart. s(29) = ( 0.0000000 -1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 30 inv. 180 deg rotation - cart. axis [1,-1,0]
cryst. s(30) = ( 1 0 -1 )
( 0 1 -1 )
( 0 0 -1 )
cart. s(30) = ( 0.0000000 1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 31 inv. 90 deg rotation - cart. axis [0,0,-1]
cryst. s(31) = ( 0 -1 0 )
( 0 -1 1 )
( 1 -1 0 )
cart. s(31) = ( 0.0000000 -1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 32 inv. 90 deg rotation - cart. axis [0,0,1]
cryst. s(32) = ( -1 0 1 )
( -1 0 0 )
( -1 1 0 )
cart. s(32) = ( 0.0000000 1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 33 inv. 180 deg rotation - cart. axis [1,0,1]
cryst. s(33) = ( 1 0 0 )
( 0 0 1 )
( 0 1 0 )
cart. s(33) = ( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 34 inv. 180 deg rotation - cart. axis [-1,0,1]
cryst. s(34) = ( -1 0 0 )
( -1 1 0 )
( -1 0 1 )
cart. s(34) = ( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 35 inv. 90 deg rotation - cart. axis [0,1,0]
cryst. s(35) = ( 0 -1 1 )
( 1 -1 0 )
( 0 -1 0 )
cart. s(35) = ( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 36 inv. 90 deg rotation - cart. axis [0,-1,0]
cryst. s(36) = ( 0 1 -1 )
( 0 0 -1 )
( 1 0 -1 )
cart. s(36) = ( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 37 inv. 180 deg rotation - cart. axis [0,1,1]
cryst. s(37) = ( 1 -1 0 )
( 0 -1 0 )
( 0 -1 1 )
cart. s(37) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
isym = 38 inv. 180 deg rotation - cart. axis [0,1,-1]
cryst. s(38) = ( 0 0 1 )
( 0 1 0 )
( 1 0 0 )
cart. s(38) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
isym = 39 inv. 90 deg rotation - cart. axis [-1,0,0]
cryst. s(39) = ( 0 0 -1 )
( 1 0 -1 )
( 0 1 -1 )
cart. s(39) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
isym = 40 inv. 90 deg rotation - cart. axis [1,0,0]
cryst. s(40) = ( -1 1 0 )
( -1 0 1 )
( -1 0 0 )
cart. s(40) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
isym = 41 inv. 120 deg rotation - cart. axis [-1,-1,-1]
cryst. s(41) = ( 1 0 -1 )
( 1 -1 0 )
( 1 0 0 )
cart. s(41) = ( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 42 inv. 120 deg rotation - cart. axis [-1,1,1]
cryst. s(42) = ( 0 -1 0 )
( 0 0 -1 )
( -1 0 0 )
cart. s(42) = ( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 43 inv. 120 deg rotation - cart. axis [1,1,-1]
cryst. s(43) = ( -1 0 1 )
( 0 0 1 )
( 0 -1 1 )
cart. s(43) = ( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 44 inv. 120 deg rotation - cart. axis [1,-1,1]
cryst. s(44) = ( 0 1 0 )
( -1 1 0 )
( 0 1 -1 )
cart. s(44) = ( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 45 inv. 120 deg rotation - cart. axis [1,1,1]
cryst. s(45) = ( 0 0 1 )
( 0 -1 1 )
( -1 0 1 )
cart. s(45) = ( 0.0000000 0.0000000 -1.0000000 )
( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
isym = 46 inv. 120 deg rotation - cart. axis [-1,1,-1]
cryst. s(46) = ( 1 -1 0 )
( 1 0 0 )
( 1 0 -1 )
cart. s(46) = ( 0.0000000 0.0000000 -1.0000000 )
( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
isym = 47 inv. 120 deg rotation - cart. axis [1,-1,-1]
cryst. s(47) = ( 0 0 -1 )
( -1 0 0 )
( 0 -1 0 )
cart. s(47) = ( 0.0000000 0.0000000 1.0000000 )
( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
isym = 48 inv. 120 deg rotation - cart. axis [-1,-1,1]
cryst. s(48) = ( -1 1 0 )
( 0 1 -1 )
( 0 1 0 )
cart. s(48) = ( 0.0000000 0.0000000 1.0000000 )
( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
This transformation sends q -> -q+G
isym = 49 identity
cryst. s(49) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s(49) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
G cutoff = 425.4517 ( 1156 G-vectors) FFT grid: ( 30, 30, 30)
G cutoff = 212.7259 ( 412 G-vectors) smooth grid: ( 24, 24, 24)
Number of k (and k+q if q/=0) points = 6 mv smearing, width (Ry) = 0.0200
cart. coord. (in units 2pi/alat)
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 2) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.5000000
k ( 3) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.3750000
k ( 4) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 5) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.5000000
k ( 6) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.3750000
cryst. coord.
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 2) = ( 0.0000000 0.0000000 -0.5000000), wk = 0.5000000
k ( 3) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.3750000
k ( 4) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 5) = ( 0.0000000 0.0000000 -0.5000000), wk = 0.5000000
k ( 6) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.3750000
Atomic wfc used for the DFT+U projector are orthogonalized
Total time spent up to now is:
HP : 0.44s CPU 0.44s WALL
=--------------------------------------------=
START SOLVING THE LINEAR SYSTEM
=--------------------------------------------=
atom # 1 q point # 1 iter # 1
Fermi energy shift (Ry) = 0.1000E+01 0.1381E-12
chi: 1 -0.0343627889
Average number of iter. to solve lin. system: 13.8
Total CPU time : 0.6 s
atom # 1 q point # 1 iter # 2
Fermi energy shift (Ry) = 0.8368E+00 0.4122E-12
chi: 1 -0.0259498326 residue: 0.0084129563
Average number of iter. to solve lin. system: 5.2
Total CPU time : 0.7 s
atom # 1 q point # 1 iter # 3
Fermi energy shift (Ry) = 0.8138E+00 0.4690E-12
chi: 1 -0.0247918961 residue: 0.0011579365
Average number of iter. to solve lin. system: 5.8
Total CPU time : 0.8 s
atom # 1 q point # 1 iter # 4
Fermi energy shift (Ry) = 0.8105E+00 0.4857E-12
chi: 1 -0.0246664310 residue: 0.0001254651
Average number of iter. to solve lin. system: 6.0
Total CPU time : 1.0 s
atom # 1 q point # 1 iter # 5
Fermi energy shift (Ry) = 0.8105E+00 0.4864E-12
chi: 1 -0.0246657802 residue: 0.0000006508
Average number of iter. to solve lin. system: 5.8
Total CPU time : 1.1 s
atom # 1 q point # 1 iter # 6
Fermi energy shift (Ry) = 0.8107E+00 0.4867E-12
chi: 1 -0.0246684357 residue: 0.0000026555
Average number of iter. to solve lin. system: 6.3
Total CPU time : 1.2 s
atom # 1 q point # 1 iter # 7
Fermi energy shift (Ry) = 0.8107E+00 0.4868E-12
chi: 1 -0.0246685556 residue: 0.0000001199
Average number of iter. to solve lin. system: 6.2
Total CPU time : 1.4 s
atom # 1 q point # 1 iter # 8
Fermi energy shift (Ry) = 0.8107E+00 0.4867E-12
chi: 1 -0.0246686128 residue: 0.0000000572
Average number of iter. to solve lin. system: 6.0
Total CPU time : 1.5 s
atom # 1 q point # 1 iter # 9
Fermi energy shift (Ry) = 0.8107E+00 0.4868E-12
chi: 1 -0.0246686082 residue: 0.0000000047
Average number of iter. to solve lin. system: 5.8
Total CPU time : 1.6 s
=--------------------------------------------=
CONVERGENCE HAS BEEN REACHED
=--------------------------------------------=
=-------------------------------------------------------------=
Calculation for q # 2 = ( 0.5000000 -0.5000000 0.5000000 )
=-------------------------------------------------------------=
Performing NSCF calculation at all points k and k+q...
Subspace diagonalization in iterative solution of the eigenvalue problem:
a serial algorithm will be used
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 72 36 13 1156 410 92
Max 73 37 14 1158 412 95
Sum 583 295 109 9257 3287 749
bravais-lattice index = 2
lattice parameter (alat) = 6.4800 a.u.
unit-cell volume = 68.0244 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 10.00
number of Kohn-Sham states= 9
kinetic-energy cutoff = 50.0000 Ry
charge density cutoff = 400.0000 Ry
Exchange-correlation = PBESOL ( 1 4 10 8 0 0)
celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Ni read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/Ni.pbesol-n-rrkjus_psl.0.1.UPF
MD5 check sum: d3d36c0e5f066765d78aba9293461953
Pseudo is Ultrasoft + core correction, Zval = 10.0
Generated using "atomic" code by A. Dal Corso v.5.0.2 svn rev. 9415
Using radial grid of 1195 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
Q(r) pseudized with 0 coefficients
atomic species valence mass pseudopotential
Ni 10.00 58.69300 Ni( 1.00)
Starting magnetic structure
atomic species magnetization
Ni 0.500
Simplified LDA+U calculation (l_max = 2) with parameters (eV):
atomic species L U alpha J0 beta
Ni 2 0.0000 0.0000 0.0000 0.0000
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
number of k points= 8 mv smearing, width (Ry)= 0.0200
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k( 2) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0000000
k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000
k( 4) = ( 1.0000000 -1.0000000 1.0000000), wk = 0.0000000
k( 5) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.3750000
k( 6) = ( 0.5000000 -1.5000000 0.5000000), wk = 0.0000000
k( 7) = ( 0.5000000 0.5000000 -0.5000000), wk = 0.3750000
k( 8) = ( 1.0000000 0.0000000 0.0000000), wk = 0.0000000
Dense grid: 9257 G-vectors FFT dimensions: ( 30, 30, 30)
Smooth grid: 3287 G-vectors FFT dimensions: ( 24, 24, 24)
Estimated max dynamical RAM per process > 5.63 MB
Estimated total dynamical RAM > 45.02 MB
Generating pointlists ...
The potential is recalculated from file :
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/tempdir/HP/Ni.save/charge-density
Number of +U iterations with fixed ns = 0
Starting occupations:
--- enter write_ns ---
LDA+U parameters:
U( 1) = 0.00000001
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] (up, down, total) = 4.87637 3.59014 8.46652
spin 1
eigenvalues:
0.969 0.969 0.969 0.985 0.985
eigenvectors:
0.000 0.000 0.000 0.066 0.934
0.176 0.515 0.309 0.000 0.000
0.302 0.082 0.616 0.000 0.000
0.000 0.000 0.000 0.934 0.066
0.522 0.403 0.075 0.000 0.000
occupations:
0.985 -0.000 -0.000 0.000 0.000
-0.000 0.969 -0.000 0.000 0.000
-0.000 -0.000 0.969 0.000 0.000
0.000 0.000 0.000 0.985 -0.000
0.000 0.000 0.000 -0.000 0.969
spin 2
eigenvalues:
0.633 0.633 0.633 0.846 0.846
eigenvectors:
0.000 0.000 0.000 0.056 0.944
0.135 0.293 0.573 0.000 0.000
0.264 0.314 0.422 0.000 0.000
0.000 0.000 0.000 0.944 0.056
0.601 0.393 0.005 0.000 0.000
occupations:
0.846 -0.000 -0.000 0.000 0.000
-0.000 0.633 -0.000 0.000 0.000
-0.000 -0.000 0.633 0.000 0.000
0.000 0.000 0.000 0.846 -0.000
0.000 0.000 0.000 -0.000 0.633
atomic mag. moment = 1.286229
N of occupied +U levels = 8.466518
--- exit write_ns ---
Atomic wfc used for LDA+U Projector are orthogonalized
Starting wfcs are 9 atomic wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 1.00E-11, avg # of iterations = 12.2
total cpu time spent up to now is -1.0 secs
End of band structure calculation
------ SPIN UP ------------
k = 0.0000 0.0000 0.0000 ( 411 PWs) bands (ev):
5.1012 11.7389 11.7389 11.7389 13.0791 13.0791 43.8507 43.8507
43.8507
k = 0.5000-0.5000 0.5000 ( 410 PWs) bands (ev):
9.1851 11.7811 11.7811 13.7926 13.7926 14.2628 20.7305 38.0184
40.7416
k = 0.5000-0.5000 0.5000 ( 410 PWs) bands (ev):
9.1851 11.7811 11.7811 13.7926 13.7926 14.2628 20.7305 38.0184
40.7416
k = 1.0000-1.0000 1.0000 ( 411 PWs) bands (ev):
5.1012 11.7389 11.7389 11.7389 13.0791 13.0791 43.8507 43.8507
43.8507
k = 0.0000-1.0000 0.0000 ( 412 PWs) bands (ev):
9.3943 9.7846 13.8692 13.9237 13.9237 17.1346 24.4927 30.2902
30.2902
k = 0.5000-1.5000 0.5000 ( 410 PWs) bands (ev):
9.1851 11.7811 11.7811 13.7926 13.7926 14.2628 20.7305 38.0184
40.7416
k = 0.5000 0.5000-0.5000 ( 410 PWs) bands (ev):
9.1851 11.7811 11.7811 13.7926 13.7926 14.2628 20.7305 38.0184
40.7416
k = 1.0000 0.0000 0.0000 ( 412 PWs) bands (ev):
9.3943 9.7846 13.8692 13.9237 13.9237 17.1346 24.4927 30.2902
30.2902
------ SPIN DOWN ----------
k = 0.0000 0.0000 0.0000 ( 411 PWs) bands (ev):
5.1957 13.0847 13.0847 13.0847 14.2863 14.2863 43.9566 43.9566
43.9566
k = 0.5000-0.5000 0.5000 ( 410 PWs) bands (ev):
10.0200 12.9723 12.9723 14.3236 15.2062 15.2062 21.5711 37.9605
41.0243
k = 0.5000-0.5000 0.5000 ( 410 PWs) bands (ev):
10.0200 12.9723 12.9723 14.3236 15.2062 15.2062 21.5711 37.9605
41.0243
k = 1.0000-1.0000 1.0000 ( 411 PWs) bands (ev):
5.1957 13.0847 13.0847 13.0847 14.2863 14.2863 43.9566 43.9566
43.9566
k = 0.0000-1.0000 0.0000 ( 412 PWs) bands (ev):
10.1427 10.9066 15.1306 15.4609 15.4609 17.2391 25.1107 30.4511
30.4511
k = 0.5000-1.5000 0.5000 ( 410 PWs) bands (ev):
10.0200 12.9723 12.9723 14.3236 15.2062 15.2062 21.5711 37.9605
41.0243
k = 0.5000 0.5000-0.5000 ( 410 PWs) bands (ev):
10.0200 12.9723 12.9723 14.3236 15.2062 15.2062 21.5711 37.9605
41.0243
k = 1.0000 0.0000 0.0000 ( 412 PWs) bands (ev):
10.1427 10.9066 15.1306 15.4609 15.4609 17.2391 25.1107 30.4511
30.4511
the Fermi energy is 15.2595 ev
Writing output data file Ni.save/
Done!
WRITING LINEAR-RESPONSE SUMMARY:
Number of symmetries in the small group of q, nsymq = 12
+ the symmetry q -> -q+G
Symmetry matrices (and vectors of fractional translations if f/=0):
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 180 deg rotation - cart. axis [1,1,0]
cryst. s( 2) = ( 0 -1 0 )
( -1 0 0 )
( 0 0 -1 )
cart. s( 2) = ( 0.0000000 1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 3 180 deg rotation - cart. axis [-1,0,1]
cryst. s( 3) = ( 1 0 0 )
( 1 -1 0 )
( 1 0 -1 )
cart. s( 3) = ( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 4 180 deg rotation - cart. axis [0,1,1]
cryst. s( 4) = ( -1 1 0 )
( 0 1 0 )
( 0 1 -1 )
cart. s( 4) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
isym = 5 120 deg rotation - cart. axis [1,-1,1]
cryst. s( 5) = ( 0 -1 0 )
( 1 -1 0 )
( 0 -1 1 )
cart. s( 5) = ( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 6 120 deg rotation - cart. axis [-1,1,-1]
cryst. s( 6) = ( -1 1 0 )
( -1 0 0 )
( -1 0 1 )
cart. s( 6) = ( 0.0000000 0.0000000 1.0000000 )
( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
isym = 7 inversion
cryst. s( 7) = ( -1 0 0 )
( 0 -1 0 )
( 0 0 -1 )
cart. s( 7) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 8 inv. 180 deg rotation - cart. axis [1,1,0]
cryst. s( 8) = ( 0 1 0 )
( 1 0 0 )
( 0 0 1 )
cart. s( 8) = ( 0.0000000 -1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 9 inv. 180 deg rotation - cart. axis [-1,0,1]
cryst. s( 9) = ( -1 0 0 )
( -1 1 0 )
( -1 0 1 )
cart. s( 9) = ( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 10 inv. 180 deg rotation - cart. axis [0,1,1]
cryst. s(10) = ( 1 -1 0 )
( 0 -1 0 )
( 0 -1 1 )
cart. s(10) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
isym = 11 inv. 120 deg rotation - cart. axis [1,-1,1]
cryst. s(11) = ( 0 1 0 )
( -1 1 0 )
( 0 1 -1 )
cart. s(11) = ( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 12 inv. 120 deg rotation - cart. axis [-1,1,-1]
cryst. s(12) = ( 1 -1 0 )
( 1 0 0 )
( 1 0 -1 )
cart. s(12) = ( 0.0000000 0.0000000 -1.0000000 )
( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
This transformation sends q -> -q+G
isym = 13 identity
cryst. s(13) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s(13) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
G cutoff = 425.4517 ( 1157 G-vectors) FFT grid: ( 30, 30, 30)
G cutoff = 212.7259 ( 412 G-vectors) smooth grid: ( 24, 24, 24)
Number of k (and k+q if q/=0) points = 16 mv smearing, width (Ry) = 0.0200
cart. coord. (in units 2pi/alat)
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 2) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0000000
k ( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000
k ( 4) = ( 1.0000000 -1.0000000 1.0000000), wk = 0.0000000
k ( 5) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.3750000
k ( 6) = ( 0.5000000 -1.5000000 0.5000000), wk = 0.0000000
k ( 7) = ( 0.5000000 0.5000000 -0.5000000), wk = 0.3750000
k ( 8) = ( 1.0000000 0.0000000 0.0000000), wk = 0.0000000
k ( 9) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 10) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0000000
k ( 11) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.1250000
k ( 12) = ( 1.0000000 -1.0000000 1.0000000), wk = 0.0000000
k ( 13) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.3750000
k ( 14) = ( 0.5000000 -1.5000000 0.5000000), wk = 0.0000000
k ( 15) = ( 0.5000000 0.5000000 -0.5000000), wk = 0.3750000
k ( 16) = ( 1.0000000 0.0000000 0.0000000), wk = 0.0000000
cryst. coord.
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 2) = ( 0.0000000 0.0000000 -0.5000000), wk = 0.0000000
k ( 3) = ( 0.0000000 0.0000000 -0.5000000), wk = 0.1250000
k ( 4) = ( 0.0000000 0.0000000 -1.0000000), wk = 0.0000000
k ( 5) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.3750000
k ( 6) = ( 0.0000000 -0.5000000 -1.0000000), wk = 0.0000000
k ( 7) = ( -0.5000000 0.0000000 0.0000000), wk = 0.3750000
k ( 8) = ( -0.5000000 0.0000000 -0.5000000), wk = 0.0000000
k ( 9) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 10) = ( 0.0000000 0.0000000 -0.5000000), wk = 0.0000000
k ( 11) = ( 0.0000000 0.0000000 -0.5000000), wk = 0.1250000
k ( 12) = ( 0.0000000 0.0000000 -1.0000000), wk = 0.0000000
k ( 13) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.3750000
k ( 14) = ( 0.0000000 -0.5000000 -1.0000000), wk = 0.0000000
k ( 15) = ( -0.5000000 0.0000000 0.0000000), wk = 0.3750000
k ( 16) = ( -0.5000000 0.0000000 -0.5000000), wk = 0.0000000
Atomic wfc used for the DFT+U projector are orthogonalized
Total time spent up to now is:
HP : 1.87s CPU 1.90s WALL
=--------------------------------------------=
START SOLVING THE LINEAR SYSTEM
=--------------------------------------------=
atom # 1 q point # 2 iter # 1
chi: 1 -2.4563177376
Average number of iter. to solve lin. system: 14.9
Total CPU time : 2.0 s
atom # 1 q point # 2 iter # 2
chi: 1 33.1177217040 residue: 35.5740394416
Average number of iter. to solve lin. system: 7.1
Total CPU time : 2.1 s
atom # 1 q point # 2 iter # 3
chi: 1 -0.0806187081 residue: 33.1983404120
Average number of iter. to solve lin. system: 6.8
Total CPU time : 2.2 s
atom # 1 q point # 2 iter # 4
chi: 1 -0.1761526101 residue: 0.0955339020
Average number of iter. to solve lin. system: 6.1
Total CPU time : 2.3 s
atom # 1 q point # 2 iter # 5
chi: 1 -0.2012499173 residue: 0.0250973072
Average number of iter. to solve lin. system: 6.5
Total CPU time : 2.4 s
atom # 1 q point # 2 iter # 6
chi: 1 -0.1677074593 residue: 0.0335424580
Average number of iter. to solve lin. system: 5.8
Total CPU time : 2.5 s
atom # 1 q point # 2 iter # 7
chi: 1 -0.1628287639 residue: 0.0048786954
Average number of iter. to solve lin. system: 6.2
Total CPU time : 2.6 s
atom # 1 q point # 2 iter # 8
chi: 1 -0.1624243532 residue: 0.0004044107
Average number of iter. to solve lin. system: 6.9
Total CPU time : 2.6 s
atom # 1 q point # 2 iter # 9
chi: 1 -0.1618080448 residue: 0.0006163084
Average number of iter. to solve lin. system: 7.1
Total CPU time : 2.7 s
atom # 1 q point # 2 iter # 10
chi: 1 -0.1618426104 residue: 0.0000345656
Average number of iter. to solve lin. system: 7.2
Total CPU time : 2.8 s
atom # 1 q point # 2 iter # 11
chi: 1 -0.1618762434 residue: 0.0000336331
Average number of iter. to solve lin. system: 7.8
Total CPU time : 2.9 s
atom # 1 q point # 2 iter # 12
chi: 1 -0.1618324377 residue: 0.0000438058
Average number of iter. to solve lin. system: 6.8
Total CPU time : 2.9 s
atom # 1 q point # 2 iter # 13
chi: 1 -0.1618439938 residue: 0.0000115561
Average number of iter. to solve lin. system: 7.2
Total CPU time : 3.0 s
atom # 1 q point # 2 iter # 14
chi: 1 -0.1618457944 residue: 0.0000018006
Average number of iter. to solve lin. system: 7.1
Total CPU time : 3.1 s
atom # 1 q point # 2 iter # 15
chi: 1 -0.1618466888 residue: 0.0000008944
Average number of iter. to solve lin. system: 7.1
Total CPU time : 3.1 s
atom # 1 q point # 2 iter # 16
chi: 1 -0.1618440997 residue: 0.0000025891
Average number of iter. to solve lin. system: 7.0
Total CPU time : 3.2 s
atom # 1 q point # 2 iter # 17
chi: 1 -0.1618435691 residue: 0.0000005306
Average number of iter. to solve lin. system: 6.8
Total CPU time : 3.3 s
atom # 1 q point # 2 iter # 18
chi: 1 -0.1618431286 residue: 0.0000004406
Average number of iter. to solve lin. system: 7.9
Total CPU time : 3.4 s
atom # 1 q point # 2 iter # 19
chi: 1 -0.1618434444 residue: 0.0000003158
Average number of iter. to solve lin. system: 6.8
Total CPU time : 3.4 s
atom # 1 q point # 2 iter # 20
chi: 1 -0.1618433295 residue: 0.0000001148
Average number of iter. to solve lin. system: 7.8
Total CPU time : 3.5 s
atom # 1 q point # 2 iter # 21
chi: 1 -0.1618433839 residue: 0.0000000544
Average number of iter. to solve lin. system: 6.9
Total CPU time : 3.6 s
atom # 1 q point # 2 iter # 22
chi: 1 -0.1618433639 residue: 0.0000000200
Average number of iter. to solve lin. system: 8.2
Total CPU time : 3.7 s
atom # 1 q point # 2 iter # 23
chi: 1 -0.1618433714 residue: 0.0000000074
Average number of iter. to solve lin. system: 7.1
Total CPU time : 3.8 s
=--------------------------------------------=
CONVERGENCE HAS BEEN REACHED
=--------------------------------------------=
=-------------------------------------------------------------=
Calculation for q # 3 = ( 0.0000000 -1.0000000 0.0000000 )
=-------------------------------------------------------------=
Performing NSCF calculation at all points k and k+q...
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 72 36 15 1155 410 108
Max 73 37 16 1158 412 110
Sum 583 295 121 9257 3287 869
bravais-lattice index = 2
lattice parameter (alat) = 6.4800 a.u.
unit-cell volume = 68.0244 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 10.00
number of Kohn-Sham states= 9
kinetic-energy cutoff = 50.0000 Ry
charge density cutoff = 400.0000 Ry
Exchange-correlation = PBESOL ( 1 4 10 8 0 0)
celldm(1)= 6.480000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Ni read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/Ni.pbesol-n-rrkjus_psl.0.1.UPF
MD5 check sum: d3d36c0e5f066765d78aba9293461953
Pseudo is Ultrasoft + core correction, Zval = 10.0
Generated using "atomic" code by A. Dal Corso v.5.0.2 svn rev. 9415
Using radial grid of 1195 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
Q(r) pseudized with 0 coefficients
atomic species valence mass pseudopotential
Ni 10.00 58.69300 Ni( 1.00)
Starting magnetic structure
atomic species magnetization
Ni 0.500
Simplified LDA+U calculation (l_max = 2) with parameters (eV):
atomic species L U alpha J0 beta
Ni 2 0.0000 0.0000 0.0000 0.0000
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
number of k points= 8 mv smearing, width (Ry)= 0.0200
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k( 2) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0000000
k( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.5000000
k( 4) = ( 0.5000000 -1.5000000 0.5000000), wk = 0.0000000
k( 5) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.1250000
k( 6) = ( 0.0000000 -2.0000000 0.0000000), wk = 0.0000000
k( 7) = ( -1.0000000 0.0000000 0.0000000), wk = 0.2500000
k( 8) = ( -1.0000000 -1.0000000 0.0000000), wk = 0.0000000
Dense grid: 9257 G-vectors FFT dimensions: ( 30, 30, 30)
Smooth grid: 3287 G-vectors FFT dimensions: ( 24, 24, 24)
Estimated max dynamical RAM per process > 5.64 MB
Estimated total dynamical RAM > 45.12 MB
Generating pointlists ...
The potential is recalculated from file :
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/tempdir/HP/Ni.save/charge-density
Number of +U iterations with fixed ns = 0
Starting occupations:
--- enter write_ns ---
LDA+U parameters:
U( 1) = 0.00000001
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] (up, down, total) = 4.87637 3.59014 8.46652
spin 1
eigenvalues:
0.969 0.969 0.969 0.985 0.985
eigenvectors:
0.000 0.000 0.000 0.066 0.934
0.176 0.515 0.309 0.000 0.000
0.302 0.082 0.616 0.000 0.000
0.000 0.000 0.000 0.934 0.066
0.522 0.403 0.075 0.000 0.000
occupations:
0.985 -0.000 -0.000 0.000 0.000
-0.000 0.969 -0.000 0.000 0.000
-0.000 -0.000 0.969 0.000 0.000
0.000 0.000 0.000 0.985 -0.000
0.000 0.000 0.000 -0.000 0.969
spin 2
eigenvalues:
0.633 0.633 0.633 0.846 0.846
eigenvectors:
0.000 0.000 0.000 0.056 0.944
0.135 0.293 0.573 0.000 0.000
0.264 0.314 0.422 0.000 0.000
0.000 0.000 0.000 0.944 0.056
0.601 0.393 0.005 0.000 0.000
occupations:
0.846 -0.000 -0.000 0.000 0.000
-0.000 0.633 -0.000 0.000 0.000
-0.000 -0.000 0.633 0.000 0.000
0.000 0.000 0.000 0.846 -0.000
0.000 0.000 0.000 -0.000 0.633
atomic mag. moment = 1.286229
N of occupied +U levels = 8.466518
--- exit write_ns ---
Atomic wfc used for LDA+U Projector are orthogonalized
Starting wfcs are 9 atomic wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 1.00E-11, avg # of iterations = 11.8
total cpu time spent up to now is -1.0 secs
End of band structure calculation
------ SPIN UP ------------
k = 0.0000 0.0000 0.0000 ( 411 PWs) bands (ev):
5.1012 11.7389 11.7389 11.7389 13.0791 13.0791 43.8507 43.8507
43.8507
k = 0.0000-1.0000 0.0000 ( 412 PWs) bands (ev):
9.3943 9.7846 13.8692 13.9237 13.9237 17.1346 24.4927 30.2902
30.2902
k = 0.5000-0.5000 0.5000 ( 410 PWs) bands (ev):
9.1851 11.7811 11.7811 13.7926 13.7926 14.2628 20.7305 38.0184
40.7416
k = 0.5000-1.5000 0.5000 ( 410 PWs) bands (ev):
9.1851 11.7811 11.7811 13.7926 13.7926 14.2628 20.7305 38.0184
40.7416
k = 0.0000-1.0000 0.0000 ( 412 PWs) bands (ev):
9.3943 9.7846 13.8692 13.9237 13.9237 17.1346 24.4927 30.2902
30.2902
k = 0.0000-2.0000 0.0000 ( 411 PWs) bands (ev):
5.1012 11.7389 11.7389 11.7389 13.0791 13.0791 43.8507 43.8507
43.8507
k =-1.0000 0.0000 0.0000 ( 412 PWs) bands (ev):
9.3943 9.7846 13.8692 13.9237 13.9237 17.1346 24.4927 30.2902
30.2902
k =-1.0000-1.0000 0.0000 ( 412 PWs) bands (ev):
9.3943 9.7846 13.8692 13.9237 13.9237 17.1346 24.4927 30.2902
30.2902
------ SPIN DOWN ----------
k = 0.0000 0.0000 0.0000 ( 411 PWs) bands (ev):
5.1957 13.0847 13.0847 13.0847 14.2863 14.2863 43.9566 43.9566
43.9566
k = 0.0000-1.0000 0.0000 ( 412 PWs) bands (ev):
10.1427 10.9066 15.1306 15.4609 15.4609 17.2391 25.1107 30.4511
30.4511
k = 0.5000-0.5000 0.5000 ( 410 PWs) bands (ev):
10.0200 12.9723 12.9723 14.3236 15.2062 15.2062 21.5711 37.9605
41.0243
k = 0.5000-1.5000 0.5000 ( 410 PWs) bands (ev):
10.0200 12.9723 12.9723 14.3236 15.2062 15.2062 21.5711 37.9605
41.0243
k = 0.0000-1.0000 0.0000 ( 412 PWs) bands (ev):
10.1427 10.9066 15.1306 15.4609 15.4609 17.2391 25.1107 30.4511
30.4511
k = 0.0000-2.0000 0.0000 ( 411 PWs) bands (ev):
5.1957 13.0847 13.0847 13.0847 14.2863 14.2863 43.9566 43.9566
43.9566
k =-1.0000 0.0000 0.0000 ( 412 PWs) bands (ev):
10.1427 10.9066 15.1306 15.4609 15.4609 17.2391 25.1107 30.4511
30.4511
k =-1.0000-1.0000 0.0000 ( 412 PWs) bands (ev):
10.1427 10.9066 15.1306 15.4609 15.4609 17.2391 25.1107 30.4511
30.4511
the Fermi energy is 15.2595 ev
Writing output data file Ni.save/
Done!
WRITING LINEAR-RESPONSE SUMMARY:
Number of symmetries in the small group of q, nsymq = 16
+ the symmetry q -> -q+G
Symmetry matrices (and vectors of fractional translations if f/=0):
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 180 deg rotation - cart. axis [-1,0,1]
cryst. s( 2) = ( 1 0 0 )
( 1 -1 0 )
( 1 0 -1 )
cart. s( 2) = ( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 3 inversion
cryst. s( 3) = ( -1 0 0 )
( 0 -1 0 )
( 0 0 -1 )
cart. s( 3) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 4 inv. 180 deg rotation - cart. axis [-1,0,1]
cryst. s( 4) = ( -1 0 0 )
( -1 1 0 )
( -1 0 1 )
cart. s( 4) = ( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 5 180 deg rotation - cart. axis [1,0,0]
cryst. s( 5) = ( 0 -1 1 )
( 0 -1 0 )
( 1 -1 0 )
cart. s( 5) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 6 180 deg rotation - cart. axis [0,0,1]
cryst. s( 6) = ( 0 1 -1 )
( 1 0 -1 )
( 0 0 -1 )
cart. s( 6) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 7 inv. 180 deg rotation - cart. axis [0,0,1]
cryst. s( 7) = ( 0 -1 1 )
( -1 0 1 )
( 0 0 1 )
cart. s( 7) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 8 inv. 180 deg rotation - cart. axis [0,1,0]
cryst. s( 8) = ( 1 0 0 )
( 1 0 -1 )
( 1 -1 0 )
cart. s( 8) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 9 inv. 180 deg rotation - cart. axis [1,0,0]
cryst. s( 9) = ( 0 1 -1 )
( 0 1 0 )
( -1 1 0 )
cart. s( 9) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 10 inv. 180 deg rotation - cart. axis [1,0,1]
cryst. s(10) = ( 1 0 0 )
( 0 0 1 )
( 0 1 0 )
cart. s(10) = ( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 11 180 deg rotation - cart. axis [1,0,1]
cryst. s(11) = ( -1 0 0 )
( 0 0 -1 )
( 0 -1 0 )
cart. s(11) = ( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 12 inv. 90 deg rotation - cart. axis [0,1,0]
cryst. s(12) = ( 0 -1 1 )
( 1 -1 0 )
( 0 -1 0 )
cart. s(12) = ( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 13 inv. 90 deg rotation - cart. axis [0,-1,0]
cryst. s(13) = ( 0 1 -1 )
( 0 0 -1 )
( 1 0 -1 )
cart. s(13) = ( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 14 180 deg rotation - cart. axis [0,1,0]
cryst. s(14) = ( -1 0 0 )
( -1 0 1 )
( -1 1 0 )
cart. s(14) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 15 90 deg rotation - cart. axis [0,1,0]
cryst. s(15) = ( 0 1 -1 )
( -1 1 0 )
( 0 1 0 )
cart. s(15) = ( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 16 90 deg rotation - cart. axis [0,-1,0]
cryst. s(16) = ( 0 -1 1 )
( 0 0 1 )
( -1 0 1 )
cart. s(16) = ( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
This transformation sends q -> -q+G
isym = 17 identity
cryst. s(17) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s(17) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
G cutoff = 425.4517 ( 1158 G-vectors) FFT grid: ( 30, 30, 30)
G cutoff = 212.7259 ( 412 G-vectors) smooth grid: ( 24, 24, 24)
Number of k (and k+q if q/=0) points = 16 mv smearing, width (Ry) = 0.0200
cart. coord. (in units 2pi/alat)
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 2) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0000000
k ( 3) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.5000000
k ( 4) = ( 0.5000000 -1.5000000 0.5000000), wk = 0.0000000
k ( 5) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.1250000
k ( 6) = ( 0.0000000 -2.0000000 0.0000000), wk = 0.0000000
k ( 7) = ( -1.0000000 0.0000000 0.0000000), wk = 0.2500000
k ( 8) = ( -1.0000000 -1.0000000 0.0000000), wk = 0.0000000
k ( 9) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 10) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0000000
k ( 11) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.5000000
k ( 12) = ( 0.5000000 -1.5000000 0.5000000), wk = 0.0000000
k ( 13) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.1250000
k ( 14) = ( 0.0000000 -2.0000000 0.0000000), wk = 0.0000000
k ( 15) = ( -1.0000000 0.0000000 0.0000000), wk = 0.2500000
k ( 16) = ( -1.0000000 -1.0000000 0.0000000), wk = 0.0000000
cryst. coord.
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 2) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.0000000
k ( 3) = ( 0.0000000 0.0000000 -0.5000000), wk = 0.5000000
k ( 4) = ( 0.0000000 -0.5000000 -1.0000000), wk = 0.0000000
k ( 5) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.1250000
k ( 6) = ( 0.0000000 -1.0000000 -1.0000000), wk = 0.0000000
k ( 7) = ( 0.5000000 0.0000000 0.5000000), wk = 0.2500000
k ( 8) = ( 0.5000000 -0.5000000 0.0000000), wk = 0.0000000
k ( 9) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 10) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.0000000
k ( 11) = ( 0.0000000 0.0000000 -0.5000000), wk = 0.5000000
k ( 12) = ( 0.0000000 -0.5000000 -1.0000000), wk = 0.0000000
k ( 13) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.1250000
k ( 14) = ( 0.0000000 -1.0000000 -1.0000000), wk = 0.0000000
k ( 15) = ( 0.5000000 0.0000000 0.5000000), wk = 0.2500000
k ( 16) = ( 0.5000000 -0.5000000 0.0000000), wk = 0.0000000
Atomic wfc used for the DFT+U projector are orthogonalized
Total time spent up to now is:
HP : 4.01s CPU 4.12s WALL
=--------------------------------------------=
START SOLVING THE LINEAR SYSTEM
=--------------------------------------------=
atom # 1 q point # 3 iter # 1
chi: 1 -1.6039099143
Average number of iter. to solve lin. system: 13.6
Total CPU time : 4.2 s
atom # 1 q point # 3 iter # 2
chi: 1 11.4704789611 residue: 13.0743888753
Average number of iter. to solve lin. system: 6.5
Total CPU time : 4.3 s
atom # 1 q point # 3 iter # 3
chi: 1 -0.2501380524 residue: 11.7206170134
Average number of iter. to solve lin. system: 5.8
Total CPU time : 4.4 s
atom # 1 q point # 3 iter # 4
chi: 1 -0.1976049135 residue: 0.0525331389
Average number of iter. to solve lin. system: 5.6
Total CPU time : 4.5 s
atom # 1 q point # 3 iter # 5
chi: 1 -0.1567707634 residue: 0.0408341501
Average number of iter. to solve lin. system: 5.0
Total CPU time : 4.6 s
atom # 1 q point # 3 iter # 6
chi: 1 -0.1431368480 residue: 0.0136339154
Average number of iter. to solve lin. system: 5.9
Total CPU time : 4.6 s
atom # 1 q point # 3 iter # 7
chi: 1 -0.1441708012 residue: 0.0010339532
Average number of iter. to solve lin. system: 7.1
Total CPU time : 4.7 s
atom # 1 q point # 3 iter # 8
chi: 1 -0.1445560946 residue: 0.0003852934
Average number of iter. to solve lin. system: 6.6
Total CPU time : 4.8 s
atom # 1 q point # 3 iter # 9
chi: 1 -0.1441371745 residue: 0.0004189201
Average number of iter. to solve lin. system: 6.5
Total CPU time : 4.9 s
atom # 1 q point # 3 iter # 10
chi: 1 -0.1442763592 residue: 0.0001391847
Average number of iter. to solve lin. system: 6.0
Total CPU time : 5.0 s
atom # 1 q point # 3 iter # 11
chi: 1 -0.1442908993 residue: 0.0000145401
Average number of iter. to solve lin. system: 6.6
Total CPU time : 5.0 s
atom # 1 q point # 3 iter # 12
chi: 1 -0.1442097571 residue: 0.0000811422
Average number of iter. to solve lin. system: 5.9
Total CPU time : 5.1 s
atom # 1 q point # 3 iter # 13
chi: 1 -0.1442156633 residue: 0.0000059062
Average number of iter. to solve lin. system: 6.5
Total CPU time : 5.2 s
atom # 1 q point # 3 iter # 14
chi: 1 -0.1442164682 residue: 0.0000008049
Average number of iter. to solve lin. system: 7.1
Total CPU time : 5.3 s
atom # 1 q point # 3 iter # 15
chi: 1 -0.1442164453 residue: 0.0000000229
Average number of iter. to solve lin. system: 6.8
Total CPU time : 5.4 s
atom # 1 q point # 3 iter # 16
chi: 1 -0.1442158881 residue: 0.0000005573
Average number of iter. to solve lin. system: 6.6
Total CPU time : 5.5 s
atom # 1 q point # 3 iter # 17
chi: 1 -0.1442161493 residue: 0.0000002613
Average number of iter. to solve lin. system: 6.6
Total CPU time : 5.6 s
atom # 1 q point # 3 iter # 18
chi: 1 -0.1442161685 residue: 0.0000000192
Average number of iter. to solve lin. system: 6.4
Total CPU time : 5.6 s
atom # 1 q point # 3 iter # 19
chi: 1 -0.1442162322 residue: 0.0000000637
Average number of iter. to solve lin. system: 6.8
Total CPU time : 5.7 s
atom # 1 q point # 3 iter # 20
chi: 1 -0.1442161929 residue: 0.0000000394
Average number of iter. to solve lin. system: 6.2
Total CPU time : 5.8 s
atom # 1 q point # 3 iter # 21
chi: 1 -0.1442161995 residue: 0.0000000067
Average number of iter. to solve lin. system: 6.2
Total CPU time : 5.9 s
=--------------------------------------------=
CONVERGENCE HAS BEEN REACHED
=--------------------------------------------=
Computing the sum over q of the response occupation matrices...
q # 1 = 0.000000000 0.000000000 0.000000000
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
q # 2 = 0.500000000 -0.500000000 0.500000000
Number of q in the star = 4
List of q in the star:
1 0.500000000 -0.500000000 0.500000000
2 0.500000000 0.500000000 -0.500000000
3 -0.500000000 -0.500000000 -0.500000000
4 0.500000000 -0.500000000 -0.500000000
q # 3 = 0.000000000 -1.000000000 0.000000000
Number of q in the star = 3
List of q in the star:
1 0.000000000 -1.000000000 0.000000000
2 -1.000000000 0.000000000 0.000000000
3 0.000000000 0.000000000 1.000000000
Post-processing calculation of Hubbard parameters ...
PRINTING TIMING FROM PWSCF ROUTINES:
init_run : 0.16s CPU 0.16s WALL ( 2 calls)
electrons : 0.37s CPU 0.38s WALL ( 2 calls)
Called by init_run:
wfcinit : 0.00s CPU 0.00s WALL ( 2 calls)
wfcinit:atom : 0.00s CPU 0.00s WALL ( 32 calls)
wfcinit:wfcr : 0.03s CPU 0.03s WALL ( 32 calls)
potinit : 0.01s CPU 0.01s WALL ( 2 calls)
hinit0 : 0.13s CPU 0.13s WALL ( 2 calls)
Called by electrons:
c_bands : 0.37s CPU 0.38s WALL ( 2 calls)
v_of_rho : 0.01s CPU 0.01s WALL ( 3 calls)
v_h : 0.00s CPU 0.00s WALL ( 3 calls)
v_xc : 0.01s CPU 0.01s WALL ( 3 calls)
newd : 0.01s CPU 0.01s WALL ( 3 calls)
Called by c_bands:
init_us_2 : 0.01s CPU 0.01s WALL ( 536 calls)
cegterg : 0.33s CPU 0.34s WALL ( 32 calls)
Called by sum_band:
Called by *egterg:
h_psi : 1.33s CPU 1.40s WALL ( 4145 calls)
s_psi : 0.03s CPU 0.04s WALL ( 8318 calls)
g_psi : 0.00s CPU 0.00s WALL ( 384 calls)
cdiaghg : 0.07s CPU 0.07s WALL ( 416 calls)
cegterg:over : 0.02s CPU 0.02s WALL ( 384 calls)
cegterg:upda : 0.00s CPU 0.00s WALL ( 384 calls)
cegterg:last : 0.00s CPU 0.00s WALL ( 96 calls)
Called by h_psi:
h_psi:pot : 1.27s CPU 1.34s WALL ( 4145 calls)
h_psi:calbec : 0.06s CPU 0.07s WALL ( 4145 calls)
vloc_psi : 1.18s CPU 1.24s WALL ( 4145 calls)
add_vuspsi : 0.02s CPU 0.02s WALL ( 4145 calls)
vhpsi : 0.05s CPU 0.05s WALL ( 4145 calls)
General routines
calbec : 0.14s CPU 0.15s WALL ( 12897 calls)
fft : 0.31s CPU 0.32s WALL ( 1670 calls)
ffts : 0.01s CPU 0.01s WALL ( 258 calls)
fftw : 1.35s CPU 1.40s WALL ( 48808 calls)
interpolate : 0.03s CPU 0.03s WALL ( 224 calls)
davcio : 0.04s CPU 0.05s WALL ( 7997 calls)
Parallel routines
fft_scatt_xy : 0.11s CPU 0.13s WALL ( 50736 calls)
fft_scatt_yz : 0.90s CPU 0.88s WALL ( 50736 calls)
Hubbard U routines
vhpsi : 0.05s CPU 0.05s WALL ( 4145 calls)
init_vloc : 0.00s CPU 0.00s WALL ( 3 calls)
init_us_1 : 0.15s CPU 0.15s WALL ( 3 calls)
newd : 0.01s CPU 0.01s WALL ( 3 calls)
add_vuspsi : 0.02s CPU 0.02s WALL ( 4145 calls)
PRINTING TIMING FROM HP ROUTINES:
hp_setup_q : 0.06s CPU 0.06s WALL ( 3 calls)
hp_init_q : 0.01s CPU 0.01s WALL ( 3 calls)
hp_solve_lin : 4.72s CPU 4.86s WALL ( 3 calls)
hp_dvpsi_per : 0.00s CPU 0.00s WALL ( 406 calls)
hp_dnsq : 0.02s CPU 0.02s WALL ( 53 calls)
hp_symdnsq : 0.01s CPU 0.01s WALL ( 53 calls)
hp_dnstot_su : 0.00s CPU 0.00s WALL ( 1 calls)
hp_rotate_dn : 0.00s CPU 0.00s WALL ( 10 calls)
hp_calc_chi : 0.00s CPU 0.00s WALL ( 1 calls)
hp_vpsifft : 0.13s CPU 0.14s WALL ( 384 calls)
hp_sphi : 0.01s CPU 0.01s WALL ( 3 calls)
hp_ef_shift : 0.00s CPU 0.00s WALL ( 9 calls)
hp_run_nscf : 0.54s CPU 0.56s WALL ( 2 calls)
hp_psymdvscf : 2.19s CPU 2.20s WALL ( 53 calls)
PRINTING TIMING FROM LR MODULE:
ortho : 0.02s CPU 0.02s WALL ( 406 calls)
cgsolve : 1.26s CPU 1.34s WALL ( 406 calls)
ch_psi : 1.20s CPU 1.29s WALL ( 3697 calls)
incdrhoscf : 0.14s CPU 0.15s WALL ( 406 calls)
localdos : 0.01s CPU 0.01s WALL ( 1 calls)
dv_of_drho : 0.30s CPU 0.30s WALL ( 53 calls)
mix_pot : 0.05s CPU 0.05s WALL ( 53 calls)
setup_dgc : 0.05s CPU 0.05s WALL ( 3 calls)
setup_dmuxc : 0.01s CPU 0.01s WALL ( 3 calls)
setup_nbnd_o : 0.00s CPU 0.00s WALL ( 3 calls)
cft_wave : 0.12s CPU 0.13s WALL ( 4328 calls)
USPP ROUTINES:
newdq : 0.24s CPU 0.25s WALL ( 53 calls)
adddvscf : 0.01s CPU 0.01s WALL ( 384 calls)
addusdbec : 0.01s CPU 0.01s WALL ( 406 calls)
addusldos : 0.00s CPU 0.00s WALL ( 1 calls)
HP : 5.76s CPU 5.92s WALL
This run was terminated on: 15:57:35 6Sep2018
=------------------------------------------------------------------------------=
JOB DONE.
=------------------------------------------------------------------------------=