mirror of https://gitlab.com/QEF/q-e.git
278 lines
9.0 KiB
Fortran
278 lines
9.0 KiB
Fortran
!
|
|
! Copyright (C) 2001-2013 Quantum ESPRESSO group
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!
|
|
!
|
|
|
|
!
|
|
!
|
|
!----------------------------------------------------------------------
|
|
subroutine cgsolve_all_gamma (h_psi, cg_psi, e, d0psi, dpsi, h_diag, &
|
|
ndmx, ndim, ethr, ik, kter, conv_root, anorm, nbnd, npol)
|
|
!----------------------------------------------------------------------
|
|
!
|
|
! iterative solution of the linear system:
|
|
!
|
|
! ( h - e + Q ) * dpsi = d0psi (1)
|
|
!
|
|
! where h is a complex hermitean matrix, e is a real sca
|
|
! dpsi and d0psi are complex vectors
|
|
!
|
|
! on input:
|
|
! h_psi EXTERNAL name of a subroutine:
|
|
! h_psi(ndim,psi,psip)
|
|
! Calculates H*psi products.
|
|
! Vectors psi and psip should be dimensined
|
|
! (ndmx,nvec). nvec=1 is used!
|
|
!
|
|
! cg_psi EXTERNAL name of a subroutine:
|
|
! g_psi(ndmx,ndim,notcnv,psi,e)
|
|
! which calculates (h-e)^-1 * psi, with
|
|
! some approximation, e.g. (diag(h)-e)
|
|
!
|
|
! e real unperturbed eigenvalue.
|
|
!
|
|
! dpsi contains an estimate of the solution
|
|
! vector.
|
|
!
|
|
! d0psi contains the right hand side vector
|
|
! of the system.
|
|
!
|
|
! ndmx integer row dimension of dpsi, ecc.
|
|
!
|
|
! ndim integer actual row dimension of dpsi
|
|
!
|
|
! ethr real convergence threshold. solution
|
|
! improvement is stopped when the error in
|
|
! eq (1), defined as l.h.s. - r.h.s., becomes
|
|
! less than ethr in norm.
|
|
!
|
|
! on output: dpsi contains the refined estimate of the
|
|
! solution vector.
|
|
!
|
|
! d0psi is corrupted on exit
|
|
!
|
|
! revised (extensively) 6 Apr 1997 by A. Dal Corso & F. Mauri
|
|
! revised (to reduce memory) 29 May 2004 by S. de Gironcoli
|
|
!
|
|
USE kinds, ONLY : DP
|
|
USE mp_pools, ONLY : intra_pool_comm
|
|
USE mp, ONLY : mp_sum
|
|
USE control_flags, ONLY : gamma_only
|
|
USE gvect, ONLY : gstart
|
|
|
|
implicit none
|
|
!
|
|
! first the I/O variables
|
|
!
|
|
integer :: ndmx, & ! input: the maximum dimension of the vectors
|
|
ndim, & ! input: the actual dimension of the vectors
|
|
kter, & ! output: counter on iterations
|
|
nbnd, & ! input: the number of bands
|
|
npol, & ! input: number of components of the wavefunctions
|
|
ik ! input: the k point
|
|
|
|
real(DP) :: &
|
|
e(nbnd), & ! input: the actual eigenvalue
|
|
anorm, & ! output: the norm of the error in the solution
|
|
h_diag(ndmx*npol,nbnd), & ! input: an estimate of ( H - \epsilon )
|
|
ethr ! input: the required precision
|
|
|
|
complex(DP) :: &
|
|
dpsi (ndmx*npol, nbnd), & ! output: the solution of the linear syst
|
|
d0psi (ndmx*npol, nbnd) ! input: the known term
|
|
|
|
logical :: conv_root ! output: if true the root is converged
|
|
external h_psi ! input: the routine computing h_psi
|
|
external cg_psi ! input: the routine computing cg_psi
|
|
!
|
|
! here the local variables
|
|
!
|
|
integer, parameter :: maxter = 200
|
|
! the maximum number of iterations
|
|
integer :: iter, ibnd, lbnd
|
|
! counters on iteration, bands
|
|
integer , allocatable :: conv (:)
|
|
! if 1 the root is converged
|
|
|
|
complex(DP), allocatable :: g (:,:), t (:,:), h (:,:), hold (:,:)
|
|
! the gradient of psi
|
|
! the preconditioned gradient
|
|
! the delta gradient
|
|
! the conjugate gradient
|
|
! work space
|
|
complex(DP) :: dcgamma, dclambda
|
|
! the ratio between rho
|
|
! step length
|
|
complex(DP), external :: zdotc
|
|
REAL(kind=dp), EXTERNAL :: ddot
|
|
! the scalar product
|
|
real(DP), allocatable :: rho (:), rhoold (:), eu (:), a(:), c(:)
|
|
! the residue
|
|
! auxiliary for h_diag
|
|
real(DP) :: kter_eff
|
|
! account the number of iterations with b
|
|
! coefficient of quadratic form
|
|
!
|
|
call start_clock ('cgsolve')
|
|
allocate ( g(ndmx*npol,nbnd), t(ndmx*npol,nbnd), h(ndmx*npol,nbnd), &
|
|
hold(ndmx*npol ,nbnd) )
|
|
allocate (a(nbnd), c(nbnd))
|
|
allocate (conv ( nbnd))
|
|
allocate (rho(nbnd),rhoold(nbnd))
|
|
allocate (eu ( nbnd))
|
|
! WRITE( stdout,*) g,t,h,hold
|
|
|
|
kter_eff = 0.d0
|
|
do ibnd = 1, nbnd
|
|
conv (ibnd) = 0
|
|
enddo
|
|
g=(0.d0,0.d0)
|
|
t=(0.d0,0.d0)
|
|
h=(0.d0,0.d0)
|
|
hold=(0.d0,0.d0)
|
|
do iter = 1, maxter
|
|
!
|
|
! compute the gradient. can reuse information from previous step
|
|
!
|
|
if (iter == 1) then
|
|
call h_psi (ndim, dpsi, g, e, ik, nbnd)
|
|
do ibnd = 1, nbnd
|
|
call zaxpy (ndim, (-1.d0,0.d0), d0psi(1,ibnd), 1, g(1,ibnd), 1)
|
|
enddo
|
|
IF (npol==2) THEN
|
|
do ibnd = 1, nbnd
|
|
call zaxpy (ndim, (-1.d0,0.d0), d0psi(ndmx+1,ibnd), 1, &
|
|
g(ndmx+1,ibnd), 1)
|
|
enddo
|
|
END IF
|
|
endif
|
|
!
|
|
! compute preconditioned residual vector and convergence check
|
|
!
|
|
lbnd = 0
|
|
do ibnd = 1, nbnd
|
|
if (conv (ibnd) .eq.0) then
|
|
lbnd = lbnd+1
|
|
call zcopy (ndmx*npol, g (1, ibnd), 1, h (1, ibnd), 1)
|
|
call cg_psi(ndmx, ndim, 1, h(1,ibnd), h_diag(1,ibnd) )
|
|
|
|
IF (gamma_only) THEN
|
|
rho(lbnd)=2.0d0*ddot(2*ndmx*npol,h(1,ibnd),1,g(1,ibnd),1)
|
|
IF(gstart==2) THEN
|
|
rho(lbnd)=rho(lbnd)-DBLE(h(1,ibnd))*DBLE(g(1,ibnd))
|
|
ENDIF
|
|
ELSE
|
|
rho(lbnd) = zdotc (ndmx*npol, h(1,ibnd), 1, g(1,ibnd), 1)
|
|
ENDIF
|
|
|
|
endif
|
|
enddo
|
|
kter_eff = kter_eff + DBLE (lbnd) / DBLE (nbnd)
|
|
#if defined(__MPI)
|
|
call mp_sum( rho(1:lbnd) , intra_pool_comm )
|
|
#endif
|
|
do ibnd = nbnd, 1, -1
|
|
if (conv(ibnd).eq.0) then
|
|
rho(ibnd)=rho(lbnd)
|
|
lbnd = lbnd -1
|
|
anorm = sqrt (rho (ibnd) )
|
|
! write(6,*) ibnd, anorm
|
|
if (anorm.lt.ethr) conv (ibnd) = 1
|
|
endif
|
|
enddo
|
|
!
|
|
conv_root = .true.
|
|
do ibnd = 1, nbnd
|
|
conv_root = conv_root.and. (conv (ibnd) .eq.1)
|
|
enddo
|
|
if (conv_root) goto 100
|
|
!
|
|
! compute the step direction h. Conjugate it to previous step
|
|
!
|
|
lbnd = 0
|
|
do ibnd = 1, nbnd
|
|
if (conv (ibnd) .eq.0) then
|
|
!
|
|
! change sign to h
|
|
!
|
|
call dscal (2 * ndmx * npol, - 1.d0, h (1, ibnd), 1)
|
|
if (iter.ne.1) then
|
|
dcgamma = rho (ibnd) / rhoold (ibnd)
|
|
call zaxpy (ndmx*npol, dcgamma, hold (1, ibnd), 1, h (1, ibnd), 1)
|
|
endif
|
|
|
|
!
|
|
! here hold is used as auxiliary vector in order to efficiently compute t = A*h
|
|
! it is later set to the current (becoming old) value of h
|
|
!
|
|
lbnd = lbnd+1
|
|
call zcopy (ndmx*npol, h (1, ibnd), 1, hold (1, lbnd), 1)
|
|
eu (lbnd) = e (ibnd)
|
|
endif
|
|
enddo
|
|
!
|
|
! compute t = A*h
|
|
!
|
|
call h_psi (ndim, hold, t, eu, ik, lbnd)
|
|
!
|
|
! compute the coefficients a and c for the line minimization
|
|
! compute step length lambda
|
|
lbnd=0
|
|
do ibnd = 1, nbnd
|
|
if (conv (ibnd) .eq.0) then
|
|
lbnd=lbnd+1
|
|
IF (gamma_only) THEN
|
|
a(lbnd) = 2.0d0*ddot(2*ndmx*npol,h(1,ibnd),1,g(1,ibnd),1)
|
|
c(lbnd) = 2.0d0*ddot(2*ndmx*npol,h(1,ibnd),1,t(1,lbnd),1)
|
|
IF (gstart == 2) THEN
|
|
a(lbnd)=a(lbnd)-DBLE(h(1,ibnd))*DBLE(g(1,ibnd))
|
|
c(lbnd)=c(lbnd)-DBLE(h(1,ibnd))*DBLE(t(1,lbnd))
|
|
ENDIF
|
|
ELSE
|
|
a(lbnd) = zdotc (ndmx*npol, h(1,ibnd), 1, g(1,ibnd), 1)
|
|
c(lbnd) = zdotc (ndmx*npol, h(1,ibnd), 1, t(1,lbnd), 1)
|
|
ENDIF
|
|
end if
|
|
end do
|
|
#if defined(__MPI)
|
|
call mp_sum( a(1:lbnd), intra_pool_comm )
|
|
call mp_sum( c(1:lbnd), intra_pool_comm )
|
|
#endif
|
|
lbnd=0
|
|
do ibnd = 1, nbnd
|
|
if (conv (ibnd) .eq.0) then
|
|
lbnd=lbnd+1
|
|
dclambda = CMPLX( - a(lbnd) / c(lbnd), 0.d0,kind=DP)
|
|
!
|
|
! move to new position
|
|
!
|
|
call zaxpy (ndmx*npol, dclambda, h(1,ibnd), 1, dpsi(1,ibnd), 1)
|
|
!
|
|
! update to get the gradient
|
|
!
|
|
!g=g+lam
|
|
call zaxpy (ndmx*npol, dclambda, t(1,lbnd), 1, g(1,ibnd), 1)
|
|
!
|
|
! save current (now old) h and rho for later use
|
|
!
|
|
call zcopy (ndmx*npol, h(1,ibnd), 1, hold(1,ibnd), 1)
|
|
rhoold (ibnd) = rho (ibnd)
|
|
endif
|
|
enddo
|
|
enddo
|
|
100 continue
|
|
kter = kter_eff
|
|
deallocate (eu)
|
|
deallocate (rho, rhoold)
|
|
deallocate (conv)
|
|
deallocate (a,c)
|
|
deallocate (g, t, h, hold)
|
|
|
|
call stop_clock ('cgsolve')
|
|
return
|
|
end subroutine cgsolve_all_gamma
|