quantum-espresso/test-suite/ph_metal/benchmark.out.git.inp=al.el...

1913 lines
73 KiB
Plaintext

Program PHONON v.6.5 starts on 20Mar2020 at 14:53:48
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 1 processors
MPI processes distributed on 1 nodes
Reading xml data from directory:
./aluminum.save/
Message from routine qexsd_readschema :
input info not found or not readable in xml file
IMPORTANT: XC functional enforced from input :
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 43 869 869 181
Reading collected, re-writing distributed wavefunctions
Dynamical matrices for ( 4, 4, 4) uniform grid of q-points
( 8 q-points):
N xq(1) xq(2) xq(3)
1 0.000000000 0.000000000 0.000000000
2 -0.250000000 0.250000000 -0.250000000
3 0.500000000 -0.500000000 0.500000000
4 0.000000000 0.500000000 0.000000000
5 0.750000000 -0.250000000 0.750000000
6 0.500000000 0.000000000 0.500000000
7 0.000000000 -1.000000000 0.000000000
8 -0.500000000 -1.000000000 0.000000000
Calculation of q = 0.0000000 0.0000000 0.0000000
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( 0.00000 0.00000 0.00000 )
Computing dynamical matrix for
q = ( 0.0000000 0.0000000 0.0000000 )
49 Sym.Ops. (with q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 29 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, O_h (m-3m) point group:
Atomic displacements:
There are 1 irreducible representations
Representation 1 3 modes -T_1u G_15 G_4- To be done
PHONON : 0.15s CPU 0.16s WALL
Reading dVscf from file aldv
Reading dynamics matrix from file al.dyn1
Diagonalizing the dynamical matrix
q = ( 0.000000000 0.000000000 0.000000000 )
**************************************************************************
freq ( 1) = 0.169231 [THz] = 5.644932 [cm-1]
freq ( 2) = 0.169231 [THz] = 5.644932 [cm-1]
freq ( 3) = 0.169231 [THz] = 5.644932 [cm-1]
**************************************************************************
electron-phonon interaction ...
Gaussian Broadening: 0.005 Ry, ngauss= 0
DOS = 1.339210 states/spin/Ry/Unit Cell at Ef= 8.321794 eV
lambda( 1)= 0.0000 gamma= 0.00 GHz
lambda( 2)= 0.0000 gamma= 0.00 GHz
lambda( 3)= 0.0000 gamma= 0.00 GHz
Gaussian Broadening: 0.010 Ry, ngauss= 0
DOS = 1.881761 states/spin/Ry/Unit Cell at Ef= 8.327154 eV
lambda( 1)= 0.0000 gamma= 0.00 GHz
lambda( 2)= 0.0000 gamma= 0.00 GHz
lambda( 3)= 0.0000 gamma= 0.00 GHz
Gaussian Broadening: 0.015 Ry, ngauss= 0
DOS = 2.123229 states/spin/Ry/Unit Cell at Ef= 8.328622 eV
lambda( 1)= 0.0000 gamma= 0.00 GHz
lambda( 2)= 0.0000 gamma= 0.00 GHz
lambda( 3)= 0.0000 gamma= 0.00 GHz
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.249739 states/spin/Ry/Unit Cell at Ef= 8.324320 eV
lambda( 1)= 0.0000 gamma= 0.03 GHz
lambda( 2)= 0.0000 gamma= 0.03 GHz
lambda( 3)= 0.0000 gamma= 0.03 GHz
Gaussian Broadening: 0.025 Ry, ngauss= 0
DOS = 2.329803 states/spin/Ry/Unit Cell at Ef= 8.317862 eV
lambda( 1)= 0.0000 gamma= 0.09 GHz
lambda( 2)= 0.0000 gamma= 0.09 GHz
lambda( 3)= 0.0000 gamma= 0.09 GHz
Gaussian Broadening: 0.030 Ry, ngauss= 0
DOS = 2.396029 states/spin/Ry/Unit Cell at Ef= 8.311297 eV
lambda( 1)= 0.0000 gamma= 0.17 GHz
lambda( 2)= 0.0000 gamma= 0.17 GHz
lambda( 3)= 0.0000 gamma= 0.17 GHz
Gaussian Broadening: 0.035 Ry, ngauss= 0
DOS = 2.455226 states/spin/Ry/Unit Cell at Ef= 8.305263 eV
lambda( 1)= 0.0000 gamma= 0.26 GHz
lambda( 2)= 0.0000 gamma= 0.26 GHz
lambda( 3)= 0.0000 gamma= 0.26 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.507873 states/spin/Ry/Unit Cell at Ef= 8.299956 eV
lambda( 1)= 0.0000 gamma= 0.37 GHz
lambda( 2)= 0.0000 gamma= 0.37 GHz
lambda( 3)= 0.0000 gamma= 0.37 GHz
Gaussian Broadening: 0.045 Ry, ngauss= 0
DOS = 2.552966 states/spin/Ry/Unit Cell at Ef= 8.295412 eV
lambda( 1)= 0.0000 gamma= 0.49 GHz
lambda( 2)= 0.0000 gamma= 0.49 GHz
lambda( 3)= 0.0000 gamma= 0.49 GHz
Gaussian Broadening: 0.050 Ry, ngauss= 0
DOS = 2.589582 states/spin/Ry/Unit Cell at Ef= 8.291554 eV
lambda( 1)= 0.0000 gamma= 0.63 GHz
lambda( 2)= 0.0000 gamma= 0.63 GHz
lambda( 3)= 0.0000 gamma= 0.63 GHz
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
Calculation of q = -0.2500000 0.2500000 -0.2500000
Subspace diagonalization in iterative solution of the eigenvalue problem:
a serial algorithm will be used
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 55 869 869 259
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
number of k points= 240 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.53 MB
The potential is recalculated from file :
./_ph0/aluminum.q_2/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.6
total cpu time spent up to now is 2.2 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_2/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( 0.00000 0.00000 0.00000 )
Computing dynamical matrix for
q = ( -0.2500000 0.2500000 -0.2500000 )
6 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 240 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_3v (3m) point group:
Atomic displacements:
There are 2 irreducible representations
Representation 1 1 modes -A_1 L_1 To be done
Representation 2 2 modes -E L_3 To be done
PHONON : 3.43s CPU 3.54s WALL
Reading dVscf from file aldv
Reading dynamics matrix from file al.dyn2
Diagonalizing the dynamical matrix
q = ( -0.250000000 0.250000000 -0.250000000 )
**************************************************************************
freq ( 1) = 3.512865 [THz] = 117.176558 [cm-1]
freq ( 2) = 3.512865 [THz] = 117.176558 [cm-1]
freq ( 3) = 6.337242 [THz] = 211.387635 [cm-1]
**************************************************************************
electron-phonon interaction ...
Gaussian Broadening: 0.005 Ry, ngauss= 0
DOS = 1.339210 states/spin/Ry/Unit Cell at Ef= 8.321794 eV
lambda( 1)= 0.0022 gamma= 0.04 GHz
lambda( 2)= 0.0023 gamma= 0.04 GHz
lambda( 3)= 0.0285 gamma= 1.47 GHz
Gaussian Broadening: 0.010 Ry, ngauss= 0
DOS = 1.881761 states/spin/Ry/Unit Cell at Ef= 8.327154 eV
lambda( 1)= 0.0202 gamma= 0.45 GHz
lambda( 2)= 0.0209 gamma= 0.46 GHz
lambda( 3)= 0.2322 gamma= 16.75 GHz
Gaussian Broadening: 0.015 Ry, ngauss= 0
DOS = 2.123229 states/spin/Ry/Unit Cell at Ef= 8.328622 eV
lambda( 1)= 0.0248 gamma= 0.62 GHz
lambda( 2)= 0.0253 gamma= 0.63 GHz
lambda( 3)= 0.2281 gamma= 18.57 GHz
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.249739 states/spin/Ry/Unit Cell at Ef= 8.324320 eV
lambda( 1)= 0.0284 gamma= 0.75 GHz
lambda( 2)= 0.0282 gamma= 0.75 GHz
lambda( 3)= 0.2029 gamma= 17.50 GHz
Gaussian Broadening: 0.025 Ry, ngauss= 0
DOS = 2.329803 states/spin/Ry/Unit Cell at Ef= 8.317862 eV
lambda( 1)= 0.0326 gamma= 0.89 GHz
lambda( 2)= 0.0321 gamma= 0.88 GHz
lambda( 3)= 0.1883 gamma= 16.82 GHz
Gaussian Broadening: 0.030 Ry, ngauss= 0
DOS = 2.396029 states/spin/Ry/Unit Cell at Ef= 8.311297 eV
lambda( 1)= 0.0371 gamma= 1.05 GHz
lambda( 2)= 0.0366 gamma= 1.03 GHz
lambda( 3)= 0.1845 gamma= 16.96 GHz
Gaussian Broadening: 0.035 Ry, ngauss= 0
DOS = 2.455226 states/spin/Ry/Unit Cell at Ef= 8.305263 eV
lambda( 1)= 0.0416 gamma= 1.20 GHz
lambda( 2)= 0.0410 gamma= 1.19 GHz
lambda( 3)= 0.1880 gamma= 17.70 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.507873 states/spin/Ry/Unit Cell at Ef= 8.299956 eV
lambda( 1)= 0.0459 gamma= 1.36 GHz
lambda( 2)= 0.0452 gamma= 1.34 GHz
lambda( 3)= 0.1957 gamma= 18.82 GHz
Gaussian Broadening: 0.045 Ry, ngauss= 0
DOS = 2.552966 states/spin/Ry/Unit Cell at Ef= 8.295412 eV
lambda( 1)= 0.0498 gamma= 1.50 GHz
lambda( 2)= 0.0489 gamma= 1.47 GHz
lambda( 3)= 0.2053 gamma= 20.10 GHz
Gaussian Broadening: 0.050 Ry, ngauss= 0
DOS = 2.589582 states/spin/Ry/Unit Cell at Ef= 8.291554 eV
lambda( 1)= 0.0532 gamma= 1.62 GHz
lambda( 2)= 0.0521 gamma= 1.59 GHz
lambda( 3)= 0.2153 gamma= 21.39 GHz
Number of q in the star = 8
List of q in the star:
1 -0.250000000 0.250000000 -0.250000000
2 0.250000000 -0.250000000 -0.250000000
3 0.250000000 -0.250000000 0.250000000
4 0.250000000 0.250000000 0.250000000
5 -0.250000000 -0.250000000 -0.250000000
6 -0.250000000 -0.250000000 0.250000000
7 -0.250000000 0.250000000 0.250000000
8 0.250000000 0.250000000 -0.250000000
Calculation of q = 0.5000000 -0.5000000 0.5000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 61 869 869 331
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
number of k points= 130 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.53 MB
The potential is recalculated from file :
./_ph0/aluminum.q_3/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.8
total cpu time spent up to now is 3.4 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_3/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( 0.00000 0.00000 0.00000 )
Computing dynamical matrix for
q = ( 0.5000000 -0.5000000 0.5000000 )
13 Sym.Ops. (with q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 130 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, D_3d (-3m) point group:
Atomic displacements:
There are 2 irreducible representations
Representation 1 1 modes -A_2u L_2' To be done
Representation 2 2 modes -E_u L_3' To be done
PHONON : 6.13s CPU 6.30s WALL
Reading dVscf from file aldv
Reading dynamics matrix from file al.dyn3
Diagonalizing the dynamical matrix
q = ( 0.500000000 -0.500000000 0.500000000 )
**************************************************************************
freq ( 1) = 4.438808 [THz] = 148.062713 [cm-1]
freq ( 2) = 4.438808 [THz] = 148.062713 [cm-1]
freq ( 3) = 9.422660 [THz] = 314.306122 [cm-1]
**************************************************************************
electron-phonon interaction ...
Gaussian Broadening: 0.005 Ry, ngauss= 0
DOS = 1.339210 states/spin/Ry/Unit Cell at Ef= 8.321794 eV
lambda( 1)= 0.0000 gamma= 0.00 GHz
lambda( 2)= 0.0000 gamma= 0.00 GHz
lambda( 3)= 0.0000 gamma= 0.00 GHz
Gaussian Broadening: 0.010 Ry, ngauss= 0
DOS = 1.881761 states/spin/Ry/Unit Cell at Ef= 8.327154 eV
lambda( 1)= 0.0293 gamma= 1.04 GHz
lambda( 2)= 0.0263 gamma= 0.93 GHz
lambda( 3)= 0.0398 gamma= 6.36 GHz
Gaussian Broadening: 0.015 Ry, ngauss= 0
DOS = 2.123229 states/spin/Ry/Unit Cell at Ef= 8.328622 eV
lambda( 1)= 0.0674 gamma= 2.69 GHz
lambda( 2)= 0.0610 gamma= 2.44 GHz
lambda( 3)= 0.1003 gamma= 18.06 GHz
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.249739 states/spin/Ry/Unit Cell at Ef= 8.324320 eV
lambda( 1)= 0.0786 gamma= 3.33 GHz
lambda( 2)= 0.0723 gamma= 3.06 GHz
lambda( 3)= 0.1262 gamma= 24.07 GHz
Gaussian Broadening: 0.025 Ry, ngauss= 0
DOS = 2.329803 states/spin/Ry/Unit Cell at Ef= 8.317862 eV
lambda( 1)= 0.0833 gamma= 3.65 GHz
lambda( 2)= 0.0785 gamma= 3.44 GHz
lambda( 3)= 0.1412 gamma= 27.90 GHz
Gaussian Broadening: 0.030 Ry, ngauss= 0
DOS = 2.396029 states/spin/Ry/Unit Cell at Ef= 8.311297 eV
lambda( 1)= 0.0860 gamma= 3.88 GHz
lambda( 2)= 0.0829 gamma= 3.74 GHz
lambda( 3)= 0.1501 gamma= 30.49 GHz
Gaussian Broadening: 0.035 Ry, ngauss= 0
DOS = 2.455226 states/spin/Ry/Unit Cell at Ef= 8.305263 eV
lambda( 1)= 0.0876 gamma= 4.05 GHz
lambda( 2)= 0.0860 gamma= 3.97 GHz
lambda( 3)= 0.1550 gamma= 32.26 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.507873 states/spin/Ry/Unit Cell at Ef= 8.299956 eV
lambda( 1)= 0.0888 gamma= 4.19 GHz
lambda( 2)= 0.0884 gamma= 4.17 GHz
lambda( 3)= 0.1582 gamma= 33.65 GHz
Gaussian Broadening: 0.045 Ry, ngauss= 0
DOS = 2.552966 states/spin/Ry/Unit Cell at Ef= 8.295412 eV
lambda( 1)= 0.0898 gamma= 4.31 GHz
lambda( 2)= 0.0903 gamma= 4.34 GHz
lambda( 3)= 0.1608 gamma= 34.80 GHz
Gaussian Broadening: 0.050 Ry, ngauss= 0
DOS = 2.589582 states/spin/Ry/Unit Cell at Ef= 8.291554 eV
lambda( 1)= 0.0904 gamma= 4.41 GHz
lambda( 2)= 0.0916 gamma= 4.46 GHz
lambda( 3)= 0.1628 gamma= 35.73 GHz
Number of q in the star = 4
List of q in the star:
1 0.500000000 -0.500000000 0.500000000
2 0.500000000 0.500000000 0.500000000
3 -0.500000000 0.500000000 0.500000000
4 0.500000000 0.500000000 -0.500000000
Calculation of q = 0.0000000 0.5000000 0.0000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 55 869 869 259
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
number of k points= 200 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.53 MB
The potential is recalculated from file :
./_ph0/aluminum.q_4/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.3
total cpu time spent up to now is 5.3 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_4/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( 0.00000 0.00000 0.00000 )
Computing dynamical matrix for
q = ( 0.0000000 0.5000000 0.0000000 )
8 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 200 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_4v (4mm) point group:
Atomic displacements:
There are 2 irreducible representations
Representation 1 1 modes -A_1 G_1 D_1 To be done
Representation 2 2 modes -E G_5 D_5 To be done
PHONON : 9.16s CPU 9.42s WALL
Reading dVscf from file aldv
Reading dynamics matrix from file al.dyn4
Diagonalizing the dynamical matrix
q = ( 0.000000000 0.500000000 0.000000000 )
**************************************************************************
freq ( 1) = 4.200502 [THz] = 140.113680 [cm-1]
freq ( 2) = 4.200502 [THz] = 140.113680 [cm-1]
freq ( 3) = 6.475071 [THz] = 215.985116 [cm-1]
**************************************************************************
electron-phonon interaction ...
Gaussian Broadening: 0.005 Ry, ngauss= 0
DOS = 1.339210 states/spin/Ry/Unit Cell at Ef= 8.321794 eV
lambda( 1)= 0.0004 gamma= 0.01 GHz
lambda( 2)= 0.0004 gamma= 0.01 GHz
lambda( 3)= 0.0021 gamma= 0.11 GHz
Gaussian Broadening: 0.010 Ry, ngauss= 0
DOS = 1.881761 states/spin/Ry/Unit Cell at Ef= 8.327154 eV
lambda( 1)= 0.0592 gamma= 1.88 GHz
lambda( 2)= 0.0592 gamma= 1.88 GHz
lambda( 3)= 0.0611 gamma= 4.60 GHz
Gaussian Broadening: 0.015 Ry, ngauss= 0
DOS = 2.123229 states/spin/Ry/Unit Cell at Ef= 8.328622 eV
lambda( 1)= 0.1026 gamma= 3.67 GHz
lambda( 2)= 0.1026 gamma= 3.67 GHz
lambda( 3)= 0.0896 gamma= 7.62 GHz
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.249739 states/spin/Ry/Unit Cell at Ef= 8.324320 eV
lambda( 1)= 0.1110 gamma= 4.21 GHz
lambda( 2)= 0.1110 gamma= 4.21 GHz
lambda( 3)= 0.1116 gamma= 10.05 GHz
Gaussian Broadening: 0.025 Ry, ngauss= 0
DOS = 2.329803 states/spin/Ry/Unit Cell at Ef= 8.317862 eV
lambda( 1)= 0.1149 gamma= 4.51 GHz
lambda( 2)= 0.1149 gamma= 4.51 GHz
lambda( 3)= 0.1428 gamma= 13.32 GHz
Gaussian Broadening: 0.030 Ry, ngauss= 0
DOS = 2.396029 states/spin/Ry/Unit Cell at Ef= 8.311297 eV
lambda( 1)= 0.1209 gamma= 4.88 GHz
lambda( 2)= 0.1209 gamma= 4.88 GHz
lambda( 3)= 0.1730 gamma= 16.60 GHz
Gaussian Broadening: 0.035 Ry, ngauss= 0
DOS = 2.455226 states/spin/Ry/Unit Cell at Ef= 8.305263 eV
lambda( 1)= 0.1285 gamma= 5.32 GHz
lambda( 2)= 0.1285 gamma= 5.32 GHz
lambda( 3)= 0.1968 gamma= 19.34 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.507873 states/spin/Ry/Unit Cell at Ef= 8.299956 eV
lambda( 1)= 0.1365 gamma= 5.77 GHz
lambda( 2)= 0.1365 gamma= 5.77 GHz
lambda( 3)= 0.2146 gamma= 21.55 GHz
Gaussian Broadening: 0.045 Ry, ngauss= 0
DOS = 2.552966 states/spin/Ry/Unit Cell at Ef= 8.295412 eV
lambda( 1)= 0.1438 gamma= 6.18 GHz
lambda( 2)= 0.1438 gamma= 6.18 GHz
lambda( 3)= 0.2282 gamma= 23.33 GHz
Gaussian Broadening: 0.050 Ry, ngauss= 0
DOS = 2.589582 states/spin/Ry/Unit Cell at Ef= 8.291554 eV
lambda( 1)= 0.1498 gamma= 6.54 GHz
lambda( 2)= 0.1498 gamma= 6.54 GHz
lambda( 3)= 0.2386 gamma= 24.74 GHz
Number of q in the star = 6
List of q in the star:
1 0.000000000 0.500000000 0.000000000
2 0.000000000 -0.500000000 0.000000000
3 0.500000000 0.000000000 0.000000000
4 0.000000000 0.000000000 0.500000000
5 0.000000000 0.000000000 -0.500000000
6 -0.500000000 0.000000000 0.000000000
Calculation of q = 0.7500000 -0.2500000 0.7500000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 61 869 869 339
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
number of k points= 576 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.53 MB
The potential is recalculated from file :
./_ph0/aluminum.q_5/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.4
total cpu time spent up to now is 10.5 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_5/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( 0.00000 0.00000 0.00000 )
Computing dynamical matrix for
q = ( 0.7500000 -0.2500000 0.7500000 )
2 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 576 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_s (m) point group:
Atomic displacements:
There are 3 irreducible representations
Representation 1 1 modes -A' To be done
Representation 2 1 modes -A' To be done
Representation 3 1 modes -A'' To be done
PHONON : 15.67s CPU 16.14s WALL
Reading dVscf from file aldv
Reading dynamics matrix from file al.dyn5
Diagonalizing the dynamical matrix
q = ( 0.750000000 -0.250000000 0.750000000 )
**************************************************************************
freq ( 1) = 5.392366 [THz] = 179.869983 [cm-1]
freq ( 2) = 6.718298 [THz] = 224.098299 [cm-1]
freq ( 3) = 8.795520 [THz] = 293.386982 [cm-1]
**************************************************************************
electron-phonon interaction ...
Gaussian Broadening: 0.005 Ry, ngauss= 0
DOS = 1.339210 states/spin/Ry/Unit Cell at Ef= 8.321794 eV
lambda( 1)= 0.0085 gamma= 0.32 GHz
lambda( 2)= 0.0210 gamma= 1.21 GHz
lambda( 3)= 0.0283 gamma= 2.80 GHz
Gaussian Broadening: 0.010 Ry, ngauss= 0
DOS = 1.881761 states/spin/Ry/Unit Cell at Ef= 8.327154 eV
lambda( 1)= 0.0619 gamma= 3.23 GHz
lambda( 2)= 0.1348 gamma= 10.93 GHz
lambda( 3)= 0.2010 gamma= 27.94 GHz
Gaussian Broadening: 0.015 Ry, ngauss= 0
DOS = 2.123229 states/spin/Ry/Unit Cell at Ef= 8.328622 eV
lambda( 1)= 0.0789 gamma= 4.65 GHz
lambda( 2)= 0.1335 gamma= 12.22 GHz
lambda( 3)= 0.2252 gamma= 35.33 GHz
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.249739 states/spin/Ry/Unit Cell at Ef= 8.324320 eV
lambda( 1)= 0.0855 gamma= 5.34 GHz
lambda( 2)= 0.1171 gamma= 11.35 GHz
lambda( 3)= 0.2246 gamma= 37.33 GHz
Gaussian Broadening: 0.025 Ry, ngauss= 0
DOS = 2.329803 states/spin/Ry/Unit Cell at Ef= 8.317862 eV
lambda( 1)= 0.0864 gamma= 5.59 GHz
lambda( 2)= 0.1046 gamma= 10.50 GHz
lambda( 3)= 0.2162 gamma= 37.21 GHz
Gaussian Broadening: 0.030 Ry, ngauss= 0
DOS = 2.396029 states/spin/Ry/Unit Cell at Ef= 8.311297 eV
lambda( 1)= 0.0867 gamma= 5.77 GHz
lambda( 2)= 0.0976 gamma= 10.08 GHz
lambda( 3)= 0.2084 gamma= 36.88 GHz
Gaussian Broadening: 0.035 Ry, ngauss= 0
DOS = 2.455226 states/spin/Ry/Unit Cell at Ef= 8.305263 eV
lambda( 1)= 0.0876 gamma= 5.97 GHz
lambda( 2)= 0.0945 gamma= 10.00 GHz
lambda( 3)= 0.2035 gamma= 36.92 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.507873 states/spin/Ry/Unit Cell at Ef= 8.299956 eV
lambda( 1)= 0.0889 gamma= 6.19 GHz
lambda( 2)= 0.0938 gamma= 10.14 GHz
lambda( 3)= 0.2015 gamma= 37.33 GHz
Gaussian Broadening: 0.045 Ry, ngauss= 0
DOS = 2.552966 states/spin/Ry/Unit Cell at Ef= 8.295412 eV
lambda( 1)= 0.0904 gamma= 6.41 GHz
lambda( 2)= 0.0943 gamma= 10.38 GHz
lambda( 3)= 0.2014 gamma= 37.98 GHz
Gaussian Broadening: 0.050 Ry, ngauss= 0
DOS = 2.589582 states/spin/Ry/Unit Cell at Ef= 8.291554 eV
lambda( 1)= 0.0918 gamma= 6.60 GHz
lambda( 2)= 0.0955 gamma= 10.66 GHz
lambda( 3)= 0.2023 gamma= 38.70 GHz
Number of q in the star = 24
List of q in the star:
1 0.750000000 -0.250000000 0.750000000
2 0.750000000 -0.250000000 -0.750000000
3 -0.750000000 -0.250000000 -0.750000000
4 -0.750000000 -0.250000000 0.750000000
5 -0.750000000 0.250000000 -0.750000000
6 -0.250000000 0.750000000 -0.750000000
7 -0.750000000 0.750000000 -0.250000000
8 0.750000000 0.250000000 0.750000000
9 -0.750000000 0.250000000 0.750000000
10 0.750000000 0.250000000 -0.750000000
11 -0.750000000 0.750000000 0.250000000
12 -0.250000000 0.750000000 0.750000000
13 0.250000000 0.750000000 -0.750000000
14 -0.250000000 -0.750000000 -0.750000000
15 0.750000000 0.750000000 -0.250000000
16 0.750000000 -0.750000000 0.250000000
17 -0.750000000 -0.750000000 -0.250000000
18 0.250000000 -0.750000000 0.750000000
19 -0.750000000 -0.750000000 0.250000000
20 0.250000000 0.750000000 0.750000000
21 -0.250000000 -0.750000000 0.750000000
22 0.750000000 0.750000000 0.250000000
23 0.250000000 -0.750000000 -0.750000000
24 0.750000000 -0.750000000 -0.250000000
Calculation of q = 0.5000000 0.0000000 0.5000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 61 869 869 307
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
number of k points= 328 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.53 MB
The potential is recalculated from file :
./_ph0/aluminum.q_6/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.4
total cpu time spent up to now is 13.5 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_6/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( 0.00000 0.00000 0.00000 )
Computing dynamical matrix for
q = ( 0.5000000 0.0000000 0.5000000 )
4 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 328 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_2v (mm2) point group:
Atomic displacements:
There are 3 irreducible representations
Representation 1 1 modes -A_1 D_1 S_1 To be done
Representation 2 1 modes -B_1 D_3 S_3 To be done
Representation 3 1 modes -B_2 D_4 S_4 To be done
PHONON : 21.09s CPU 21.71s WALL
Reading dVscf from file aldv
Reading dynamics matrix from file al.dyn6
Diagonalizing the dynamical matrix
q = ( 0.500000000 0.000000000 0.500000000 )
**************************************************************************
freq ( 1) = 4.864117 [THz] = 162.249465 [cm-1]
freq ( 2) = 6.528764 [THz] = 217.776128 [cm-1]
freq ( 3) = 8.467440 [THz] = 282.443411 [cm-1]
**************************************************************************
electron-phonon interaction ...
Gaussian Broadening: 0.005 Ry, ngauss= 0
DOS = 1.339210 states/spin/Ry/Unit Cell at Ef= 8.321794 eV
lambda( 1)= 0.0231 gamma= 0.70 GHz
lambda( 2)= 0.0561 gamma= 3.06 GHz
lambda( 3)= 1.3275 gamma= 121.72 GHz
Gaussian Broadening: 0.010 Ry, ngauss= 0
DOS = 1.881761 states/spin/Ry/Unit Cell at Ef= 8.327154 eV
lambda( 1)= 0.0651 gamma= 2.77 GHz
lambda( 2)= 0.0805 gamma= 6.17 GHz
lambda( 3)= 0.8798 gamma= 113.35 GHz
Gaussian Broadening: 0.015 Ry, ngauss= 0
DOS = 2.123229 states/spin/Ry/Unit Cell at Ef= 8.328622 eV
lambda( 1)= 0.0534 gamma= 2.56 GHz
lambda( 2)= 0.1119 gamma= 9.67 GHz
lambda( 3)= 0.5477 gamma= 79.62 GHz
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.249739 states/spin/Ry/Unit Cell at Ef= 8.324320 eV
lambda( 1)= 0.0426 gamma= 2.17 GHz
lambda( 2)= 0.1258 gamma= 11.52 GHz
lambda( 3)= 0.3882 gamma= 59.80 GHz
Gaussian Broadening: 0.025 Ry, ngauss= 0
DOS = 2.329803 states/spin/Ry/Unit Cell at Ef= 8.317862 eV
lambda( 1)= 0.0364 gamma= 1.91 GHz
lambda( 2)= 0.1254 gamma= 11.90 GHz
lambda( 3)= 0.3071 gamma= 48.99 GHz
Gaussian Broadening: 0.030 Ry, ngauss= 0
DOS = 2.396029 states/spin/Ry/Unit Cell at Ef= 8.311297 eV
lambda( 1)= 0.0336 gamma= 1.82 GHz
lambda( 2)= 0.1248 gamma= 12.17 GHz
lambda( 3)= 0.2649 gamma= 43.46 GHz
Gaussian Broadening: 0.035 Ry, ngauss= 0
DOS = 2.455226 states/spin/Ry/Unit Cell at Ef= 8.305263 eV
lambda( 1)= 0.0326 gamma= 1.81 GHz
lambda( 2)= 0.1264 gamma= 12.63 GHz
lambda( 3)= 0.2426 gamma= 40.79 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.507873 states/spin/Ry/Unit Cell at Ef= 8.299956 eV
lambda( 1)= 0.0325 gamma= 1.84 GHz
lambda( 2)= 0.1291 gamma= 13.18 GHz
lambda( 3)= 0.2302 gamma= 39.53 GHz
Gaussian Broadening: 0.045 Ry, ngauss= 0
DOS = 2.552966 states/spin/Ry/Unit Cell at Ef= 8.295412 eV
lambda( 1)= 0.0328 gamma= 1.89 GHz
lambda( 2)= 0.1319 gamma= 13.71 GHz
lambda( 3)= 0.2225 gamma= 38.89 GHz
Gaussian Broadening: 0.050 Ry, ngauss= 0
DOS = 2.589582 states/spin/Ry/Unit Cell at Ef= 8.291554 eV
lambda( 1)= 0.0332 gamma= 1.94 GHz
lambda( 2)= 0.1343 gamma= 14.15 GHz
lambda( 3)= 0.2170 gamma= 38.48 GHz
Number of q in the star = 12
List of q in the star:
1 0.500000000 0.000000000 0.500000000
2 -0.500000000 0.000000000 0.500000000
3 -0.500000000 0.000000000 -0.500000000
4 0.500000000 0.000000000 -0.500000000
5 0.000000000 0.500000000 -0.500000000
6 -0.500000000 0.500000000 0.000000000
7 0.000000000 0.500000000 0.500000000
8 0.000000000 -0.500000000 -0.500000000
9 0.500000000 0.500000000 0.000000000
10 0.500000000 -0.500000000 0.000000000
11 -0.500000000 -0.500000000 0.000000000
12 0.000000000 -0.500000000 0.500000000
Calculation of q = 0.0000000 -1.0000000 0.0000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 61 869 869 331
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
number of k points= 118 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.53 MB
The potential is recalculated from file :
./_ph0/aluminum.q_7/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.2
total cpu time spent up to now is 14.6 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_7/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( 0.00000 0.00000 0.00000 )
Computing dynamical matrix for
q = ( 0.0000000 -1.0000000 0.0000000 )
17 Sym.Ops. (with q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 118 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, D_4h(4/mmm) point group:
Atomic displacements:
There are 2 irreducible representations
Representation 1 1 modes -A_2u X_4' M_4' To be done
Representation 2 2 modes -E_u X_5' M_5' To be done
PHONON : 23.91s CPU 24.60s WALL
Reading dVscf from file aldv
Reading dynamics matrix from file al.dyn7
Diagonalizing the dynamical matrix
q = ( 0.000000000 -1.000000000 0.000000000 )
**************************************************************************
freq ( 1) = 6.062807 [THz] = 202.233476 [cm-1]
freq ( 2) = 6.062807 [THz] = 202.233476 [cm-1]
freq ( 3) = 9.881161 [THz] = 329.600048 [cm-1]
**************************************************************************
electron-phonon interaction ...
Gaussian Broadening: 0.005 Ry, ngauss= 0
DOS = 1.339210 states/spin/Ry/Unit Cell at Ef= 8.321794 eV
lambda( 1)= 0.0244 gamma= 1.15 GHz
lambda( 2)= 0.0244 gamma= 1.15 GHz
lambda( 3)= 0.0002 gamma= 0.02 GHz
Gaussian Broadening: 0.010 Ry, ngauss= 0
DOS = 1.881761 states/spin/Ry/Unit Cell at Ef= 8.327154 eV
lambda( 1)= 0.1841 gamma= 12.16 GHz
lambda( 2)= 0.1841 gamma= 12.16 GHz
lambda( 3)= 0.0906 gamma= 15.89 GHz
Gaussian Broadening: 0.015 Ry, ngauss= 0
DOS = 2.123229 states/spin/Ry/Unit Cell at Ef= 8.328622 eV
lambda( 1)= 0.1730 gamma= 12.89 GHz
lambda( 2)= 0.1728 gamma= 12.88 GHz
lambda( 3)= 0.1863 gamma= 36.88 GHz
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.249739 states/spin/Ry/Unit Cell at Ef= 8.324320 eV
lambda( 1)= 0.1524 gamma= 12.03 GHz
lambda( 2)= 0.1518 gamma= 11.99 GHz
lambda( 3)= 0.2008 gamma= 42.11 GHz
Gaussian Broadening: 0.025 Ry, ngauss= 0
DOS = 2.329803 states/spin/Ry/Unit Cell at Ef= 8.317862 eV
lambda( 1)= 0.1402 gamma= 11.47 GHz
lambda( 2)= 0.1392 gamma= 11.38 GHz
lambda( 3)= 0.1846 gamma= 40.11 GHz
Gaussian Broadening: 0.030 Ry, ngauss= 0
DOS = 2.396029 states/spin/Ry/Unit Cell at Ef= 8.311297 eV
lambda( 1)= 0.1319 gamma= 11.09 GHz
lambda( 2)= 0.1306 gamma= 10.98 GHz
lambda( 3)= 0.1656 gamma= 37.00 GHz
Gaussian Broadening: 0.035 Ry, ngauss= 0
DOS = 2.455226 states/spin/Ry/Unit Cell at Ef= 8.305263 eV
lambda( 1)= 0.1255 gamma= 10.81 GHz
lambda( 2)= 0.1241 gamma= 10.69 GHz
lambda( 3)= 0.1526 gamma= 34.93 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.507873 states/spin/Ry/Unit Cell at Ef= 8.299956 eV
lambda( 1)= 0.1206 gamma= 10.62 GHz
lambda( 2)= 0.1191 gamma= 10.48 GHz
lambda( 3)= 0.1459 gamma= 34.11 GHz
Gaussian Broadening: 0.045 Ry, ngauss= 0
DOS = 2.552966 states/spin/Ry/Unit Cell at Ef= 8.295412 eV
lambda( 1)= 0.1171 gamma= 10.49 GHz
lambda( 2)= 0.1155 gamma= 10.35 GHz
lambda( 3)= 0.1431 gamma= 34.07 GHz
Gaussian Broadening: 0.050 Ry, ngauss= 0
DOS = 2.589582 states/spin/Ry/Unit Cell at Ef= 8.291554 eV
lambda( 1)= 0.1147 gamma= 10.43 GHz
lambda( 2)= 0.1130 gamma= 10.27 GHz
lambda( 3)= 0.1425 gamma= 34.40 GHz
Number of q in the star = 3
List of q in the star:
1 0.000000000 -1.000000000 0.000000000
2 -1.000000000 0.000000000 0.000000000
3 0.000000000 0.000000000 -1.000000000
Calculation of q = -0.5000000 -1.0000000 0.0000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 61 869 869 331
Title:
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
number of k points= 174 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.53 MB
The potential is recalculated from file :
./_ph0/aluminum.q_8/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.3
total cpu time spent up to now is 16.2 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_8/aluminum.save/
Electron-phonon coefficients for Al
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( 0.00000 0.00000 0.00000 )
Computing dynamical matrix for
q = ( -0.5000000 -1.0000000 0.0000000 )
8 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 174 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
./Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, D_2d (-42m) point group:
Atomic displacements:
There are 2 irreducible representations
Representation 1 1 modes -B_2 X_3 W_2 To be done
Representation 2 2 modes -E X_5 W_3 To be done
PHONON : 26.66s CPU 27.42s WALL
Reading dVscf from file aldv
Reading dynamics matrix from file al.dyn8
Diagonalizing the dynamical matrix
q = ( -0.500000000 -1.000000000 0.000000000 )
**************************************************************************
freq ( 1) = 6.453902 [THz] = 215.278984 [cm-1]
freq ( 2) = 7.608435 [THz] = 253.790089 [cm-1]
freq ( 3) = 7.608435 [THz] = 253.790089 [cm-1]
**************************************************************************
electron-phonon interaction ...
Gaussian Broadening: 0.005 Ry, ngauss= 0
DOS = 1.339210 states/spin/Ry/Unit Cell at Ef= 8.321794 eV
lambda( 1)= 0.0002 gamma= 0.01 GHz
lambda( 2)= 0.0004 gamma= 0.03 GHz
lambda( 3)= 0.0004 gamma= 0.03 GHz
Gaussian Broadening: 0.010 Ry, ngauss= 0
DOS = 1.881761 states/spin/Ry/Unit Cell at Ef= 8.327154 eV
lambda( 1)= 0.0336 gamma= 2.51 GHz
lambda( 2)= 0.0634 gamma= 6.60 GHz
lambda( 3)= 0.0634 gamma= 6.60 GHz
Gaussian Broadening: 0.015 Ry, ngauss= 0
DOS = 2.123229 states/spin/Ry/Unit Cell at Ef= 8.328622 eV
lambda( 1)= 0.0693 gamma= 5.85 GHz
lambda( 2)= 0.1079 gamma= 12.67 GHz
lambda( 3)= 0.1080 gamma= 12.68 GHz
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.249739 states/spin/Ry/Unit Cell at Ef= 8.324320 eV
lambda( 1)= 0.0748 gamma= 6.69 GHz
lambda( 2)= 0.1141 gamma= 14.19 GHz
lambda( 3)= 0.1147 gamma= 14.27 GHz
Gaussian Broadening: 0.025 Ry, ngauss= 0
DOS = 2.329803 states/spin/Ry/Unit Cell at Ef= 8.317862 eV
lambda( 1)= 0.0727 gamma= 6.74 GHz
lambda( 2)= 0.1154 gamma= 14.86 GHz
lambda( 3)= 0.1166 gamma= 15.01 GHz
Gaussian Broadening: 0.030 Ry, ngauss= 0
DOS = 2.396029 states/spin/Ry/Unit Cell at Ef= 8.311297 eV
lambda( 1)= 0.0706 gamma= 6.73 GHz
lambda( 2)= 0.1196 gamma= 15.83 GHz
lambda( 3)= 0.1210 gamma= 16.02 GHz
Gaussian Broadening: 0.035 Ry, ngauss= 0
DOS = 2.455226 states/spin/Ry/Unit Cell at Ef= 8.305263 eV
lambda( 1)= 0.0701 gamma= 6.84 GHz
lambda( 2)= 0.1268 gamma= 17.20 GHz
lambda( 3)= 0.1282 gamma= 17.40 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.507873 states/spin/Ry/Unit Cell at Ef= 8.299956 eV
lambda( 1)= 0.0711 gamma= 7.09 GHz
lambda( 2)= 0.1359 gamma= 18.84 GHz
lambda( 3)= 0.1374 gamma= 19.05 GHz
Gaussian Broadening: 0.045 Ry, ngauss= 0
DOS = 2.552966 states/spin/Ry/Unit Cell at Ef= 8.295412 eV
lambda( 1)= 0.0731 gamma= 7.43 GHz
lambda( 2)= 0.1455 gamma= 20.53 GHz
lambda( 3)= 0.1469 gamma= 20.73 GHz
Gaussian Broadening: 0.050 Ry, ngauss= 0
DOS = 2.589582 states/spin/Ry/Unit Cell at Ef= 8.291554 eV
lambda( 1)= 0.0756 gamma= 7.79 GHz
lambda( 2)= 0.1542 gamma= 22.07 GHz
lambda( 3)= 0.1556 gamma= 22.28 GHz
Number of q in the star = 6
List of q in the star:
1 -0.500000000 -1.000000000 0.000000000
2 0.000000000 1.000000000 0.500000000
3 0.000000000 -1.000000000 -0.500000000
4 0.500000000 1.000000000 0.000000000
5 -1.000000000 -0.500000000 0.000000000
6 0.000000000 -0.500000000 -1.000000000
init_run : 0.06s CPU 0.06s WALL ( 7 calls)
electrons : 15.38s CPU 15.93s WALL ( 7 calls)
Called by init_run:
wfcinit : 0.00s CPU 0.00s WALL ( 7 calls)
potinit : 0.00s CPU 0.00s WALL ( 7 calls)
hinit0 : 0.03s CPU 0.03s WALL ( 7 calls)
Called by electrons:
c_bands : 15.37s CPU 15.92s WALL ( 7 calls)
v_of_rho : 0.00s CPU 0.00s WALL ( 8 calls)
Called by c_bands:
init_us_2 : 0.09s CPU 0.10s WALL ( 4925 calls)
cegterg : 14.14s CPU 14.61s WALL ( 1845 calls)
Called by sum_band:
Called by *egterg:
h_psi : 10.79s CPU 11.03s WALL ( 27346 calls)
g_psi : 0.13s CPU 0.16s WALL ( 23735 calls)
cdiaghg : 2.81s CPU 2.97s WALL ( 25501 calls)
Called by h_psi:
h_psi:calbec : 0.21s CPU 0.23s WALL ( 27346 calls)
vloc_psi : 10.31s CPU 10.49s WALL ( 27346 calls)
add_vuspsi : 0.16s CPU 0.17s WALL ( 27346 calls)
General routines
calbec : 0.19s CPU 0.19s WALL ( 30994 calls)
fft : 0.01s CPU 0.01s WALL ( 24 calls)
ffts : 0.11s CPU 0.12s WALL ( 2736 calls)
fftw : 12.09s CPU 12.11s WALL ( 297142 calls)
davcio : 0.03s CPU 0.07s WALL ( 8079 calls)
Parallel routines
PHONON : 28.02s CPU 28.79s WALL
INITIALIZATION:
phq_setup : 0.03s CPU 0.03s WALL ( 8 calls)
phq_init : 0.06s CPU 0.07s WALL ( 8 calls)
phq_init : 0.06s CPU 0.07s WALL ( 8 calls)
init_vloc : 0.00s CPU 0.00s WALL ( 8 calls)
init_us_1 : 0.02s CPU 0.02s WALL ( 8 calls)
dvqpsi_us : 1.73s CPU 1.77s WALL ( 2736 calls)
dvqpsi_us : 1.73s CPU 1.77s WALL ( 2736 calls)
dvqpsi_us_on : 0.08s CPU 0.08s WALL ( 2736 calls)
h_psi : 10.79s CPU 11.03s WALL ( 27346 calls)
h_psi : 10.79s CPU 11.03s WALL ( 27346 calls)
add_vuspsi : 0.16s CPU 0.17s WALL ( 27346 calls)
General routines
calbec : 0.19s CPU 0.19s WALL ( 30994 calls)
fft : 0.01s CPU 0.01s WALL ( 24 calls)
ffts : 0.11s CPU 0.12s WALL ( 2736 calls)
fftw : 12.09s CPU 12.11s WALL ( 297142 calls)
davcio : 0.03s CPU 0.07s WALL ( 8079 calls)
PHONON : 28.02s CPU 28.79s WALL
This run was terminated on: 14:54:16 20Mar2020
=------------------------------------------------------------------------------=
JOB DONE.
=------------------------------------------------------------------------------=