quantum-espresso/test-suite/ph_interpol_metal/benchmark.out.git.inp=al.el...

2586 lines
95 KiB
Plaintext

Program PHONON v.6.5 starts on 21Mar2020 at 18:42:22
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 1 processors
MPI processes distributed on 1 nodes
Fft bands division: nmany = 1
Dynamical matrices for q-points given in input
( 10q-points):
N xq(1) xq(2) xq(3)
1 0.000000000 0.000000000 0.000000000
2 0.250000000 0.000000000 0.000000000
3 0.500000000 0.000000000 0.000000000
4 1.000000000 0.000000000 0.000000000
5 0.750000000 0.250000000 0.250000000
6 0.500000000 0.500000000 0.500000000
7 0.250000000 0.250000000 0.250000000
8 0.000000000 0.000000000 0.000000000
9 0.250000000 0.250000000 0.000000000
10 0.500000000 0.500000000 0.000000000
Reading xml data from directory:
./aluminum.save/
Message from routine qexsd_readschema :
input info not found or not readable in xml file
IMPORTANT: XC functional enforced from input :
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 43 869 869 181
Reading collected, re-writing distributed wavefunctions
Calculation of q = 0.0000000 0.0000000 0.0000000
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.0000000 0.0000000 0.0000000 )
49 Sym.Ops. (with q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 29 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, O_h (m-3m) point group:
Atomic displacements:
There are 1 irreducible representations
Representation 1 3 modes -T_1u G_15 G_4- To be done
PHONON : 0.16s CPU 0.17s WALL
Fourier interpolating dVscf
Reading dynamics matrix from file al.elph.dyn1
Diagonalizing the dynamical matrix
q = ( 0.000000000 0.000000000 0.000000000 )
**************************************************************************
freq ( 1) = 0.171312 [THz] = 5.714340 [cm-1]
freq ( 2) = 0.171312 [THz] = 5.714340 [cm-1]
freq ( 3) = 0.171312 [THz] = 5.714340 [cm-1]
**************************************************************************
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675809 states/spin/Ry/Unit Cell at Ef= 8.278667 eV
double delta at Ef =104.058639
lambda( 1)= 0.0000 gamma= 0.00 GHz
lambda( 2)= 0.0000 gamma= 0.00 GHz
lambda( 3)= 0.0000 gamma= 0.00 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703387 states/spin/Ry/Unit Cell at Ef= 8.200081 eV
double delta at Ef = 56.350968
lambda( 1)= 0.0000 gamma= 0.32 GHz
lambda( 2)= 0.0000 gamma= 0.32 GHz
lambda( 3)= 0.0000 gamma= 0.32 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781691 states/spin/Ry/Unit Cell at Ef= 8.182007 eV
double delta at Ef = 42.846273
lambda( 1)= 0.0000 gamma= 1.23 GHz
lambda( 2)= 0.0000 gamma= 1.23 GHz
lambda( 3)= 0.0000 gamma= 1.23 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793236 states/spin/Ry/Unit Cell at Ef= 8.205919 eV
double delta at Ef = 36.753070
lambda( 1)= 0.0000 gamma= 2.20 GHz
lambda( 2)= 0.0000 gamma= 2.20 GHz
lambda( 3)= 0.0000 gamma= 2.20 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781098 states/spin/Ry/Unit Cell at Ef= 8.232637 eV
double delta at Ef = 32.865698
lambda( 1)= 0.0000 gamma= 2.67 GHz
lambda( 2)= 0.0000 gamma= 2.67 GHz
lambda( 3)= 0.0000 gamma= 2.67 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753458 states/spin/Ry/Unit Cell at Ef= 8.253288 eV
double delta at Ef = 29.857717
lambda( 1)= 0.0000 gamma= 2.80 GHz
lambda( 2)= 0.0000 gamma= 2.80 GHz
lambda( 3)= 0.0000 gamma= 2.80 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267116 eV
double delta at Ef = 27.504731
lambda( 1)= 0.0000 gamma= 2.87 GHz
lambda( 2)= 0.0000 gamma= 2.87 GHz
lambda( 3)= 0.0000 gamma= 2.87 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693265 states/spin/Ry/Unit Cell at Ef= 8.275899 eV
double delta at Ef = 25.729529
lambda( 1)= 0.0000 gamma= 2.95 GHz
lambda( 2)= 0.0000 gamma= 2.95 GHz
lambda( 3)= 0.0000 gamma= 2.95 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281626 eV
double delta at Ef = 24.395225
lambda( 1)= 0.0000 gamma= 3.04 GHz
lambda( 2)= 0.0000 gamma= 3.04 GHz
lambda( 3)= 0.0000 gamma= 3.04 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285693 eV
double delta at Ef = 23.360121
lambda( 1)= 0.0000 gamma= 3.12 GHz
lambda( 2)= 0.0000 gamma= 3.12 GHz
lambda( 3)= 0.0000 gamma= 3.12 GHz
Calculation of q = 0.2500000 0.0000000 0.0000000
Subspace diagonalization in iterative solution of the eigenvalue problem:
a serial algorithm will be used
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 55 869 869 259
Title:
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 200 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.51 MB
The potential is recalculated from file :
./_ph0/aluminum.q_2/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.3
total cpu time spent up to now is 2.0 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_2/aluminum.save/
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.2500000 0.0000000 0.0000000 )
8 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 200 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_4v (4mm) point group:
Atomic displacements:
There are 2 irreducible representations
Representation 1 1 modes -A_1 G_1 D_1 To be done
Representation 2 2 modes -E G_5 D_5 To be done
PHONON : 2.31s CPU 2.41s WALL
Fourier interpolating dVscf
Reading dynamics matrix from file al.elph.dyn2
Diagonalizing the dynamical matrix
q = ( 0.250000000 0.000000000 0.000000000 )
**************************************************************************
freq ( 1) = 2.295452 [THz] = 76.568033 [cm-1]
freq ( 2) = 2.295452 [THz] = 76.568033 [cm-1]
freq ( 3) = 4.006882 [THz] = 133.655194 [cm-1]
**************************************************************************
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 20.425507
lambda( 1)= 0.1971 gamma= 2.65 GHz
lambda( 2)= 0.1971 gamma= 2.65 GHz
lambda( 3)= 0.0284 gamma= 1.17 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 19.334701
lambda( 1)= 0.4732 gamma= 6.44 GHz
lambda( 2)= 0.4732 gamma= 6.44 GHz
lambda( 3)= 0.1749 gamma= 7.25 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 19.823356
lambda( 1)= 0.3191 gamma= 4.47 GHz
lambda( 2)= 0.3191 gamma= 4.47 GHz
lambda( 3)= 0.3083 gamma= 13.15 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 19.866604
lambda( 1)= 0.2745 gamma= 3.86 GHz
lambda( 2)= 0.2745 gamma= 3.86 GHz
lambda( 3)= 0.3493 gamma= 14.96 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 20.003856
lambda( 1)= 0.2810 gamma= 3.93 GHz
lambda( 2)= 0.2810 gamma= 3.93 GHz
lambda( 3)= 0.3604 gamma= 15.37 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 20.043744
lambda( 1)= 0.2976 gamma= 4.12 GHz
lambda( 2)= 0.2976 gamma= 4.12 GHz
lambda( 3)= 0.3623 gamma= 15.29 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 19.991055
lambda( 1)= 0.3126 gamma= 4.28 GHz
lambda( 2)= 0.3126 gamma= 4.28 GHz
lambda( 3)= 0.3616 gamma= 15.08 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 19.897014
lambda( 1)= 0.3236 gamma= 4.39 GHz
lambda( 2)= 0.3236 gamma= 4.39 GHz
lambda( 3)= 0.3592 gamma= 14.83 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 19.776351
lambda( 1)= 0.3309 gamma= 4.46 GHz
lambda( 2)= 0.3309 gamma= 4.46 GHz
lambda( 3)= 0.3551 gamma= 14.58 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 19.625993
lambda( 1)= 0.3355 gamma= 4.51 GHz
lambda( 2)= 0.3355 gamma= 4.51 GHz
lambda( 3)= 0.3492 gamma= 14.32 GHz
Calculation of q = 0.5000000 0.0000000 0.0000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 55 869 869 259
Title:
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 200 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.52 MB
The potential is recalculated from file :
./_ph0/aluminum.q_3/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.3
total cpu time spent up to now is 3.9 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_3/aluminum.save/
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.5000000 0.0000000 0.0000000 )
8 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 200 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_4v (4mm) point group:
Atomic displacements:
There are 2 irreducible representations
Representation 1 1 modes -A_1 G_1 D_1 To be done
Representation 2 2 modes -E G_5 D_5 To be done
PHONON : 4.67s CPU 4.88s WALL
Fourier interpolating dVscf
Reading dynamics matrix from file al.elph.dyn3
Diagonalizing the dynamical matrix
q = ( 0.500000000 0.000000000 0.000000000 )
**************************************************************************
freq ( 1) = 4.200411 [THz] = 140.110639 [cm-1]
freq ( 2) = 4.200411 [THz] = 140.110639 [cm-1]
freq ( 3) = 6.475305 [THz] = 215.992926 [cm-1]
**************************************************************************
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 1.280706
lambda( 1)= 0.0000 gamma= 0.00 GHz
lambda( 2)= 0.0000 gamma= 0.00 GHz
lambda( 3)= 0.0582 gamma= 6.24 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 7.961468
lambda( 1)= 0.0345 gamma= 1.57 GHz
lambda( 2)= 0.0345 gamma= 1.57 GHz
lambda( 3)= 0.2567 gamma= 27.78 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 13.294748
lambda( 1)= 0.0982 gamma= 4.60 GHz
lambda( 2)= 0.0982 gamma= 4.60 GHz
lambda( 3)= 0.2741 gamma= 30.52 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 15.274766
lambda( 1)= 0.1284 gamma= 6.04 GHz
lambda( 2)= 0.1284 gamma= 6.04 GHz
lambda( 3)= 0.2682 gamma= 29.99 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 16.049476
lambda( 1)= 0.1449 gamma= 6.79 GHz
lambda( 2)= 0.1449 gamma= 6.79 GHz
lambda( 3)= 0.2628 gamma= 29.26 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 16.311098
lambda( 1)= 0.1537 gamma= 7.13 GHz
lambda( 2)= 0.1537 gamma= 7.13 GHz
lambda( 3)= 0.2588 gamma= 28.53 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 16.374728
lambda( 1)= 0.1582 gamma= 7.25 GHz
lambda( 2)= 0.1582 gamma= 7.25 GHz
lambda( 3)= 0.2578 gamma= 28.07 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 16.366754
lambda( 1)= 0.1603 gamma= 7.27 GHz
lambda( 2)= 0.1603 gamma= 7.27 GHz
lambda( 3)= 0.2586 gamma= 27.89 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 16.332596
lambda( 1)= 0.1610 gamma= 7.27 GHz
lambda( 2)= 0.1610 gamma= 7.27 GHz
lambda( 3)= 0.2597 gamma= 27.86 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 16.288343
lambda( 1)= 0.1610 gamma= 7.26 GHz
lambda( 2)= 0.1610 gamma= 7.26 GHz
lambda( 3)= 0.2603 gamma= 27.87 GHz
Calculation of q = 1.0000000 0.0000000 0.0000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 61 869 869 331
Title:
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 118 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.52 MB
The potential is recalculated from file :
./_ph0/aluminum.q_4/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.1
total cpu time spent up to now is 5.1 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_4/aluminum.save/
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 1.0000000 0.0000000 0.0000000 )
17 Sym.Ops. (with q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 118 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Atomic displacements:
There are 2 irreducible representations
Representation 1 2 modes - To be done
Representation 2 1 modes - To be done
PHONON : 6.27s CPU 6.54s WALL
Fourier interpolating dVscf
Reading dynamics matrix from file al.elph.dyn4
Diagonalizing the dynamical matrix
q = ( 1.000000000 0.000000000 0.000000000 )
**************************************************************************
freq ( 1) = 6.062766 [THz] = 202.232095 [cm-1]
freq ( 2) = 6.062766 [THz] = 202.232095 [cm-1]
freq ( 3) = 9.881199 [THz] = 329.601333 [cm-1]
**************************************************************************
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 34.425003
lambda( 1)= 0.3985 gamma= 37.43 GHz
lambda( 2)= 0.3985 gamma= 37.43 GHz
lambda( 3)= 0.0555 gamma= 13.84 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 18.410086
lambda( 1)= 0.1849 gamma= 17.55 GHz
lambda( 2)= 0.1849 gamma= 17.55 GHz
lambda( 3)= 0.1925 gamma= 48.53 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 14.910232
lambda( 1)= 0.1529 gamma= 14.93 GHz
lambda( 2)= 0.1529 gamma= 14.93 GHz
lambda( 3)= 0.1300 gamma= 33.71 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 13.194919
lambda( 1)= 0.1297 gamma= 12.71 GHz
lambda( 2)= 0.1297 gamma= 12.71 GHz
lambda( 3)= 0.1130 gamma= 29.42 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 12.449424
lambda( 1)= 0.1146 gamma= 11.18 GHz
lambda( 2)= 0.1146 gamma= 11.18 GHz
lambda( 3)= 0.1187 gamma= 30.78 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 12.239855
lambda( 1)= 0.1071 gamma= 10.36 GHz
lambda( 2)= 0.1071 gamma= 10.36 GHz
lambda( 3)= 0.1288 gamma= 33.06 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 12.291335
lambda( 1)= 0.1047 gamma= 10.00 GHz
lambda( 2)= 0.1047 gamma= 10.00 GHz
lambda( 3)= 0.1379 gamma= 34.97 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 12.455519
lambda( 1)= 0.1047 gamma= 9.89 GHz
lambda( 2)= 0.1047 gamma= 9.89 GHz
lambda( 3)= 0.1448 gamma= 36.37 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 12.650123
lambda( 1)= 0.1053 gamma= 9.90 GHz
lambda( 2)= 0.1053 gamma= 9.90 GHz
lambda( 3)= 0.1496 gamma= 37.36 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 12.838575
lambda( 1)= 0.1059 gamma= 9.94 GHz
lambda( 2)= 0.1059 gamma= 9.94 GHz
lambda( 3)= 0.1528 gamma= 38.09 GHz
Calculation of q = 0.7500000 0.2500000 0.2500000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 61 869 869 331
Title:
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 576 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.52 MB
The potential is recalculated from file :
./_ph0/aluminum.q_5/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.5
total cpu time spent up to now is 10.6 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_5/aluminum.save/
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.7500000 0.2500000 0.2500000 )
2 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 576 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_s (m) point group:
Atomic displacements:
There are 3 irreducible representations
Representation 1 1 modes -A' To be done
Representation 2 1 modes -A' To be done
Representation 3 1 modes -A'' To be done
PHONON : 11.92s CPU 12.44s WALL
Fourier interpolating dVscf
Reading dynamics matrix from file al.elph.dyn5
Diagonalizing the dynamical matrix
q = ( 0.750000000 0.250000000 0.250000000 )
**************************************************************************
freq ( 1) = 5.392359 [THz] = 179.869752 [cm-1]
freq ( 2) = 6.716390 [THz] = 224.034655 [cm-1]
freq ( 3) = 8.785622 [THz] = 293.056789 [cm-1]
**************************************************************************
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 16.984783
lambda( 1)= 0.1111 gamma= 8.25 GHz
lambda( 2)= 0.1593 gamma= 18.37 GHz
lambda( 3)= 0.3725 gamma= 73.48 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 12.925455
lambda( 1)= 0.0793 gamma= 5.95 GHz
lambda( 2)= 0.1038 gamma= 12.08 GHz
lambda( 3)= 0.2261 gamma= 45.05 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 14.131085
lambda( 1)= 0.0875 gamma= 6.76 GHz
lambda( 2)= 0.1099 gamma= 13.17 GHz
lambda( 3)= 0.2311 gamma= 47.38 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 14.167432
lambda( 1)= 0.0878 gamma= 6.81 GHz
lambda( 2)= 0.1065 gamma= 12.81 GHz
lambda( 3)= 0.2189 gamma= 45.06 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 13.955867
lambda( 1)= 0.0871 gamma= 6.73 GHz
lambda( 2)= 0.1039 gamma= 12.45 GHz
lambda( 3)= 0.2053 gamma= 42.09 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 13.769271
lambda( 1)= 0.0871 gamma= 6.66 GHz
lambda( 2)= 0.1039 gamma= 12.32 GHz
lambda( 3)= 0.1976 gamma= 40.11 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 13.674406
lambda( 1)= 0.0879 gamma= 6.64 GHz
lambda( 2)= 0.1055 gamma= 12.36 GHz
lambda( 3)= 0.1947 gamma= 39.02 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 13.661793
lambda( 1)= 0.0891 gamma= 6.66 GHz
lambda( 2)= 0.1075 gamma= 12.47 GHz
lambda( 3)= 0.1937 gamma= 38.46 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 13.697478
lambda( 1)= 0.0902 gamma= 6.71 GHz
lambda( 2)= 0.1094 gamma= 12.62 GHz
lambda( 3)= 0.1931 gamma= 38.12 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 13.753491
lambda( 1)= 0.0912 gamma= 6.77 GHz
lambda( 2)= 0.1109 gamma= 12.77 GHz
lambda( 3)= 0.1922 gamma= 37.88 GHz
Calculation of q = 0.5000000 0.5000000 0.5000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 61 869 869 307
Title:
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 130 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.52 MB
The potential is recalculated from file :
./_ph0/aluminum.q_6/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.8
total cpu time spent up to now is 12.0 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_6/aluminum.save/
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.5000000 0.5000000 0.5000000 )
13 Sym.Ops. (with q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 130 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Atomic displacements:
There are 2 irreducible representations
Representation 1 2 modes - To be done
Representation 2 1 modes - To be done
PHONON : 14.85s CPU 15.49s WALL
Fourier interpolating dVscf
Reading dynamics matrix from file al.elph.dyn6
Diagonalizing the dynamical matrix
q = ( 0.500000000 0.500000000 0.500000000 )
**************************************************************************
freq ( 1) = 4.438911 [THz] = 148.066119 [cm-1]
freq ( 2) = 4.438911 [THz] = 148.066119 [cm-1]
freq ( 3) = 9.422633 [THz] = 314.305203 [cm-1]
**************************************************************************
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 1.718168
lambda( 1)= 0.0073 gamma= 0.37 GHz
lambda( 2)= 0.0073 gamma= 0.37 GHz
lambda( 3)= 0.0302 gamma= 6.84 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 10.177916
lambda( 1)= 0.0535 gamma= 2.72 GHz
lambda( 2)= 0.0535 gamma= 2.72 GHz
lambda( 3)= 0.1353 gamma= 31.01 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 14.089272
lambda( 1)= 0.0798 gamma= 4.18 GHz
lambda( 2)= 0.0798 gamma= 4.18 GHz
lambda( 3)= 0.1435 gamma= 33.84 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 14.850423
lambda( 1)= 0.0809 gamma= 4.25 GHz
lambda( 2)= 0.0809 gamma= 4.25 GHz
lambda( 3)= 0.1541 gamma= 36.50 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 14.792267
lambda( 1)= 0.0778 gamma= 4.07 GHz
lambda( 2)= 0.0778 gamma= 4.07 GHz
lambda( 3)= 0.1636 gamma= 38.58 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 14.545807
lambda( 1)= 0.0757 gamma= 3.92 GHz
lambda( 2)= 0.0757 gamma= 3.92 GHz
lambda( 3)= 0.1719 gamma= 40.13 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 14.356743
lambda( 1)= 0.0747 gamma= 3.82 GHz
lambda( 2)= 0.0747 gamma= 3.82 GHz
lambda( 3)= 0.1805 gamma= 41.62 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 14.259440
lambda( 1)= 0.0741 gamma= 3.76 GHz
lambda( 2)= 0.0741 gamma= 3.76 GHz
lambda( 3)= 0.1882 gamma= 42.97 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 14.224739
lambda( 1)= 0.0737 gamma= 3.71 GHz
lambda( 2)= 0.0737 gamma= 3.71 GHz
lambda( 3)= 0.1939 gamma= 44.04 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 14.224196
lambda( 1)= 0.0734 gamma= 3.69 GHz
lambda( 2)= 0.0734 gamma= 3.69 GHz
lambda( 3)= 0.1976 gamma= 44.80 GHz
Calculation of q = 0.2500000 0.2500000 0.2500000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 55 869 869 259
Title:
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 240 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.52 MB
The potential is recalculated from file :
./_ph0/aluminum.q_7/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.8
total cpu time spent up to now is 14.4 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_7/aluminum.save/
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.2500000 0.2500000 0.2500000 )
6 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 240 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_3v (3m) point group:
Atomic displacements:
There are 2 irreducible representations
Representation 1 1 modes -A_1 L_1 To be done
Representation 2 2 modes -E L_3 To be done
PHONON : 17.50s CPU 18.26s WALL
Fourier interpolating dVscf
Reading dynamics matrix from file al.elph.dyn7
Diagonalizing the dynamical matrix
q = ( 0.250000000 0.250000000 0.250000000 )
**************************************************************************
freq ( 1) = 3.512884 [THz] = 117.177206 [cm-1]
freq ( 2) = 3.512884 [THz] = 117.177206 [cm-1]
freq ( 3) = 6.337625 [THz] = 211.400399 [cm-1]
**************************************************************************
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 26.430867
lambda( 1)= 0.0460 gamma= 1.45 GHz
lambda( 2)= 0.0460 gamma= 1.45 GHz
lambda( 3)= 0.3535 gamma= 36.28 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 21.429882
lambda( 1)= 0.0698 gamma= 2.22 GHz
lambda( 2)= 0.0698 gamma= 2.22 GHz
lambda( 3)= 0.3630 gamma= 37.64 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 20.494460
lambda( 1)= 0.0727 gamma= 2.38 GHz
lambda( 2)= 0.0727 gamma= 2.38 GHz
lambda( 3)= 0.3383 gamma= 36.09 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 19.158893
lambda( 1)= 0.0719 gamma= 2.37 GHz
lambda( 2)= 0.0719 gamma= 2.37 GHz
lambda( 3)= 0.3167 gamma= 33.93 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 18.018277
lambda( 1)= 0.0726 gamma= 2.38 GHz
lambda( 2)= 0.0726 gamma= 2.38 GHz
lambda( 3)= 0.3023 gamma= 32.25 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 17.200343
lambda( 1)= 0.0744 gamma= 2.41 GHz
lambda( 2)= 0.0744 gamma= 2.41 GHz
lambda( 3)= 0.2935 gamma= 31.00 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 16.721708
lambda( 1)= 0.0772 gamma= 2.47 GHz
lambda( 2)= 0.0772 gamma= 2.47 GHz
lambda( 3)= 0.2898 gamma= 30.23 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 16.504692
lambda( 1)= 0.0805 gamma= 2.56 GHz
lambda( 2)= 0.0805 gamma= 2.56 GHz
lambda( 3)= 0.2890 gamma= 29.86 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 16.445757
lambda( 1)= 0.0839 gamma= 2.65 GHz
lambda( 2)= 0.0839 gamma= 2.65 GHz
lambda( 3)= 0.2894 gamma= 29.73 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 16.461924
lambda( 1)= 0.0872 gamma= 2.75 GHz
lambda( 2)= 0.0872 gamma= 2.75 GHz
lambda( 3)= 0.2897 gamma= 29.72 GHz
Calculation of q = 0.0000000 0.0000000 0.0000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 43 869 869 181
Title:
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 29 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0039062
k( 2) = ( -0.1250000 0.1250000 -0.1250000), wk = 0.0312500
k( 3) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500
k( 4) = ( -0.3750000 0.3750000 -0.3750000), wk = 0.0312500
k( 5) = ( 0.5000000 -0.5000000 0.5000000), wk = 0.0156250
k( 6) = ( 0.0000000 0.2500000 0.0000000), wk = 0.0234375
k( 7) = ( -0.1250000 0.3750000 -0.1250000), wk = 0.0937500
k( 8) = ( -0.2500000 0.5000000 -0.2500000), wk = 0.0937500
k( 9) = ( 0.6250000 -0.3750000 0.6250000), wk = 0.0937500
k( 10) = ( 0.5000000 -0.2500000 0.5000000), wk = 0.0937500
k( 11) = ( 0.3750000 -0.1250000 0.3750000), wk = 0.0937500
k( 12) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0468750
k( 13) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0234375
k( 14) = ( -0.1250000 0.6250000 -0.1250000), wk = 0.0937500
k( 15) = ( 0.7500000 -0.2500000 0.7500000), wk = 0.0937500
k( 16) = ( 0.6250000 -0.1250000 0.6250000), wk = 0.0937500
k( 17) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0468750
k( 18) = ( 0.0000000 0.7500000 0.0000000), wk = 0.0234375
k( 19) = ( 0.8750000 -0.1250000 0.8750000), wk = 0.0937500
k( 20) = ( 0.7500000 0.0000000 0.7500000), wk = 0.0468750
k( 21) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0117188
k( 22) = ( -0.2500000 0.5000000 0.0000000), wk = 0.0937500
k( 23) = ( 0.6250000 -0.3750000 0.8750000), wk = 0.1875000
k( 24) = ( 0.5000000 -0.2500000 0.7500000), wk = 0.0937500
k( 25) = ( 0.7500000 -0.2500000 1.0000000), wk = 0.0937500
k( 26) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.1875000
k( 27) = ( 0.5000000 0.0000000 0.7500000), wk = 0.0937500
k( 28) = ( -0.2500000 -1.0000000 0.0000000), wk = 0.0468750
k( 29) = ( -0.5000000 -1.0000000 0.0000000), wk = 0.0234375
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.51 MB
The potential is recalculated from file :
./_ph0/aluminum.q_8/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.4
total cpu time spent up to now is 14.7 secs
End of band structure calculation
k = 0.0000 0.0000 0.0000 ( 113 PWs) bands (ev):
-3.1905 21.1791 21.1791 21.1791 22.5559 22.5559
k =-0.1250 0.1250-0.1250 ( 107 PWs) bands (ev):
-2.7432 16.7424 20.1788 20.1788 23.2673 24.1714
k =-0.2500 0.2500-0.2500 ( 104 PWs) bands (ev):
-1.4192 11.7921 19.3971 19.3971 22.9597 23.3426
k =-0.3750 0.3750-0.3750 ( 99 PWs) bands (ev):
0.7472 7.4148 19.3063 19.3063 21.3010 21.3010
k = 0.5000-0.5000 0.5000 ( 108 PWs) bands (ev):
3.5959 3.8201 19.8997 19.8997 19.9675 19.9675
k = 0.0000 0.2500 0.0000 ( 109 PWs) bands (ev):
-2.5963 18.3809 18.3809 18.5807 21.4899 23.2598
k =-0.1250 0.3750-0.1250 ( 105 PWs) bands (ev):
-1.5646 13.6745 17.3092 18.8466 20.1249 22.7024
k =-0.2500 0.5000-0.2500 ( 100 PWs) bands (ev):
0.3184 9.1428 16.9626 17.6720 18.7359 24.8907
k = 0.6250-0.3750 0.6250 ( 103 PWs) bands (ev):
3.0030 5.2356 16.0319 17.3393 19.1716 23.3119
k = 0.5000-0.2500 0.5000 ( 103 PWs) bands (ev):
2.0232 6.4566 15.1468 18.4483 20.3702 22.4444
k = 0.3750-0.1250 0.3750 ( 100 PWs) bands (ev):
-0.4008 10.5631 15.0570 20.2786 22.2917 22.3016
k = 0.2500 0.0000 0.2500 ( 109 PWs) bands (ev):
-2.0061 14.8067 16.1745 22.3349 22.5311 23.9983
k = 0.0000 0.5000 0.0000 ( 101 PWs) bands (ev):
-0.8352 15.7883 15.9791 15.9791 16.6948 19.6305
k =-0.1250 0.6250-0.1250 ( 102 PWs) bands (ev):
0.7484 11.5552 13.9819 15.3797 16.8431 20.9945
k = 0.7500-0.2500 0.7500 ( 104 PWs) bands (ev):
3.1397 7.5222 12.0332 15.5077 17.2170 24.6967
k = 0.6250-0.1250 0.6250 ( 101 PWs) bands (ev):
4.1106 6.2837 10.9030 16.3666 18.2368 26.3744
k = 0.5000 0.0000 0.5000 ( 97 PWs) bands (ev):
1.4600 9.5229 11.1704 17.9584 19.9899 25.7819
k = 0.0000 0.7500 0.0000 ( 104 PWs) bands (ev):
2.0191 10.9279 14.0595 14.5356 14.5356 18.2072
k = 0.8750-0.1250 0.8750 ( 104 PWs) bands (ev):
4.0824 8.6644 10.5465 14.4188 15.7415 20.0602
k = 0.7500 0.0000 0.7500 ( 102 PWs) bands (ev):
6.3730 6.8679 7.9529 15.0260 16.6758 24.2856
k = 0.0000-1.0000 0.0000 ( 108 PWs) bands (ev):
5.3322 6.6439 13.4761 14.0562 14.0562 17.6954
k =-0.2500 0.5000 0.0000 ( 104 PWs) bands (ev):
-0.2570 12.1642 13.7101 17.2559 20.6545 22.4777
k = 0.6250-0.3750 0.8750 ( 103 PWs) bands (ev):
1.8823 8.4268 12.9754 15.1041 21.3116 23.4584
k = 0.5000-0.2500 0.7500 ( 102 PWs) bands (ev):
4.6528 4.9627 13.3015 13.9658 21.8092 22.3648
k = 0.7500-0.2500 1.0000 ( 102 PWs) bands (ev):
2.5825 10.5748 11.2912 12.4298 19.1119 21.2514
k = 0.6250-0.1250 0.8750 ( 104 PWs) bands (ev):
5.1677 7.3413 9.7861 12.0722 20.3586 24.5659
k = 0.5000 0.0000 0.7500 ( 108 PWs) bands (ev):
4.2439 7.9410 9.5098 13.1695 21.6037 24.9640
k =-0.2500-1.0000 0.0000 ( 104 PWs) bands (ev):
5.8512 7.2029 10.0444 11.7573 18.5864 20.8033
k =-0.5000-1.0000 0.0000 ( 108 PWs) bands (ev):
7.4162 7.4162 8.3730 9.6362 24.4638 24.4638
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_8/aluminum.save/
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.0000000 0.0000000 0.0000000 )
49 Sym.Ops. (with q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 29 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, O_h (m-3m) point group:
Atomic displacements:
There are 1 irreducible representations
Representation 1 3 modes -T_1u G_15 G_4- To be done
PHONON : 18.42s CPU 19.22s WALL
Fourier interpolating dVscf
Reading dynamics matrix from file al.elph.dyn8
Diagonalizing the dynamical matrix
q = ( 0.000000000 0.000000000 0.000000000 )
**************************************************************************
freq ( 1) = 0.172821 [THz] = 5.764680 [cm-1]
freq ( 2) = 0.172821 [THz] = 5.764680 [cm-1]
freq ( 3) = 0.172821 [THz] = 5.764680 [cm-1]
**************************************************************************
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef =104.058472
lambda( 1)= 0.0000 gamma= 0.00 GHz
lambda( 2)= 0.0000 gamma= 0.00 GHz
lambda( 3)= 0.0000 gamma= 0.00 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 56.351825
lambda( 1)= 0.0000 gamma= 0.32 GHz
lambda( 2)= 0.0000 gamma= 0.32 GHz
lambda( 3)= 0.0000 gamma= 0.32 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 42.846628
lambda( 1)= 0.0000 gamma= 1.23 GHz
lambda( 2)= 0.0000 gamma= 1.23 GHz
lambda( 3)= 0.0000 gamma= 1.23 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 36.753205
lambda( 1)= 0.0000 gamma= 2.20 GHz
lambda( 2)= 0.0000 gamma= 2.20 GHz
lambda( 3)= 0.0000 gamma= 2.20 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 32.865749
lambda( 1)= 0.0000 gamma= 2.67 GHz
lambda( 2)= 0.0000 gamma= 2.67 GHz
lambda( 3)= 0.0000 gamma= 2.67 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 29.857732
lambda( 1)= 0.0000 gamma= 2.80 GHz
lambda( 2)= 0.0000 gamma= 2.80 GHz
lambda( 3)= 0.0000 gamma= 2.80 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 27.504730
lambda( 1)= 0.0000 gamma= 2.87 GHz
lambda( 2)= 0.0000 gamma= 2.87 GHz
lambda( 3)= 0.0000 gamma= 2.87 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 25.729520
lambda( 1)= 0.0000 gamma= 2.95 GHz
lambda( 2)= 0.0000 gamma= 2.95 GHz
lambda( 3)= 0.0000 gamma= 2.95 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 24.395210
lambda( 1)= 0.0000 gamma= 3.04 GHz
lambda( 2)= 0.0000 gamma= 3.04 GHz
lambda( 3)= 0.0000 gamma= 3.04 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 23.360102
lambda( 1)= 0.0000 gamma= 3.12 GHz
lambda( 2)= 0.0000 gamma= 3.12 GHz
lambda( 3)= 0.0000 gamma= 3.12 GHz
Calculation of q = 0.2500000 0.2500000 0.0000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 55 869 869 259
Title:
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 328 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.52 MB
The potential is recalculated from file :
./_ph0/aluminum.q_9/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.4
total cpu time spent up to now is 17.8 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_9/aluminum.save/
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.2500000 0.2500000 0.0000000 )
4 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 328 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_2v (mm2) point group:
Atomic displacements:
There are 3 irreducible representations
Representation 1 1 modes -A_1 D_1 S_1 To be done
Representation 2 1 modes -B_1 D_3 S_3 To be done
Representation 3 1 modes -B_2 D_4 S_4 To be done
PHONON : 21.58s CPU 22.48s WALL
Fourier interpolating dVscf
Reading dynamics matrix from file al.elph.dyn9
Diagonalizing the dynamical matrix
q = ( 0.250000000 0.250000000 0.000000000 )
**************************************************************************
freq ( 1) = 3.022844 [THz] = 100.831228 [cm-1]
freq ( 2) = 3.330076 [THz] = 111.079394 [cm-1]
freq ( 3) = 5.522148 [THz] = 184.199023 [cm-1]
**************************************************************************
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 20.055744
lambda( 1)= 0.0284 gamma= 0.66 GHz
lambda( 2)= 0.0649 gamma= 1.84 GHz
lambda( 3)= 0.7787 gamma= 60.67 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 18.372730
lambda( 1)= 0.0578 gamma= 1.36 GHz
lambda( 2)= 0.1148 gamma= 3.29 GHz
lambda( 3)= 0.4600 gamma= 36.21 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 18.934984
lambda( 1)= 0.0608 gamma= 1.48 GHz
lambda( 2)= 0.1601 gamma= 4.72 GHz
lambda( 3)= 0.3551 gamma= 28.76 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 18.371978
lambda( 1)= 0.0627 gamma= 1.53 GHz
lambda( 2)= 0.1809 gamma= 5.35 GHz
lambda( 3)= 0.3095 gamma= 25.17 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 18.036860
lambda( 1)= 0.0657 gamma= 1.59 GHz
lambda( 2)= 0.1917 gamma= 5.65 GHz
lambda( 3)= 0.2945 gamma= 23.85 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 17.830958
lambda( 1)= 0.0686 gamma= 1.65 GHz
lambda( 2)= 0.1982 gamma= 5.78 GHz
lambda( 3)= 0.2911 gamma= 23.34 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 17.718582
lambda( 1)= 0.0718 gamma= 1.70 GHz
lambda( 2)= 0.2033 gamma= 5.85 GHz
lambda( 3)= 0.2923 gamma= 23.15 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 17.683107
lambda( 1)= 0.0751 gamma= 1.77 GHz
lambda( 2)= 0.2073 gamma= 5.91 GHz
lambda( 3)= 0.2946 gamma= 23.11 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 17.686639
lambda( 1)= 0.0783 gamma= 1.83 GHz
lambda( 2)= 0.2101 gamma= 5.96 GHz
lambda( 3)= 0.2962 gamma= 23.10 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 17.692563
lambda( 1)= 0.0813 gamma= 1.90 GHz
lambda( 2)= 0.2118 gamma= 6.00 GHz
lambda( 3)= 0.2962 gamma= 23.07 GHz
Calculation of q = 0.5000000 0.5000000 0.0000000
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 121 121 61 869 869 307
Title:
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
number of electrons = 3.00
number of Kohn-Sham states= 6
kinetic-energy cutoff = 15.0000 Ry
charge density cutoff = 60.0000 Ry
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.500000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
48 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1) = ( -0.1666667 0.3333333 0.5000000 )
number of k points= 328 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
Number of k-points >= 100: set verbosity='high' to print them.
Dense grid: 869 G-vectors FFT dimensions: ( 15, 15, 15)
Estimated max dynamical RAM per process > 0.52 MB
The potential is recalculated from file :
./_ph0/aluminum.q_10/aluminum.save/charge-density
Starting wfcs are 4 atomic + 2 random wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 3.33E-10, avg # of iterations = 13.6
total cpu time spent up to now is 20.9 secs
End of band structure calculation
Number of k-points >= 100: set verbosity='high' to print the bands.
the Fermi energy is 8.1776 ev
Writing output data file ./_ph0/aluminum.q_10/aluminum.save/
Electron-phonon coefficients for Al using Fourier interpolation of dvscf
bravais-lattice index = 2
lattice parameter (alat) = 7.5000 a.u.
unit-cell volume = 105.4688 (a.u.)^3
number of atoms/cell = 1
number of atomic types = 1
kinetic-energy cut-off = 15.0000 Ry
charge density cut-off = 60.0000 Ry
convergence threshold = 1.0E-10
beta = 0.7000
number of iterations used = 4
Exchange-correlation= PZ
( 1 1 0 0 0 0 0)
celldm(1)= 7.50000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (alat units)
1 Al 26.9800 tau( 1) = ( -0.16667 0.33333 0.50000 )
Computing dynamical matrix for
q = ( 0.5000000 0.5000000 0.0000000 )
4 Sym.Ops. (no q -> -q+G )
G cutoff = 85.4897 ( 869 G-vectors) FFT grid: ( 15, 15, 15)
number of k points= 328 Marzari-Vanderbilt smearing, width (Ry)= 0.0500
PseudoPot. # 1 for Al read from file:
../../pseudo/Al.pz-vbc.UPF
MD5 check sum: f06ceae8da0fe5c02c98e3688433298c
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
l(1) = 0
l(2) = 1
Mode symmetry, C_2v (mm2) point group:
Atomic displacements:
There are 3 irreducible representations
Representation 1 1 modes -A_1 D_1 S_1 To be done
Representation 2 1 modes -B_1 D_3 S_3 To be done
Representation 3 1 modes -B_2 D_4 S_4 To be done
PHONON : 25.52s CPU 26.58s WALL
Fourier interpolating dVscf
Reading dynamics matrix from file al.elph.dyn10
Diagonalizing the dynamical matrix
q = ( 0.500000000 0.500000000 0.000000000 )
**************************************************************************
freq ( 1) = 4.864101 [THz] = 162.248937 [cm-1]
freq ( 2) = 6.528749 [THz] = 217.775611 [cm-1]
freq ( 3) = 8.467445 [THz] = 282.443559 [cm-1]
**************************************************************************
Gaussian Broadening: 0.020 Ry, ngauss= 0
DOS = 2.675810 states/spin/Ry/Unit Cell at Ef= 8.278657 eV
double delta at Ef = 40.569273
lambda( 1)= 0.1200 gamma= 7.26 GHz
lambda( 2)= 0.1985 gamma= 21.62 GHz
lambda( 3)= 0.9122 gamma= 167.11 GHz
Gaussian Broadening: 0.040 Ry, ngauss= 0
DOS = 2.703426 states/spin/Ry/Unit Cell at Ef= 8.200073 eV
double delta at Ef = 22.157373
lambda( 1)= 0.0585 gamma= 3.58 GHz
lambda( 2)= 0.1787 gamma= 19.66 GHz
lambda( 3)= 0.3653 gamma= 67.61 GHz
Gaussian Broadening: 0.060 Ry, ngauss= 0
DOS = 2.781707 states/spin/Ry/Unit Cell at Ef= 8.181999 eV
double delta at Ef = 18.361264
lambda( 1)= 0.0477 gamma= 3.00 GHz
lambda( 2)= 0.1601 gamma= 18.13 GHz
lambda( 3)= 0.2452 gamma= 46.69 GHz
Gaussian Broadening: 0.080 Ry, ngauss= 0
DOS = 2.793243 states/spin/Ry/Unit Cell at Ef= 8.205910 eV
double delta at Ef = 16.418327
lambda( 1)= 0.0422 gamma= 2.66 GHz
lambda( 2)= 0.1482 gamma= 16.85 GHz
lambda( 3)= 0.2041 gamma= 39.03 GHz
Gaussian Broadening: 0.100 Ry, ngauss= 0
DOS = 2.781101 states/spin/Ry/Unit Cell at Ef= 8.232628 eV
double delta at Ef = 15.413854
lambda( 1)= 0.0395 gamma= 2.48 GHz
lambda( 2)= 0.1442 gamma= 16.32 GHz
lambda( 3)= 0.1906 gamma= 36.29 GHz
Gaussian Broadening: 0.120 Ry, ngauss= 0
DOS = 2.753459 states/spin/Ry/Unit Cell at Ef= 8.253279 eV
double delta at Ef = 14.878508
lambda( 1)= 0.0390 gamma= 2.43 GHz
lambda( 2)= 0.1427 gamma= 15.99 GHz
lambda( 3)= 0.1871 gamma= 35.27 GHz
Gaussian Broadening: 0.140 Ry, ngauss= 0
DOS = 2.719703 states/spin/Ry/Unit Cell at Ef= 8.267107 eV
double delta at Ef = 14.573333
lambda( 1)= 0.0395 gamma= 2.43 GHz
lambda( 2)= 0.1420 gamma= 15.72 GHz
lambda( 3)= 0.1866 gamma= 34.75 GHz
Gaussian Broadening: 0.160 Ry, ngauss= 0
DOS = 2.693266 states/spin/Ry/Unit Cell at Ef= 8.275890 eV
double delta at Ef = 14.414003
lambda( 1)= 0.0405 gamma= 2.46 GHz
lambda( 2)= 0.1418 gamma= 15.54 GHz
lambda( 3)= 0.1867 gamma= 34.43 GHz
Gaussian Broadening: 0.180 Ry, ngauss= 0
DOS = 2.678788 states/spin/Ry/Unit Cell at Ef= 8.281617 eV
double delta at Ef = 14.350015
lambda( 1)= 0.0415 gamma= 2.51 GHz
lambda( 2)= 0.1418 gamma= 15.46 GHz
lambda( 3)= 0.1866 gamma= 34.22 GHz
Gaussian Broadening: 0.200 Ry, ngauss= 0
DOS = 2.674046 states/spin/Ry/Unit Cell at Ef= 8.285684 eV
double delta at Ef = 14.342522
lambda( 1)= 0.0425 gamma= 2.57 GHz
lambda( 2)= 0.1419 gamma= 15.45 GHz
lambda( 3)= 0.1862 gamma= 34.09 GHz
init_run : 0.07s CPU 0.07s WALL ( 9 calls)
electrons : 19.81s CPU 20.56s WALL ( 9 calls)
Called by init_run:
wfcinit : 0.00s CPU 0.00s WALL ( 9 calls)
potinit : 0.01s CPU 0.00s WALL ( 9 calls)
hinit0 : 0.04s CPU 0.04s WALL ( 9 calls)
Called by electrons:
c_bands : 19.79s CPU 20.54s WALL ( 9 calls)
v_of_rho : 0.00s CPU 0.00s WALL ( 10 calls)
Called by c_bands:
init_us_2 : 0.10s CPU 0.13s WALL ( 6061 calls)
cegterg : 18.24s CPU 18.86s WALL ( 2237 calls)
Called by sum_band:
Called by *egterg:
cdiaghg : 3.56s CPU 3.66s WALL ( 31113 calls)
h_psi : 13.99s CPU 14.43s WALL ( 33350 calls)
g_psi : 0.17s CPU 0.21s WALL ( 28964 calls)
Called by h_psi:
h_psi:calbec : 0.25s CPU 0.31s WALL ( 33350 calls)
vloc_psi : 13.39s CPU 13.69s WALL ( 33350 calls)
add_vuspsi : 0.20s CPU 0.23s WALL ( 33350 calls)
General routines
calbec : 0.21s CPU 0.26s WALL ( 37822 calls)
fft : 0.01s CPU 0.01s WALL ( 120 calls)
ffts : 0.17s CPU 0.15s WALL ( 3354 calls)
fftw : 15.70s CPU 15.85s WALL ( 362466 calls)
davcio : 0.05s CPU 0.11s WALL ( 10696 calls)
Parallel routines
PHONON : 26.43s CPU 27.53s WALL
INITIALIZATION:
phq_setup : 0.03s CPU 0.04s WALL ( 10 calls)
phq_init : 0.07s CPU 0.09s WALL ( 10 calls)
phq_init : 0.07s CPU 0.09s WALL ( 10 calls)
init_vloc : 0.00s CPU 0.00s WALL ( 10 calls)
init_us_1 : 0.02s CPU 0.02s WALL ( 10 calls)
dvqpsi_us : 2.24s CPU 2.29s WALL ( 3354 calls)
dvqpsi_us : 2.24s CPU 2.29s WALL ( 3354 calls)
dvqpsi_us_on : 0.10s CPU 0.10s WALL ( 3354 calls)
h_psi : 13.99s CPU 14.43s WALL ( 33350 calls)
h_psi : 13.99s CPU 14.43s WALL ( 33350 calls)
add_vuspsi : 0.20s CPU 0.23s WALL ( 33350 calls)
Fourier interpolation of dVscf
dvscf_r2q : 0.04s CPU 0.05s WALL ( 10 calls)
dvscf_davcio : 0.01s CPU 0.02s WALL ( 810 calls)
dvscf_scatgr : 0.01s CPU 0.01s WALL ( 810 calls)
dvscf_bare : 0.00s CPU 0.00s WALL ( 10 calls)
General routines
calbec : 0.21s CPU 0.26s WALL ( 37822 calls)
fft : 0.01s CPU 0.01s WALL ( 120 calls)
ffts : 0.17s CPU 0.15s WALL ( 3354 calls)
fftw : 15.70s CPU 15.85s WALL ( 362466 calls)
davcio : 0.05s CPU 0.11s WALL ( 10696 calls)
PHONON : 26.43s CPU 27.53s WALL
This run was terminated on: 18:42:49 21Mar2020
=------------------------------------------------------------------------------=
JOB DONE.
=------------------------------------------------------------------------------=