mirror of https://gitlab.com/QEF/q-e.git
409 lines
18 KiB
Plaintext
409 lines
18 KiB
Plaintext
|
|
``:oss/
|
|
`.+s+. .+ys--yh+ `./ss+.
|
|
-sh//yy+` +yy +yy -+h+-oyy
|
|
-yh- .oyy/.-sh. .syo-.:sy- /yh
|
|
`.-.` `yh+ -oyyyo. `/syys: oys `.`
|
|
`/+ssys+-` `sh+ ` oys` .:osyo`
|
|
-yh- ./syyooyo` .sys+/oyo--yh/
|
|
`yy+ .-:-. `-/+/:` -sh-
|
|
/yh. oys
|
|
``..---hho---------` .---------..` `.-----.` -hd+---.
|
|
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
|
|
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
|
|
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
|
|
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
|
|
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
|
|
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
|
|
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
|
|
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
|
|
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
|
|
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
|
|
-yh- ```````````````` ````````` `` `` oys
|
|
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
|
|
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
|
|
|
|
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
|
|
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
|
|
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
|
|
npj Comput Mater 9, 156 (2023)
|
|
|
|
|
|
Program EPW v.5.8 starts on 9Jan2024 at 13:58:12
|
|
|
|
This program is part of the open-source Quantum ESPRESSO suite
|
|
for quantum simulation of materials; please cite
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
|
|
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
|
|
URL http://www.quantum-espresso.org",
|
|
in publications or presentations arising from this work. More details at
|
|
http://www.quantum-espresso.org/quote
|
|
|
|
Parallel version (MPI), running on 4 processors
|
|
|
|
MPI processes distributed on 1 nodes
|
|
K-points division: npool = 4
|
|
33069 MiB available memory on the printing compute node when the environment starts
|
|
|
|
Reading input from epw21.in
|
|
|
|
No temperature supplied. Setting temps(:) to 300 K.
|
|
|
|
Reading xml data from directory:
|
|
|
|
./BAs.save/
|
|
|
|
IMPORTANT: XC functional enforced from input :
|
|
Exchange-correlation= PZ
|
|
( 1 1 0 0 0 0 0)
|
|
Any further DFT definition will be discarded
|
|
Please, verify this is what you really want
|
|
|
|
|
|
G-vector sticks info
|
|
--------------------
|
|
sticks: dense smooth PW G-vecs: dense smooth PW
|
|
Sum 451 451 139 6423 6423 1067
|
|
|
|
Using Slab Decomposition
|
|
|
|
Reading collected, re-writing distributed wavefunctions
|
|
|
|
--
|
|
|
|
bravais-lattice index = 2
|
|
lattice parameter (a_0) = 9.1100 a.u.
|
|
unit-cell volume = 189.0145 (a.u.)^3
|
|
number of atoms/cell = 2
|
|
number of atomic types = 2
|
|
kinetic-energy cut-off = 40.0000 Ry
|
|
charge density cut-off = 160.0000 Ry
|
|
Exchange-correlation= PZ
|
|
( 1 1 0 0 0 0 0)
|
|
|
|
|
|
celldm(1)= 9.11000 celldm(2)= 0.00000 celldm(3)= 0.00000
|
|
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
|
|
|
|
crystal axes: (cart. coord. in units of a_0)
|
|
a(1) = ( -0.5000 0.0000 0.5000 )
|
|
a(2) = ( 0.0000 0.5000 0.5000 )
|
|
a(3) = ( -0.5000 0.5000 0.0000 )
|
|
|
|
reciprocal axes: (cart. coord. in units 2 pi/a_0)
|
|
b(1) = ( -1.0000 -1.0000 1.0000 )
|
|
b(2) = ( 1.0000 1.0000 1.0000 )
|
|
b(3) = ( -1.0000 1.0000 -1.0000 )
|
|
|
|
|
|
Atoms inside the unit cell:
|
|
|
|
Cartesian axes
|
|
|
|
site n. atom mass positions (a_0 units)
|
|
1 B 10.8100 tau( 1) = ( -0.12500 0.12500 0.12500 )
|
|
2 As 74.9220 tau( 2) = ( 0.12500 -0.12500 -0.12500 )
|
|
|
|
25 Sym.Ops. (with q -> -q+G )
|
|
|
|
|
|
G cutoff = 336.3543 ( 6423 G-vectors) FFT grid: ( 30, 30, 30)
|
|
number of k points= 8
|
|
cart. coord. in units 2pi/a_0
|
|
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.2500000
|
|
k( 2) = ( -0.5000000 0.5000000 -0.5000000), wk = 0.2500000
|
|
k( 3) = ( 0.5000000 0.5000000 0.5000000), wk = 0.2500000
|
|
k( 4) = ( 0.0000000 1.0000000 0.0000000), wk = 0.2500000
|
|
k( 5) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.2500000
|
|
k( 6) = ( -1.0000000 0.0000000 0.0000000), wk = 0.2500000
|
|
k( 7) = ( 0.0000000 0.0000000 1.0000000), wk = 0.2500000
|
|
k( 8) = ( -0.5000000 0.5000000 0.5000000), wk = 0.2500000
|
|
|
|
PseudoPot. # 1 for B read from file:
|
|
../../pseudo/B.pz-vbc.UPF
|
|
MD5 check sum: 57e6d61f6735028425feb5bdf19679fb
|
|
Pseudo is Norm-conserving, Zval = 3.0
|
|
Generated by new atomic code, or converted to UPF format
|
|
Using radial grid of 157 points, 1 beta functions with:
|
|
l(1) = 0
|
|
|
|
PseudoPot. # 2 for As read from file:
|
|
../../pseudo/As.pz-bhs.UPF
|
|
MD5 check sum: 2c53d8691f3db84e0fbdf898b12bc293
|
|
Pseudo is Norm-conserving, Zval = 5.0
|
|
Generated by new atomic code, or converted to UPF format
|
|
Using radial grid of 525 points, 2 beta functions with:
|
|
l(1) = 0
|
|
l(2) = 1
|
|
EPW : 0.11s CPU 0.13s WALL
|
|
|
|
EPW : 0.11s CPU 0.13s WALL
|
|
|
|
-------------------------------------------------------------------
|
|
Wannierization on 2 x 2 x 2 electronic grid
|
|
-------------------------------------------------------------------
|
|
|
|
Spin CASE ( default = unpolarized )
|
|
|
|
Initializing Wannier90
|
|
|
|
|
|
Initial Wannier projections
|
|
|
|
( 0.12500 0.12500 0.12500) : l = -3 mr = 1
|
|
( 0.12500 0.12500 0.12500) : l = -3 mr = 2
|
|
( 0.12500 0.12500 0.12500) : l = -3 mr = 3
|
|
( 0.12500 0.12500 0.12500) : l = -3 mr = 4
|
|
( -0.12500 -0.12500 -0.12500) : l = -3 mr = 1
|
|
( -0.12500 -0.12500 -0.12500) : l = -3 mr = 2
|
|
( -0.12500 -0.12500 -0.12500) : l = -3 mr = 3
|
|
( -0.12500 -0.12500 -0.12500) : l = -3 mr = 4
|
|
|
|
- Number of bands is ( 9)
|
|
- Number of total bands is ( 12)
|
|
- Number of excluded bands is ( 3)
|
|
- Number of wannier functions is ( 8)
|
|
- All guiding functions are given
|
|
|
|
Reading data about k-point neighbours
|
|
|
|
- All neighbours are found
|
|
|
|
AMN
|
|
k points = 8 in 4 pools
|
|
1 of 2 on ionode
|
|
2 of 2 on ionode
|
|
|
|
AMN calculated
|
|
|
|
MMN
|
|
k points = 8 in 4 pools
|
|
1 of 2 on ionode
|
|
2 of 2 on ionode
|
|
MMN calculated
|
|
|
|
Running Wannier90
|
|
|
|
Wannier Function centers (cartesian, alat) and spreads (ang):
|
|
|
|
( -0.07535 0.17465 0.17465) : 1.02556
|
|
( -0.07535 0.07535 0.07535) : 1.02556
|
|
( -0.17465 0.17465 0.07535) : 1.02556
|
|
( -0.17465 0.07535 0.17465) : 1.02556
|
|
( 0.22026 -0.02974 -0.02974) : 0.92973
|
|
( 0.22026 -0.22026 -0.22026) : 0.92973
|
|
( 0.02974 -0.02974 -0.22026) : 0.92973
|
|
( 0.02974 -0.22026 -0.02974) : 0.92973
|
|
|
|
-------------------------------------------------------------------
|
|
WANNIER : 0.49s CPU 0.51s WALL ( 1 calls)
|
|
-------------------------------------------------------------------
|
|
|
|
Dipole matrix elements calculated
|
|
|
|
|
|
Calculating kgmap
|
|
|
|
Progress kgmap: ########################################
|
|
kmaps : 0.02s CPU 0.02s WALL ( 1 calls)
|
|
Symmetries of Bravais lattice: 48
|
|
Symmetries of crystal: 24
|
|
|
|
Reading interatomic force constants
|
|
|
|
Read Z* and epsilon
|
|
IFC last -0.0055063
|
|
Imposed simple ASR
|
|
|
|
Finished reading ifcs
|
|
|
|
Compute wavefunction overlap <psi(Sk)|S|psi(k)>
|
|
Computing dmat, ik = 1
|
|
Computing dmat, ik = 2
|
|
|
|
|
|
===================================================================
|
|
irreducible q point # 1
|
|
===================================================================
|
|
|
|
Symmetries of small group of q: 24
|
|
in addition sym. q -> -q+G:
|
|
|
|
Number of q in the star = 1
|
|
List of q in the star:
|
|
1 0.000000000 0.000000000 0.000000000
|
|
Imposing acoustic sum rule on the dynamical matrix
|
|
Read dielectric tensor and effective charges
|
|
Dyn mat calculated from ifcs
|
|
|
|
q( 1 ) = ( 0.0000000 0.0000000 0.0000000 )
|
|
|
|
|
|
===================================================================
|
|
irreducible q point # 2
|
|
===================================================================
|
|
|
|
Symmetries of small group of q: 6
|
|
in addition sym. q -> -q+G:
|
|
|
|
Number of q in the star = 4
|
|
List of q in the star:
|
|
1 0.500000000 -0.500000000 0.500000000
|
|
2 -0.500000000 0.500000000 0.500000000
|
|
3 0.500000000 0.500000000 -0.500000000
|
|
4 -0.500000000 -0.500000000 -0.500000000
|
|
Dyn mat calculated from ifcs
|
|
Message from routine init_vloc:
|
|
Interpolation table for Vloc re-allocated
|
|
|
|
q( 2 ) = ( 0.5000000 -0.5000000 0.5000000 )
|
|
q( 3 ) = ( -0.5000000 0.5000000 0.5000000 )
|
|
q( 4 ) = ( 0.5000000 0.5000000 -0.5000000 )
|
|
q( 5 ) = ( -0.5000000 -0.5000000 -0.5000000 )
|
|
|
|
|
|
===================================================================
|
|
irreducible q point # 3
|
|
===================================================================
|
|
|
|
Symmetries of small group of q: 8
|
|
in addition sym. q -> -q+G:
|
|
|
|
Number of q in the star = 3
|
|
List of q in the star:
|
|
1 0.000000000 -1.000000000 0.000000000
|
|
2 0.000000000 0.000000000 -1.000000000
|
|
3 -1.000000000 0.000000000 0.000000000
|
|
Dyn mat calculated from ifcs
|
|
|
|
q( 6 ) = ( 0.0000000 -1.0000000 0.0000000 )
|
|
q( 7 ) = ( 0.0000000 0.0000000 -1.0000000 )
|
|
q( 8 ) = ( -1.0000000 0.0000000 0.0000000 )
|
|
|
|
Writing epmatq on .epb files
|
|
|
|
|
|
The .epb files have been correctly written
|
|
|
|
|
|
Band disentanglement is used: nbndsub = 8
|
|
|
|
Computes the analytic long-range interaction for polar materials [lpolar]
|
|
|
|
Construct the Wigner-Seitz cell using Wannier centers and atomic positions
|
|
Number of WS vectors for electrons 25
|
|
Number of WS vectors for phonons 25
|
|
Number of WS vectors for electron-phonon 25
|
|
Maximum number of cores for efficient parallelization 50
|
|
|
|
Inside velocity step 1
|
|
|
|
|
|
Velocity matrix elements calculated
|
|
|
|
|
|
Bloch2wane: 1 / 8
|
|
Bloch2wane: 2 / 8
|
|
Bloch2wane: 3 / 8
|
|
Bloch2wane: 4 / 8
|
|
Bloch2wane: 5 / 8
|
|
Bloch2wane: 6 / 8
|
|
Bloch2wane: 7 / 8
|
|
Bloch2wane: 8 / 8
|
|
|
|
Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file
|
|
|
|
===================================================================
|
|
Memory usage: VmHWM = 74Mb
|
|
VmPeak = 3767Mb
|
|
===================================================================
|
|
|
|
Using uniform q-mesh: 1 1 1
|
|
Size of q point mesh for interpolation: 1
|
|
Using uniform k-mesh: 1 1 1
|
|
Size of k point mesh for interpolation: 2
|
|
Max number of k points per pool: 2
|
|
|
|
Fermi energy coarse grid = 8.071856 eV
|
|
|
|
Fermi energy is calculated from the fine k-mesh: Ef = 10.562076 eV
|
|
|
|
Warning: check if difference with Fermi level fine grid makes sense
|
|
|
|
===================================================================
|
|
|
|
ibndmin = 1 ebndmin = -7.012 eV
|
|
ibndmax = 8 ebndmax = 12.858 eV
|
|
|
|
|
|
Number of ep-matrix elements per pool : 384 ~= 3.00 Kb (@ 8 bytes/ DP)
|
|
|
|
A selecq.fmt file was found but re-created because selecqread == .FALSE.
|
|
We only need to compute 1 q-points
|
|
|
|
===================================================================
|
|
Memory usage: VmHWM = 74Mb
|
|
VmPeak = 3767Mb
|
|
===================================================================
|
|
|
|
|
|
Unfolding on the coarse grid
|
|
elphon_wrap : 1.68s CPU 1.74s WALL ( 1 calls)
|
|
|
|
INITIALIZATION:
|
|
|
|
init_vloc : 0.02s CPU 0.02s WALL ( 1 calls)
|
|
init_us_1 : 0.02s CPU 0.02s WALL ( 1 calls)
|
|
|
|
|
|
|
|
Electron-Phonon interpolation
|
|
ephwann : 0.63s CPU 0.92s WALL ( 1 calls)
|
|
ep-interp : 0.00s CPU 0.00s WALL ( 1 calls)
|
|
|
|
Ham: step 1 : 0.00s CPU 0.00s WALL ( 1 calls)
|
|
Ham: step 2 : 0.00s CPU 0.00s WALL ( 1 calls)
|
|
ep: step 1 : 0.00s CPU 0.00s WALL ( 9 calls)
|
|
ep: step 2 : 0.00s CPU 0.00s WALL ( 9 calls)
|
|
unfold_sthma : 0.04s CPU 0.13s WALL ( 5 calls)
|
|
dg: step 1 : 0.00s CPU 0.00s WALL ( 48 calls)
|
|
dg: step 2 : 0.01s CPU 0.07s WALL ( 48 calls)
|
|
sth: step 1 : 0.01s CPU 0.01s WALL ( 288 calls)
|
|
sth: step 2 : 0.06s CPU 0.27s WALL ( 288 calls)
|
|
DynW2B : 0.00s CPU 0.00s WALL ( 1 calls)
|
|
HamW2B : 0.00s CPU 0.00s WALL ( 5 calls)
|
|
ephW2Bp : 0.00s CPU 0.00s WALL ( 1 calls)
|
|
ephW2B : 0.00s CPU 0.00s WALL ( 1 calls)
|
|
vmewan2bloch : 0.00s CPU 0.00s WALL ( 2 calls)
|
|
vmewan2bloch : 0.00s CPU 0.00s WALL ( 2 calls)
|
|
|
|
|
|
Total program execution
|
|
EPW : 2.91s CPU 3.30s WALL
|
|
|
|
% Copyright (C) 2016-2023 EPW-Collaboration
|
|
|
|
===============================================================================
|
|
Please consider citing the following papers.
|
|
|
|
% Paper describing the method on which EPW relies
|
|
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
|
|
|
|
% Papers describing the EPW software
|
|
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
|
|
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
|
|
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
|
|
|
|
|
|
% Since you used the [lpolar] input, please consider also citing
|
|
C. Verdi and F. Giustino, Phys. Rev. Lett. 115, 176401 (2015)
|
|
|
|
% Since you used the [wfpt] input, please consider also citing
|
|
J.-M. Lihm and C.-H. Park, PRX 11, 041053 (2021)
|
|
|
|
For your convenience, this information is also reported in the
|
|
functionality-dependent EPW.bib file.
|
|
===============================================================================
|
|
|