mirror of https://gitlab.com/QEF/q-e.git
367 lines
18 KiB
Plaintext
367 lines
18 KiB
Plaintext
|
|
``:oss/
|
|
`.+s+. .+ys--yh+ `./ss+.
|
|
-sh//yy+` +yy +yy -+h+-oyy
|
|
-yh- .oyy/.-sh. .syo-.:sy- /yh
|
|
`.-.` `yh+ -oyyyo. `/syys: oys `.`
|
|
`/+ssys+-` `sh+ ` oys` .:osyo`
|
|
-yh- ./syyooyo` .sys+/oyo--yh/
|
|
`yy+ .-:-. `-/+/:` -sh-
|
|
/yh. oys
|
|
``..---hho---------` .---------..` `.-----.` -hd+---.
|
|
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
|
|
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
|
|
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
|
|
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
|
|
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
|
|
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
|
|
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
|
|
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
|
|
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
|
|
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
|
|
-yh- ```````````````` ````````` `` `` oys
|
|
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
|
|
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
|
|
|
|
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
|
|
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
|
|
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
|
|
npj Comput Mater 9, 156 (2023)
|
|
|
|
|
|
Program EPW v.5.9 starts on 26Aug2024 at 21:28:23
|
|
|
|
This program is part of the open-source Quantum ESPRESSO suite
|
|
for quantum simulation of materials; please cite
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
|
|
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
|
|
URL http://www.quantum-espresso.org",
|
|
in publications or presentations arising from this work. More details at
|
|
http://www.quantum-espresso.org/quote
|
|
|
|
Parallel version (MPI), running on 4 processors
|
|
|
|
MPI processes distributed on 1 nodes
|
|
K-points division: npool = 4
|
|
182885 MiB available memory on the printing compute node when the environment starts
|
|
|
|
Waiting for input...
|
|
Reading input from standard input
|
|
|
|
Reading supplied temperature list.
|
|
|
|
------------------------------------------------------------------------
|
|
RESTART - RESTART - RESTART - RESTART
|
|
Restart is done without reading PWSCF save file.
|
|
Be aware that some consistency checks are therefore not done.
|
|
------------------------------------------------------------------------
|
|
|
|
|
|
--
|
|
|
|
bravais-lattice index = 0
|
|
lattice parameter (a_0) = 0.0000 a.u.
|
|
unit-cell volume = 0.0000 (a.u.)^3
|
|
number of atoms/cell = 0
|
|
number of atomic types = 0
|
|
kinetic-energy cut-off = 0.0000 Ry
|
|
charge density cut-off = 0.0000 Ry
|
|
Exchange-correlation= not set
|
|
( -1 -1 -1 -1 -1 -1 -1)
|
|
|
|
|
|
celldm(1)= 0.00000 celldm(2)= 0.00000 celldm(3)= 0.00000
|
|
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
|
|
|
|
crystal axes: (cart. coord. in units of a_0)
|
|
a(1) = ( 0.0000 0.0000 0.0000 )
|
|
a(2) = ( 0.0000 0.0000 0.0000 )
|
|
a(3) = ( 0.0000 0.0000 0.0000 )
|
|
|
|
reciprocal axes: (cart. coord. in units 2 pi/a_0)
|
|
b(1) = ( 0.0000 0.0000 0.0000 )
|
|
b(2) = ( 0.0000 0.0000 0.0000 )
|
|
b(3) = ( 0.0000 0.0000 0.0000 )
|
|
|
|
|
|
Atoms inside the unit cell:
|
|
|
|
Cartesian axes
|
|
|
|
site n. atom mass positions (a_0 units)
|
|
|
|
|
|
No symmetry!
|
|
|
|
G cutoff = 0.0000 ( 0 G-vectors) FFT grid: ( 0, 0, 0)
|
|
number of k points= 0
|
|
cart. coord. in units 2pi/a_0
|
|
|
|
===================================================================
|
|
Solve full-bandwidth anisotropic Eliashberg equations
|
|
===================================================================
|
|
|
|
eps_cut_ir = 1.000E-05 will be used for iterative calculations to solve the Eliashberg equations.
|
|
|
|
Finish reading freq file
|
|
|
|
Fermi level (eV) = 7.6644747171E+00
|
|
DOS(states/spin/eV/Unit Cell) = 9.1308568537E-01
|
|
Electron smearing (eV) = 1.0000000000E-01
|
|
Fermi window (eV) = 2.0000000000E+01
|
|
Nr irreducible k-points within the Fermi shell = 28 out of 28
|
|
|
|
5 bands within the Fermi window
|
|
|
|
|
|
Finish reading egnv file
|
|
|
|
|
|
Max nr of q-points = 216
|
|
|
|
|
|
Finish reading ikmap files
|
|
|
|
|
|
Start reading .ephmat files
|
|
|
|
|
|
Finish reading .ephmat files
|
|
|
|
|
|
Start reading nscf file for Coulomb
|
|
|
|
|
|
Finish reading nscf file for Coulomb
|
|
|
|
|
|
k-grid read from ./MgB2.bands.6x6x6.dat : 6 6 6
|
|
Nr irreducible k-points read from ./MgB2.bands.6x6x6.dat : 28
|
|
Minimum eigenvalue of bands taken from the file (eV) = -4.8621883362E+00
|
|
Maximum eigenvalue of bands taken from the file (eV) = 1.9700101547E+01
|
|
emin_coulomb + "Fermi level" (eV) = -2.3355252829E+00
|
|
emax_coulomb + "Fermi level" (eV) = 1.7664474717E+01
|
|
Only states taken from nscf file between -2.335525 eV and 17.664475 eV
|
|
will be included in the Eliashberg calculations.
|
|
8 bands in the interval [emin_coulomb + "Fermi level", emax_coulomb + "Fermi level"]
|
|
|
|
|
|
ekfs is in agreement with ek_cl within a difference of 6.49E+00 eV.
|
|
|
|
|
|
WARNING: The difference between ekfs and ek_cl is large on some of k points.
|
|
|
|
a2f file is found and will be used to estimate initial gap
|
|
|
|
|
|
Finish reading a2f file
|
|
|
|
Electron-phonon coupling strength = 0.8714949
|
|
|
|
muc = 0.15 is used in the following estimations
|
|
|
|
Estimated Allen-Dynes Tc = 28.461922 K for muc = 0.20000
|
|
|
|
Estimated w_log in Allen-Dynes Tc = 61.470416 meV
|
|
|
|
Estimated BCS superconducting gap = 4.316679 meV
|
|
|
|
Estimated Tc from machine learning model = 31.826242 K
|
|
|
|
|
|
WARNING WARNING WARNING
|
|
|
|
The code may crash since tempsmax = 30.000 K is larger than Allen-Dynes Tc = 28.462 K
|
|
|
|
Start reading ir object file
|
|
|
|
|
|
Finish reading ir object file
|
|
|
|
Actual number of frequency points ( 1) = 31 for sparse-ir sampling
|
|
|
|
temp( 1) = 17.00000 K
|
|
|
|
Solve full-bandwidth anisotropic Eliashberg equations on imaginary-axis
|
|
|
|
Total number of frequency points nsiw( 1) = 31
|
|
Parameters for IR basis: Lambda = 1.00E+05, eps_IR = 1.00E-06
|
|
The noise reduction will be performed using the threshold of 1.00E-05
|
|
Maximum frequency = 865.1937 eV
|
|
linear mixing factor = 0.50000
|
|
mixing factor = 0.2 is used for the first five iterations.
|
|
|
|
iter ethr znormi deltai [meV] shifti [meV] mu [eV]
|
|
1 2.737880E+00 1.689813E+00 3.202780E+00 2.669408E+00 7.664475E+00
|
|
2 5.995515E-02 1.724892E+00 3.648288E+00 5.296717E+00 7.664475E+00
|
|
3 6.241052E-02 1.747888E+00 4.090504E+00 7.422597E+00 7.664475E+00
|
|
4 7.365705E-02 1.762119E+00 4.589604E+00 9.082435E+00 7.664475E+00
|
|
5 9.305287E-02 1.770091E+00 5.220100E+00 1.026103E+01 7.664475E+00
|
|
6 1.145263E-01 1.773345E+00 6.046621E+00 1.083822E+01 7.664475E+00
|
|
7 2.473141E-01 1.767090E+00 8.362429E+00 8.900564E+00 7.664475E+00
|
|
8 1.413736E-01 1.746756E+00 9.787661E+00 8.457832E+00 7.664475E+00
|
|
9 9.839559E-02 1.729810E+00 1.086528E+01 9.130756E+00 7.664475E+00
|
|
10 6.692310E-02 1.715638E+00 1.165938E+01 9.746494E+00 7.664475E+00
|
|
11 4.525938E-02 1.704375E+00 1.222097E+01 1.020133E+01 7.664475E+00
|
|
12 3.099205E-02 1.695854E+00 1.261304E+01 1.051052E+01 7.664475E+00
|
|
13 2.144632E-02 1.689623E+00 1.288870E+01 1.071364E+01 7.664475E+00
|
|
14 1.531017E-02 1.685153E+00 1.308325E+01 1.084650E+01 7.664475E+00
|
|
15 1.108884E-02 1.681979E+00 1.322132E+01 1.093402E+01 7.664475E+00
|
|
16 7.718975E-03 1.679737E+00 1.332249E+01 1.099245E+01 7.664475E+00
|
|
Convergence was reached in nsiter = 16
|
|
|
|
Chemical potential (itemp = 1) = 7.6644747171E+00 eV
|
|
|
|
Temp (itemp = 1) = 17.000 K Free energy = -0.124885 meV
|
|
|
|
Min. / Max. values of superconducting gap = 2.012454 26.607361 meV
|
|
iaxis_imag : 5.96s CPU 6.01s WALL ( 1 calls)
|
|
|
|
|
|
Pade approximant of full-bandwidth anisotropic Eliashberg equations from imaginary-axis to real-axis
|
|
Cutoff frequency wscut = 0.5000
|
|
|
|
pade Re[znorm] Re[delta] [meV] Re[shift] [meV]
|
|
28 1.534696E+00 1.232399E+01 1.094627E+01
|
|
|
|
Convergence was reached for N = 28 Pade approximants
|
|
|
|
Min. / Max. values of superconducting gap = 2.034405 29.824433 meV
|
|
raxis_pade : 0.02s CPU 0.03s WALL ( 1 calls)
|
|
|
|
itemp = 1 total cpu time : 6.04 secs
|
|
|
|
Actual number of frequency points ( 2) = 31 for sparse-ir sampling
|
|
|
|
temp( 2) = 20.00000 K
|
|
|
|
Solve full-bandwidth anisotropic Eliashberg equations on imaginary-axis
|
|
|
|
Total number of frequency points nsiw( 2) = 31
|
|
Parameters for IR basis: Lambda = 1.00E+05, eps_IR = 1.00E-06
|
|
The noise reduction will be performed using the threshold of 1.00E-05
|
|
Maximum frequency = 1017.8750 eV
|
|
linear mixing factor = 0.50000
|
|
mixing factor = 0.2 is used for the first five iterations.
|
|
|
|
iter ethr znormi deltai [meV] shifti [meV] mu [eV]
|
|
1 3.047269E+00 1.665400E+00 9.039201E+00 6.567511E+00 7.664475E+00
|
|
2 4.930740E-02 1.691197E+00 9.745723E+00 9.694625E+00 7.664475E+00
|
|
3 4.016532E-02 1.707384E+00 1.036301E+01 1.169872E+01 7.664475E+00
|
|
4 3.088419E-02 1.716257E+00 1.099403E+01 1.263429E+01 7.664475E+00
|
|
5 2.382419E-02 1.719179E+00 1.160923E+01 1.267122E+01 7.664475E+00
|
|
6 1.882837E-02 1.717680E+00 1.210266E+01 1.220409E+01 7.664475E+00
|
|
7 3.703237E-02 1.706240E+00 1.275918E+01 1.088912E+01 7.664475E+00
|
|
8 1.380969E-02 1.694860E+00 1.304954E+01 1.082342E+01 7.664475E+00
|
|
9 9.238077E-03 1.687111E+00 1.322306E+01 1.093955E+01 7.664475E+00
|
|
Convergence was reached in nsiter = 9
|
|
|
|
Chemical potential (itemp = 2) = 7.6644747171E+00 eV
|
|
|
|
Temp (itemp = 2) = 20.000 K Free energy = -0.119885 meV
|
|
|
|
Min. / Max. values of superconducting gap = 2.028997 26.072271 meV
|
|
iaxis_imag : 9.32s CPU 9.39s WALL ( 2 calls)
|
|
|
|
|
|
Pade approximant of full-bandwidth anisotropic Eliashberg equations from imaginary-axis to real-axis
|
|
Cutoff frequency wscut = 0.5000
|
|
|
|
pade Re[znorm] Re[delta] [meV] Re[shift] [meV]
|
|
28 1.543455E+00 1.224267E+01 1.086098E+01
|
|
|
|
Convergence was reached for N = 28 Pade approximants
|
|
|
|
Min. / Max. values of superconducting gap = 2.051043 29.337046 meV
|
|
raxis_pade : 0.05s CPU 0.07s WALL ( 2 calls)
|
|
|
|
itemp = 2 total cpu time : 9.46 secs
|
|
|
|
Actual number of frequency points ( 3) = 31 for sparse-ir sampling
|
|
|
|
temp( 3) = 30.00000 K
|
|
|
|
Solve full-bandwidth anisotropic Eliashberg equations on imaginary-axis
|
|
|
|
Total number of frequency points nsiw( 3) = 31
|
|
Parameters for IR basis: Lambda = 1.00E+05, eps_IR = 1.00E-06
|
|
The noise reduction will be performed using the threshold of 1.00E-05
|
|
Maximum frequency = 1526.8125 eV
|
|
linear mixing factor = 0.50000
|
|
mixing factor = 0.2 is used for the first five iterations.
|
|
|
|
iter ethr znormi deltai [meV] shifti [meV] mu [eV]
|
|
1 3.274410E+00 1.663751E+00 8.945410E+00 6.643438E+00 7.664475E+00
|
|
2 4.700311E-02 1.689438E+00 9.647229E+00 9.763857E+00 7.664475E+00
|
|
3 3.790743E-02 1.705576E+00 1.025928E+01 1.176823E+01 7.664475E+00
|
|
4 2.802116E-02 1.714483E+00 1.088463E+01 1.270692E+01 7.664475E+00
|
|
5 2.019315E-02 1.717557E+00 1.148970E+01 1.274343E+01 7.664475E+00
|
|
6 1.594606E-02 1.716223E+00 1.197224E+01 1.227696E+01 7.664475E+00
|
|
7 3.525493E-02 1.704888E+00 1.262577E+01 1.097679E+01 7.664475E+00
|
|
8 1.259317E-02 1.693410E+00 1.292595E+01 1.091335E+01 7.664475E+00
|
|
9 9.223442E-03 1.685566E+00 1.310701E+01 1.102888E+01 7.664475E+00
|
|
Convergence was reached in nsiter = 9
|
|
|
|
Chemical potential (itemp = 3) = 7.6644747171E+00 eV
|
|
|
|
Temp (itemp = 3) = 30.000 K Free energy = -0.102756 meV
|
|
|
|
Min. / Max. values of superconducting gap = 1.986993 25.808356 meV
|
|
iaxis_imag : 12.67s CPU 12.76s WALL ( 3 calls)
|
|
|
|
|
|
Pade approximant of full-bandwidth anisotropic Eliashberg equations from imaginary-axis to real-axis
|
|
Cutoff frequency wscut = 0.5000
|
|
|
|
pade Re[znorm] Re[delta] [meV] Re[shift] [meV]
|
|
28 1.544793E+00 1.217798E+01 1.090816E+01
|
|
|
|
Convergence was reached for N = 28 Pade approximants
|
|
|
|
Min. / Max. values of superconducting gap = 2.068962 29.791935 meV
|
|
raxis_pade : 0.07s CPU 0.10s WALL ( 3 calls)
|
|
|
|
itemp = 3 total cpu time : 12.86 secs
|
|
|
|
|
|
Unfolding on the coarse grid
|
|
|
|
INITIALIZATION:
|
|
|
|
|
|
|
|
|
|
Electron-Phonon interpolation
|
|
|
|
|
|
ELIASHBERG : 12.80s CPU 12.98s WALL ( 1 calls)
|
|
|
|
Total program execution
|
|
EPW : 12.81s CPU 13.00s WALL
|
|
|
|
% Copyright (C) 2016-2023 EPW-Collaboration
|
|
|
|
===============================================================================
|
|
Please consider citing the following papers.
|
|
|
|
% Paper describing the method on which EPW relies
|
|
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
|
|
|
|
% Papers describing the EPW software
|
|
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
|
|
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
|
|
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
|
|
|
|
|
|
% Since you used the [eliashberg] input, please consider also citing
|
|
E. R. Margine and F. Giustino, Phys. Rev. B 87, 024505 (2013)
|
|
% Since you used the [gridsamp=2] input, please consider also citing
|
|
M. Wallerberger et al., SoftwareX 21, 101266 (2023)
|
|
H. Mori, T. Nomoto, R. Arita, and E. R. Margine, Phys. Rev. B. 110, 064505 (2024)
|
|
|
|
For your convenience, this information is also reported in the
|
|
functionality-dependent EPW.bib file.
|
|
===============================================================================
|
|
|