mirror of https://gitlab.com/QEF/q-e.git
356 lines
18 KiB
Plaintext
356 lines
18 KiB
Plaintext
|
|
``:oss/
|
|
`.+s+. .+ys--yh+ `./ss+.
|
|
-sh//yy+` +yy +yy -+h+-oyy
|
|
-yh- .oyy/.-sh. .syo-.:sy- /yh
|
|
`.-.` `yh+ -oyyyo. `/syys: oys `.`
|
|
`/+ssys+-` `sh+ ` oys` .:osyo`
|
|
-yh- ./syyooyo` .sys+/oyo--yh/
|
|
`yy+ .-:-. `-/+/:` -sh-
|
|
/yh. oys
|
|
``..---hho---------` .---------..` `.-----.` -hd+---.
|
|
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
|
|
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
|
|
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
|
|
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
|
|
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
|
|
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
|
|
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
|
|
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
|
|
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
|
|
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
|
|
-yh- ```````````````` ````````` `` `` oys
|
|
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
|
|
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
|
|
|
|
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
|
|
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
|
|
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
|
|
npj Comput Mater 9, 156 (2023)
|
|
|
|
|
|
Program EPW v.5.9 starts on 26Aug2024 at 17:14:30
|
|
|
|
This program is part of the open-source Quantum ESPRESSO suite
|
|
for quantum simulation of materials; please cite
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
|
|
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
|
|
URL http://www.quantum-espresso.org",
|
|
in publications or presentations arising from this work. More details at
|
|
http://www.quantum-espresso.org/quote
|
|
|
|
Parallel version (MPI), running on 4 processors
|
|
|
|
MPI processes distributed on 1 nodes
|
|
K-points division: npool = 4
|
|
184425 MiB available memory on the printing compute node when the environment starts
|
|
|
|
Waiting for input...
|
|
Reading input from standard input
|
|
|
|
Reading supplied temperature list.
|
|
|
|
------------------------------------------------------------------------
|
|
RESTART - RESTART - RESTART - RESTART
|
|
Restart is done without reading PWSCF save file.
|
|
Be aware that some consistency checks are therefore not done.
|
|
------------------------------------------------------------------------
|
|
|
|
|
|
--
|
|
|
|
bravais-lattice index = 0
|
|
lattice parameter (a_0) = 0.0000 a.u.
|
|
unit-cell volume = 0.0000 (a.u.)^3
|
|
number of atoms/cell = 0
|
|
number of atomic types = 0
|
|
kinetic-energy cut-off = 0.0000 Ry
|
|
charge density cut-off = 0.0000 Ry
|
|
Exchange-correlation= not set
|
|
( -1 -1 -1 -1 -1 -1 -1)
|
|
|
|
|
|
celldm(1)= 0.00000 celldm(2)= 0.00000 celldm(3)= 0.00000
|
|
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
|
|
|
|
crystal axes: (cart. coord. in units of a_0)
|
|
a(1) = ( 0.0000 0.0000 0.0000 )
|
|
a(2) = ( 0.0000 0.0000 0.0000 )
|
|
a(3) = ( 0.0000 0.0000 0.0000 )
|
|
|
|
reciprocal axes: (cart. coord. in units 2 pi/a_0)
|
|
b(1) = ( 0.0000 0.0000 0.0000 )
|
|
b(2) = ( 0.0000 0.0000 0.0000 )
|
|
b(3) = ( 0.0000 0.0000 0.0000 )
|
|
|
|
|
|
Atoms inside the unit cell:
|
|
|
|
Cartesian axes
|
|
|
|
site n. atom mass positions (a_0 units)
|
|
|
|
|
|
No symmetry!
|
|
|
|
G cutoff = 0.0000 ( 0 G-vectors) FFT grid: ( 0, 0, 0)
|
|
number of k points= 0
|
|
cart. coord. in units 2pi/a_0
|
|
|
|
===================================================================
|
|
Solve full-bandwidth anisotropic Eliashberg equations
|
|
===================================================================
|
|
|
|
eps_cut_ir = 1.000E-05 will be used for iterative calculations to solve the Eliashberg equations.
|
|
|
|
Finish reading freq file
|
|
|
|
Fermi level (eV) = 7.6644747171E+00
|
|
DOS(states/spin/eV/Unit Cell) = 9.1308568537E-01
|
|
Electron smearing (eV) = 1.0000000000E-01
|
|
Fermi window (eV) = 2.0000000000E+01
|
|
Nr irreducible k-points within the Fermi shell = 28 out of 28
|
|
|
|
5 bands within the Fermi window
|
|
|
|
|
|
Finish reading egnv file
|
|
|
|
|
|
Max nr of q-points = 216
|
|
|
|
|
|
Finish reading ikmap files
|
|
|
|
|
|
Start reading .ephmat files
|
|
|
|
|
|
Finish reading .ephmat files
|
|
|
|
a2f file is found and will be used to estimate initial gap
|
|
|
|
|
|
Finish reading a2f file
|
|
|
|
Electron-phonon coupling strength = 0.8714949
|
|
|
|
Estimated Allen-Dynes Tc = 26.408181 K for muc = 0.16000
|
|
|
|
Estimated w_log in Allen-Dynes Tc = 61.470416 meV
|
|
|
|
Estimated BCS superconducting gap = 4.005199 meV
|
|
|
|
Estimated Tc from machine learning model = 31.501523 K
|
|
|
|
|
|
WARNING WARNING WARNING
|
|
|
|
The code may crash since tempsmax = 30.000 K is larger than Allen-Dynes Tc = 26.408 K
|
|
|
|
Start reading ir object file
|
|
|
|
|
|
Finish reading ir object file
|
|
|
|
Actual number of frequency points ( 1) = 31 for sparse-ir sampling
|
|
|
|
temp( 1) = 17.00000 K
|
|
|
|
Solve full-bandwidth anisotropic Eliashberg equations on imaginary-axis
|
|
|
|
Total number of frequency points nsiw( 1) = 31
|
|
Parameters for IR basis: Lambda = 1.00E+05, eps_IR = 1.00E-06
|
|
The noise reduction will be performed using the threshold of 1.00E-05
|
|
Maximum frequency = 865.1937 eV
|
|
broyden mixing factor = 0.70000
|
|
|
|
iter ethr znormi deltai [meV] shifti [meV] mu [eV]
|
|
1 2.838740E+00 1.690241E+00 3.158009E+00 2.595801E+00 7.664475E+00
|
|
2 3.237299E-01 1.806816E+00 5.371406E+00 9.232988E+00 7.664475E+00
|
|
3 2.661584E-01 1.770806E+00 7.740898E+00 5.418096E+00 7.664475E+00
|
|
4 1.762495E+00 1.786413E+00 2.961829E+00 7.932650E+00 7.664475E+00
|
|
5 7.853001E-02 1.782781E+00 3.155112E+00 8.209060E+00 7.664475E+00
|
|
6 5.254119E-01 1.766790E+00 6.662684E+00 8.901546E+00 7.664475E+00
|
|
7 4.565744E-01 1.726732E+00 1.169177E+01 1.684242E+01 7.664475E+00
|
|
8 8.423946E-02 1.728524E+00 1.048804E+01 1.929727E+01 7.664475E+00
|
|
9 2.200356E-01 1.753941E+00 8.557738E+00 1.588050E+01 7.664475E+00
|
|
10 7.633840E-01 1.777027E+00 4.915631E+00 1.046018E+01 7.664475E+00
|
|
11 8.858866E-02 1.774547E+00 5.167462E+00 1.166308E+01 7.664475E+00
|
|
12 4.987369E-01 1.776731E+00 3.295237E+00 1.078846E+01 7.664475E+00
|
|
13 2.816840E-01 1.777956E+00 4.917507E+00 1.085890E+01 7.664475E+00
|
|
14 1.217718E+00 1.763870E+00 1.942259E+00 1.067335E+01 7.664475E+00
|
|
15 6.946082E-02 1.766724E+00 2.132970E+00 1.108632E+01 7.664475E+00
|
|
16 2.247660E-02 1.766830E+00 2.073947E+00 1.109532E+01 7.664475E+00
|
|
17 3.615549E-01 1.768296E+00 3.456035E+00 1.223042E+01 7.664475E+00
|
|
18 7.191042E-02 1.766239E+00 3.765161E+00 1.277348E+01 7.664475E+00
|
|
19 9.738462E-02 1.769323E+00 4.312500E+00 1.251684E+01 7.664475E+00
|
|
20 8.226777E-01 1.755587E+00 2.195118E+00 1.051404E+01 7.664475E+00
|
|
21 3.323837E-01 1.762781E+00 1.644022E+00 9.230599E+00 7.664475E+00
|
|
22 1.024299E-01 1.766125E+00 1.828740E+00 9.805287E+00 7.664475E+00
|
|
23 3.805470E-01 1.779179E+00 3.195653E+00 1.110519E+01 7.664475E+00
|
|
24 6.405706E-01 1.762856E+00 9.458587E+00 1.153292E+01 7.664475E+00
|
|
25 3.074439E+00 1.762849E+00 2.078434E+00 8.887733E+00 7.664475E+00
|
|
26 3.652963E-01 1.734708E+00 1.768013E+00 6.917381E+00 7.664475E+00
|
|
27 1.261660E+00 1.730619E+00 9.060288E-01 6.154103E+00 7.664475E+00
|
|
28 3.651440E+00 1.723015E+00 2.088248E-01 5.598828E+00 7.664475E+00
|
|
29 1.317340E+00 1.728170E+00 3.871681E-01 5.724082E+00 7.664475E+00
|
|
30 8.720564E-01 1.727880E+00 1.749925E+00 6.629270E+00 7.664475E+00
|
|
31 1.933190E-01 1.720180E+00 2.266692E+00 6.720659E+00 7.664475E+00
|
|
32 1.029578E+00 1.723961E+00 1.236783E+00 6.081437E+00 7.664475E+00
|
|
33 3.825904E-01 1.713919E+00 1.908150E+00 6.083626E+00 7.664475E+00
|
|
34 5.241731E-01 1.775158E+00 3.261349E+00 8.048598E+00 7.664475E+00
|
|
35 6.559147E-01 1.764430E+00 1.012848E+01 9.550133E+00 7.664475E+00
|
|
36 2.037144E-02 1.756800E+00 1.051037E+01 8.558348E+00 7.664475E+00
|
|
37 7.103775E-03 1.732047E+00 1.046403E+01 8.921837E+00 7.664475E+00
|
|
Convergence was reached in nsiter = 37
|
|
|
|
Chemical potential (itemp = 1) = 7.6644747171E+00 eV
|
|
|
|
Temp (itemp = 1) = 17.000 K Free energy = -0.077915 meV
|
|
|
|
Min. / Max. values of superconducting gap = 2.108865 19.658272 meV
|
|
iaxis_imag : 9.43s CPU 9.66s WALL ( 1 calls)
|
|
|
|
|
|
Pade approximant of full-bandwidth anisotropic Eliashberg equations from imaginary-axis to real-axis
|
|
Cutoff frequency wscut = 0.5000
|
|
|
|
pade Re[znorm] Re[delta] [meV] Re[shift] [meV]
|
|
28 1.587756E+00 9.672382E+00 8.876859E+00
|
|
|
|
Convergence was reached for N = 28 Pade approximants
|
|
|
|
Min. / Max. values of superconducting gap = 2.130223 21.392756 meV
|
|
raxis_pade : 0.02s CPU 0.05s WALL ( 1 calls)
|
|
|
|
itemp = 1 total cpu time : 9.71 secs
|
|
|
|
Actual number of frequency points ( 2) = 31 for sparse-ir sampling
|
|
|
|
temp( 2) = 20.00000 K
|
|
|
|
Solve full-bandwidth anisotropic Eliashberg equations on imaginary-axis
|
|
|
|
Total number of frequency points nsiw( 2) = 31
|
|
Parameters for IR basis: Lambda = 1.00E+05, eps_IR = 1.00E-06
|
|
The noise reduction will be performed using the threshold of 1.00E-05
|
|
Maximum frequency = 1017.8750 eV
|
|
broyden mixing factor = 0.70000
|
|
|
|
iter ethr znormi deltai [meV] shifti [meV] mu [eV]
|
|
1 3.087819E+00 1.675090E+00 7.815576E+00 5.054607E+00 7.664475E+00
|
|
2 1.928815E-01 1.765817E+00 1.125036E+01 1.147969E+01 7.664475E+00
|
|
3 5.651578E-02 1.711220E+00 1.250895E+01 1.022662E+01 7.664475E+00
|
|
4 1.483608E-01 1.668980E+00 1.422186E+01 1.064590E+01 7.664475E+00
|
|
5 1.558280E-02 1.659124E+00 1.404544E+01 9.257553E+00 7.664475E+00
|
|
6 3.262409E-02 1.676555E+00 1.378008E+01 1.028048E+01 7.664475E+00
|
|
7 1.367903E-02 1.675703E+00 1.400999E+01 1.025119E+01 7.664475E+00
|
|
8 1.810056E-02 1.671057E+00 1.428676E+01 1.160925E+01 7.664475E+00
|
|
9 6.141155E-03 1.673906E+00 1.421021E+01 1.151892E+01 7.664475E+00
|
|
Convergence was reached in nsiter = 9
|
|
|
|
Chemical potential (itemp = 2) = 7.6644747171E+00 eV
|
|
|
|
Temp (itemp = 2) = 20.000 K Free energy = -0.138029 meV
|
|
|
|
Min. / Max. values of superconducting gap = 2.697492 27.798626 meV
|
|
iaxis_imag : 11.71s CPU 11.98s WALL ( 2 calls)
|
|
|
|
|
|
Pade approximant of full-bandwidth anisotropic Eliashberg equations from imaginary-axis to real-axis
|
|
Cutoff frequency wscut = 0.5000
|
|
|
|
pade Re[znorm] Re[delta] [meV] Re[shift] [meV]
|
|
28 1.529275E+00 1.316714E+01 1.144188E+01
|
|
|
|
Convergence was reached for N = 28 Pade approximants
|
|
|
|
Min. / Max. values of superconducting gap = 2.729788 31.225178 meV
|
|
raxis_pade : 0.05s CPU 0.10s WALL ( 2 calls)
|
|
|
|
itemp = 2 total cpu time : 12.08 secs
|
|
|
|
Actual number of frequency points ( 3) = 31 for sparse-ir sampling
|
|
|
|
temp( 3) = 30.00000 K
|
|
|
|
Solve full-bandwidth anisotropic Eliashberg equations on imaginary-axis
|
|
|
|
Total number of frequency points nsiw( 3) = 31
|
|
Parameters for IR basis: Lambda = 1.00E+05, eps_IR = 1.00E-06
|
|
The noise reduction will be performed using the threshold of 1.00E-05
|
|
Maximum frequency = 1526.8125 eV
|
|
broyden mixing factor = 0.70000
|
|
|
|
iter ethr znormi deltai [meV] shifti [meV] mu [eV]
|
|
1 3.544128E+00 1.660102E+00 1.008239E+01 7.195384E+00 7.664475E+00
|
|
2 9.623194E-02 1.737164E+00 1.307907E+01 1.260941E+01 7.664475E+00
|
|
3 5.888610E-02 1.683811E+00 1.352673E+01 1.136068E+01 7.664475E+00
|
|
4 3.742873E-02 1.671434E+00 1.384846E+01 1.148794E+01 7.664475E+00
|
|
5 6.813689E-03 1.667103E+00 1.392694E+01 1.114245E+01 7.664475E+00
|
|
Convergence was reached in nsiter = 5
|
|
|
|
Chemical potential (itemp = 3) = 7.6644747171E+00 eV
|
|
|
|
Temp (itemp = 3) = 30.000 K Free energy = -0.117020 meV
|
|
|
|
Min. / Max. values of superconducting gap = 2.540187 27.493873 meV
|
|
iaxis_imag : 12.96s CPU 13.26s WALL ( 3 calls)
|
|
|
|
|
|
Pade approximant of full-bandwidth anisotropic Eliashberg equations from imaginary-axis to real-axis
|
|
Cutoff frequency wscut = 0.5000
|
|
|
|
pade Re[znorm] Re[delta] [meV] Re[shift] [meV]
|
|
28 1.525372E+00 1.294150E+01 1.104476E+01
|
|
|
|
Convergence was reached for N = 28 Pade approximants
|
|
|
|
Min. / Max. values of superconducting gap = 2.611336 31.805227 meV
|
|
raxis_pade : 0.08s CPU 0.13s WALL ( 3 calls)
|
|
|
|
itemp = 3 total cpu time : 13.39 secs
|
|
|
|
|
|
Unfolding on the coarse grid
|
|
|
|
INITIALIZATION:
|
|
|
|
|
|
|
|
|
|
Electron-Phonon interpolation
|
|
|
|
|
|
ELIASHBERG : 13.09s CPU 13.48s WALL ( 1 calls)
|
|
|
|
Total program execution
|
|
EPW : 13.09s CPU 13.50s WALL
|
|
|
|
% Copyright (C) 2016-2023 EPW-Collaboration
|
|
|
|
===============================================================================
|
|
Please consider citing the following papers.
|
|
|
|
% Paper describing the method on which EPW relies
|
|
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
|
|
|
|
% Papers describing the EPW software
|
|
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
|
|
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
|
|
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
|
|
|
|
|
|
% Since you used the [eliashberg] input, please consider also citing
|
|
E. R. Margine and F. Giustino, Phys. Rev. B 87, 024505 (2013)
|
|
% Since you used the [gridsamp=2] input, please consider also citing
|
|
M. Wallerberger et al., SoftwareX 21, 101266 (2023)
|
|
H. Mori, T. Nomoto, R. Arita, and E. R. Margine, Phys. Rev. B. 110, 064505 (2024)
|
|
|
|
For your convenience, this information is also reported in the
|
|
functionality-dependent EPW.bib file.
|
|
===============================================================================
|
|
|