quantum-espresso/test-suite/epw_super/benchmark.out.git.inp=epw7....

356 lines
18 KiB
Plaintext

``:oss/
`.+s+. .+ys--yh+ `./ss+.
-sh//yy+` +yy +yy -+h+-oyy
-yh- .oyy/.-sh. .syo-.:sy- /yh
`.-.` `yh+ -oyyyo. `/syys: oys `.`
`/+ssys+-` `sh+ ` oys` .:osyo`
-yh- ./syyooyo` .sys+/oyo--yh/
`yy+ .-:-. `-/+/:` -sh-
/yh. oys
``..---hho---------` .---------..` `.-----.` -hd+---.
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
-yh- ```````````````` ````````` `` `` oys
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
npj Comput Mater 9, 156 (2023)
Program EPW v.5.9 starts on 26Aug2024 at 17:14:30
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 4 processors
MPI processes distributed on 1 nodes
K-points division: npool = 4
184425 MiB available memory on the printing compute node when the environment starts
Waiting for input...
Reading input from standard input
Reading supplied temperature list.
------------------------------------------------------------------------
RESTART - RESTART - RESTART - RESTART
Restart is done without reading PWSCF save file.
Be aware that some consistency checks are therefore not done.
------------------------------------------------------------------------
--
bravais-lattice index = 0
lattice parameter (a_0) = 0.0000 a.u.
unit-cell volume = 0.0000 (a.u.)^3
number of atoms/cell = 0
number of atomic types = 0
kinetic-energy cut-off = 0.0000 Ry
charge density cut-off = 0.0000 Ry
Exchange-correlation= not set
( -1 -1 -1 -1 -1 -1 -1)
celldm(1)= 0.00000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( 0.0000 0.0000 0.0000 )
a(2) = ( 0.0000 0.0000 0.0000 )
a(3) = ( 0.0000 0.0000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( 0.0000 0.0000 0.0000 )
b(2) = ( 0.0000 0.0000 0.0000 )
b(3) = ( 0.0000 0.0000 0.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (a_0 units)
No symmetry!
G cutoff = 0.0000 ( 0 G-vectors) FFT grid: ( 0, 0, 0)
number of k points= 0
cart. coord. in units 2pi/a_0
===================================================================
Solve full-bandwidth anisotropic Eliashberg equations
===================================================================
eps_cut_ir = 1.000E-05 will be used for iterative calculations to solve the Eliashberg equations.
Finish reading freq file
Fermi level (eV) = 7.6644747171E+00
DOS(states/spin/eV/Unit Cell) = 9.1308568537E-01
Electron smearing (eV) = 1.0000000000E-01
Fermi window (eV) = 2.0000000000E+01
Nr irreducible k-points within the Fermi shell = 28 out of 28
5 bands within the Fermi window
Finish reading egnv file
Max nr of q-points = 216
Finish reading ikmap files
Start reading .ephmat files
Finish reading .ephmat files
a2f file is found and will be used to estimate initial gap
Finish reading a2f file
Electron-phonon coupling strength = 0.8714949
Estimated Allen-Dynes Tc = 26.408181 K for muc = 0.16000
Estimated w_log in Allen-Dynes Tc = 61.470416 meV
Estimated BCS superconducting gap = 4.005199 meV
Estimated Tc from machine learning model = 31.501523 K
WARNING WARNING WARNING
The code may crash since tempsmax = 30.000 K is larger than Allen-Dynes Tc = 26.408 K
Start reading ir object file
Finish reading ir object file
Actual number of frequency points ( 1) = 31 for sparse-ir sampling
temp( 1) = 17.00000 K
Solve full-bandwidth anisotropic Eliashberg equations on imaginary-axis
Total number of frequency points nsiw( 1) = 31
Parameters for IR basis: Lambda = 1.00E+05, eps_IR = 1.00E-06
The noise reduction will be performed using the threshold of 1.00E-05
Maximum frequency = 865.1937 eV
broyden mixing factor = 0.70000
iter ethr znormi deltai [meV] shifti [meV] mu [eV]
1 2.838740E+00 1.690241E+00 3.158009E+00 2.595801E+00 7.664475E+00
2 3.237299E-01 1.806816E+00 5.371406E+00 9.232988E+00 7.664475E+00
3 2.661584E-01 1.770806E+00 7.740898E+00 5.418096E+00 7.664475E+00
4 1.762495E+00 1.786413E+00 2.961829E+00 7.932650E+00 7.664475E+00
5 7.853001E-02 1.782781E+00 3.155112E+00 8.209060E+00 7.664475E+00
6 5.254119E-01 1.766790E+00 6.662684E+00 8.901546E+00 7.664475E+00
7 4.565744E-01 1.726732E+00 1.169177E+01 1.684242E+01 7.664475E+00
8 8.423946E-02 1.728524E+00 1.048804E+01 1.929727E+01 7.664475E+00
9 2.200356E-01 1.753941E+00 8.557738E+00 1.588050E+01 7.664475E+00
10 7.633840E-01 1.777027E+00 4.915631E+00 1.046018E+01 7.664475E+00
11 8.858866E-02 1.774547E+00 5.167462E+00 1.166308E+01 7.664475E+00
12 4.987369E-01 1.776731E+00 3.295237E+00 1.078846E+01 7.664475E+00
13 2.816840E-01 1.777956E+00 4.917507E+00 1.085890E+01 7.664475E+00
14 1.217718E+00 1.763870E+00 1.942259E+00 1.067335E+01 7.664475E+00
15 6.946082E-02 1.766724E+00 2.132970E+00 1.108632E+01 7.664475E+00
16 2.247660E-02 1.766830E+00 2.073947E+00 1.109532E+01 7.664475E+00
17 3.615549E-01 1.768296E+00 3.456035E+00 1.223042E+01 7.664475E+00
18 7.191042E-02 1.766239E+00 3.765161E+00 1.277348E+01 7.664475E+00
19 9.738462E-02 1.769323E+00 4.312500E+00 1.251684E+01 7.664475E+00
20 8.226777E-01 1.755587E+00 2.195118E+00 1.051404E+01 7.664475E+00
21 3.323837E-01 1.762781E+00 1.644022E+00 9.230599E+00 7.664475E+00
22 1.024299E-01 1.766125E+00 1.828740E+00 9.805287E+00 7.664475E+00
23 3.805470E-01 1.779179E+00 3.195653E+00 1.110519E+01 7.664475E+00
24 6.405706E-01 1.762856E+00 9.458587E+00 1.153292E+01 7.664475E+00
25 3.074439E+00 1.762849E+00 2.078434E+00 8.887733E+00 7.664475E+00
26 3.652963E-01 1.734708E+00 1.768013E+00 6.917381E+00 7.664475E+00
27 1.261660E+00 1.730619E+00 9.060288E-01 6.154103E+00 7.664475E+00
28 3.651440E+00 1.723015E+00 2.088248E-01 5.598828E+00 7.664475E+00
29 1.317340E+00 1.728170E+00 3.871681E-01 5.724082E+00 7.664475E+00
30 8.720564E-01 1.727880E+00 1.749925E+00 6.629270E+00 7.664475E+00
31 1.933190E-01 1.720180E+00 2.266692E+00 6.720659E+00 7.664475E+00
32 1.029578E+00 1.723961E+00 1.236783E+00 6.081437E+00 7.664475E+00
33 3.825904E-01 1.713919E+00 1.908150E+00 6.083626E+00 7.664475E+00
34 5.241731E-01 1.775158E+00 3.261349E+00 8.048598E+00 7.664475E+00
35 6.559147E-01 1.764430E+00 1.012848E+01 9.550133E+00 7.664475E+00
36 2.037144E-02 1.756800E+00 1.051037E+01 8.558348E+00 7.664475E+00
37 7.103775E-03 1.732047E+00 1.046403E+01 8.921837E+00 7.664475E+00
Convergence was reached in nsiter = 37
Chemical potential (itemp = 1) = 7.6644747171E+00 eV
Temp (itemp = 1) = 17.000 K Free energy = -0.077915 meV
Min. / Max. values of superconducting gap = 2.108865 19.658272 meV
iaxis_imag : 9.43s CPU 9.66s WALL ( 1 calls)
Pade approximant of full-bandwidth anisotropic Eliashberg equations from imaginary-axis to real-axis
Cutoff frequency wscut = 0.5000
pade Re[znorm] Re[delta] [meV] Re[shift] [meV]
28 1.587756E+00 9.672382E+00 8.876859E+00
Convergence was reached for N = 28 Pade approximants
Min. / Max. values of superconducting gap = 2.130223 21.392756 meV
raxis_pade : 0.02s CPU 0.05s WALL ( 1 calls)
itemp = 1 total cpu time : 9.71 secs
Actual number of frequency points ( 2) = 31 for sparse-ir sampling
temp( 2) = 20.00000 K
Solve full-bandwidth anisotropic Eliashberg equations on imaginary-axis
Total number of frequency points nsiw( 2) = 31
Parameters for IR basis: Lambda = 1.00E+05, eps_IR = 1.00E-06
The noise reduction will be performed using the threshold of 1.00E-05
Maximum frequency = 1017.8750 eV
broyden mixing factor = 0.70000
iter ethr znormi deltai [meV] shifti [meV] mu [eV]
1 3.087819E+00 1.675090E+00 7.815576E+00 5.054607E+00 7.664475E+00
2 1.928815E-01 1.765817E+00 1.125036E+01 1.147969E+01 7.664475E+00
3 5.651578E-02 1.711220E+00 1.250895E+01 1.022662E+01 7.664475E+00
4 1.483608E-01 1.668980E+00 1.422186E+01 1.064590E+01 7.664475E+00
5 1.558280E-02 1.659124E+00 1.404544E+01 9.257553E+00 7.664475E+00
6 3.262409E-02 1.676555E+00 1.378008E+01 1.028048E+01 7.664475E+00
7 1.367903E-02 1.675703E+00 1.400999E+01 1.025119E+01 7.664475E+00
8 1.810056E-02 1.671057E+00 1.428676E+01 1.160925E+01 7.664475E+00
9 6.141155E-03 1.673906E+00 1.421021E+01 1.151892E+01 7.664475E+00
Convergence was reached in nsiter = 9
Chemical potential (itemp = 2) = 7.6644747171E+00 eV
Temp (itemp = 2) = 20.000 K Free energy = -0.138029 meV
Min. / Max. values of superconducting gap = 2.697492 27.798626 meV
iaxis_imag : 11.71s CPU 11.98s WALL ( 2 calls)
Pade approximant of full-bandwidth anisotropic Eliashberg equations from imaginary-axis to real-axis
Cutoff frequency wscut = 0.5000
pade Re[znorm] Re[delta] [meV] Re[shift] [meV]
28 1.529275E+00 1.316714E+01 1.144188E+01
Convergence was reached for N = 28 Pade approximants
Min. / Max. values of superconducting gap = 2.729788 31.225178 meV
raxis_pade : 0.05s CPU 0.10s WALL ( 2 calls)
itemp = 2 total cpu time : 12.08 secs
Actual number of frequency points ( 3) = 31 for sparse-ir sampling
temp( 3) = 30.00000 K
Solve full-bandwidth anisotropic Eliashberg equations on imaginary-axis
Total number of frequency points nsiw( 3) = 31
Parameters for IR basis: Lambda = 1.00E+05, eps_IR = 1.00E-06
The noise reduction will be performed using the threshold of 1.00E-05
Maximum frequency = 1526.8125 eV
broyden mixing factor = 0.70000
iter ethr znormi deltai [meV] shifti [meV] mu [eV]
1 3.544128E+00 1.660102E+00 1.008239E+01 7.195384E+00 7.664475E+00
2 9.623194E-02 1.737164E+00 1.307907E+01 1.260941E+01 7.664475E+00
3 5.888610E-02 1.683811E+00 1.352673E+01 1.136068E+01 7.664475E+00
4 3.742873E-02 1.671434E+00 1.384846E+01 1.148794E+01 7.664475E+00
5 6.813689E-03 1.667103E+00 1.392694E+01 1.114245E+01 7.664475E+00
Convergence was reached in nsiter = 5
Chemical potential (itemp = 3) = 7.6644747171E+00 eV
Temp (itemp = 3) = 30.000 K Free energy = -0.117020 meV
Min. / Max. values of superconducting gap = 2.540187 27.493873 meV
iaxis_imag : 12.96s CPU 13.26s WALL ( 3 calls)
Pade approximant of full-bandwidth anisotropic Eliashberg equations from imaginary-axis to real-axis
Cutoff frequency wscut = 0.5000
pade Re[znorm] Re[delta] [meV] Re[shift] [meV]
28 1.525372E+00 1.294150E+01 1.104476E+01
Convergence was reached for N = 28 Pade approximants
Min. / Max. values of superconducting gap = 2.611336 31.805227 meV
raxis_pade : 0.08s CPU 0.13s WALL ( 3 calls)
itemp = 3 total cpu time : 13.39 secs
Unfolding on the coarse grid
INITIALIZATION:
Electron-Phonon interpolation
ELIASHBERG : 13.09s CPU 13.48s WALL ( 1 calls)
Total program execution
EPW : 13.09s CPU 13.50s WALL
% Copyright (C) 2016-2023 EPW-Collaboration
===============================================================================
Please consider citing the following papers.
% Paper describing the method on which EPW relies
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
% Papers describing the EPW software
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
% Since you used the [eliashberg] input, please consider also citing
E. R. Margine and F. Giustino, Phys. Rev. B 87, 024505 (2013)
% Since you used the [gridsamp=2] input, please consider also citing
M. Wallerberger et al., SoftwareX 21, 101266 (2023)
H. Mori, T. Nomoto, R. Arita, and E. R. Margine, Phys. Rev. B. 110, 064505 (2024)
For your convenience, this information is also reported in the
functionality-dependent EPW.bib file.
===============================================================================