mirror of https://gitlab.com/QEF/q-e.git
335 lines
16 KiB
Plaintext
335 lines
16 KiB
Plaintext
|
|
``:oss/
|
|
`.+s+. .+ys--yh+ `./ss+.
|
|
-sh//yy+` +yy +yy -+h+-oyy
|
|
-yh- .oyy/.-sh. .syo-.:sy- /yh
|
|
`.-.` `yh+ -oyyyo. `/syys: oys `.`
|
|
`/+ssys+-` `sh+ ` oys` .:osyo`
|
|
-yh- ./syyooyo` .sys+/oyo--yh/
|
|
`yy+ .-:-. `-/+/:` -sh-
|
|
/yh. oys
|
|
``..---hho---------` .---------..` `.-----.` -hd+---.
|
|
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
|
|
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
|
|
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
|
|
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
|
|
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
|
|
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
|
|
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
|
|
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
|
|
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
|
|
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
|
|
-yh- ```````````````` ````````` `` `` oys
|
|
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
|
|
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
|
|
|
|
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
|
|
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
|
|
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
|
|
npj Comput Mater 9, 156 (2023)
|
|
|
|
|
|
Program EPW v.5.9 starts on 26Aug2024 at 17: 9: 8
|
|
|
|
This program is part of the open-source Quantum ESPRESSO suite
|
|
for quantum simulation of materials; please cite
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
|
|
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
|
|
URL http://www.quantum-espresso.org",
|
|
in publications or presentations arising from this work. More details at
|
|
http://www.quantum-espresso.org/quote
|
|
|
|
Parallel version (MPI), running on 4 processors
|
|
|
|
MPI processes distributed on 1 nodes
|
|
K-points division: npool = 4
|
|
184573 MiB available memory on the printing compute node when the environment starts
|
|
|
|
Waiting for input...
|
|
Reading input from standard input
|
|
|
|
Reading supplied temperature list.
|
|
|
|
------------------------------------------------------------------------
|
|
RESTART - RESTART - RESTART - RESTART
|
|
Restart is done without reading PWSCF save file.
|
|
Be aware that some consistency checks are therefore not done.
|
|
------------------------------------------------------------------------
|
|
|
|
|
|
--
|
|
|
|
bravais-lattice index = 0
|
|
lattice parameter (a_0) = 0.0000 a.u.
|
|
unit-cell volume = 0.0000 (a.u.)^3
|
|
number of atoms/cell = 0
|
|
number of atomic types = 0
|
|
kinetic-energy cut-off = 0.0000 Ry
|
|
charge density cut-off = 0.0000 Ry
|
|
Exchange-correlation= not set
|
|
( -1 -1 -1 -1 -1 -1 -1)
|
|
|
|
|
|
celldm(1)= 0.00000 celldm(2)= 0.00000 celldm(3)= 0.00000
|
|
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
|
|
|
|
crystal axes: (cart. coord. in units of a_0)
|
|
a(1) = ( 0.0000 0.0000 0.0000 )
|
|
a(2) = ( 0.0000 0.0000 0.0000 )
|
|
a(3) = ( 0.0000 0.0000 0.0000 )
|
|
|
|
reciprocal axes: (cart. coord. in units 2 pi/a_0)
|
|
b(1) = ( 0.0000 0.0000 0.0000 )
|
|
b(2) = ( 0.0000 0.0000 0.0000 )
|
|
b(3) = ( 0.0000 0.0000 0.0000 )
|
|
|
|
|
|
Atoms inside the unit cell:
|
|
|
|
Cartesian axes
|
|
|
|
site n. atom mass positions (a_0 units)
|
|
|
|
|
|
No symmetry!
|
|
|
|
G cutoff = 0.0000 ( 0 G-vectors) FFT grid: ( 0, 0, 0)
|
|
number of k points= 0
|
|
cart. coord. in units 2pi/a_0
|
|
|
|
===================================================================
|
|
Solve full-bandwidth anisotropic Eliashberg equations
|
|
===================================================================
|
|
|
|
|
|
Finish reading freq file
|
|
|
|
Fermi level (eV) = 7.6644747171E+00
|
|
DOS(states/spin/eV/Unit Cell) = 9.1308568537E-01
|
|
Electron smearing (eV) = 1.0000000000E-01
|
|
Fermi window (eV) = 2.0000000000E+01
|
|
Nr irreducible k-points within the Fermi shell = 28 out of 28
|
|
|
|
5 bands within the Fermi window
|
|
|
|
|
|
Finish reading egnv file
|
|
|
|
|
|
Max nr of q-points = 216
|
|
|
|
|
|
Finish reading ikmap files
|
|
|
|
|
|
Start reading .ephmat files
|
|
|
|
|
|
Finish reading .ephmat files
|
|
|
|
a2f file is found and will be used to estimate initial gap
|
|
|
|
|
|
Finish reading a2f file
|
|
|
|
Electron-phonon coupling strength = 0.8714949
|
|
|
|
Estimated Allen-Dynes Tc = 26.408181 K for muc = 0.16000
|
|
|
|
Estimated w_log in Allen-Dynes Tc = 61.470416 meV
|
|
|
|
Estimated BCS superconducting gap = 4.005199 meV
|
|
|
|
Estimated Tc from machine learning model = 31.501523 K
|
|
|
|
|
|
WARNING WARNING WARNING
|
|
|
|
The code may crash since tempsmax = 30.000 K is larger than Allen-Dynes Tc = 26.408 K
|
|
Actual number of frequency points ( 1) = 54 for uniform sampling
|
|
|
|
temp( 1) = 17.00000 K
|
|
|
|
Solve full-bandwidth anisotropic Eliashberg equations on imaginary-axis
|
|
|
|
Total number of frequency points nsiw( 1) = 54
|
|
Cutoff frequency wscut = 0.5000 eV
|
|
Maximum frequency = 0.4924 eV
|
|
broyden mixing factor = 0.70000
|
|
|
|
|
|
Size of allocated memory per pool: ~= 0.0339 Gb
|
|
iter ethr znormi deltai [meV] shifti [meV] mu [eV]
|
|
1 3.838805E+00 1.683324E+00 3.173686E+00 1.067740E+00 7.664475E+00
|
|
2 3.556358E-01 1.800657E+00 5.289304E+00 7.330154E+00 7.664475E+00
|
|
3 2.951307E-01 1.767662E+00 7.945535E+00 6.597040E+00 7.664475E+00
|
|
4 4.482168E+00 1.772320E+00 1.581853E+00 8.618266E+00 7.664475E+00
|
|
5 1.116784E-01 1.777563E+00 1.587855E+00 7.277915E+00 7.664475E+00
|
|
6 1.209339E+00 1.658103E+00 -4.983599E+00 2.561129E+01 7.664475E+00
|
|
7 1.793906E+00 1.768105E+00 8.138864E+00 7.857055E+00 7.664475E+00
|
|
8 2.745604E-01 1.741290E+00 1.107447E+01 1.272068E+01 7.664475E+00
|
|
9 9.374648E-02 1.752167E+00 1.019717E+01 1.199495E+01 7.664475E+00
|
|
10 1.057814E-02 1.754121E+00 1.008443E+01 1.287091E+01 7.664475E+00
|
|
11 2.142836E-01 1.768774E+00 8.110020E+00 1.261420E+01 7.664475E+00
|
|
12 2.078735E-01 1.769203E+00 6.195766E+00 1.280981E+01 7.664475E+00
|
|
13 1.053059E-01 1.767746E+00 7.051950E+00 1.324447E+01 7.664475E+00
|
|
14 4.216634E-01 1.744690E+00 4.573829E+00 1.263835E+01 7.664475E+00
|
|
15 8.903284E-02 1.752430E+00 4.224154E+00 1.209771E+01 7.664475E+00
|
|
16 8.556342E-02 1.744822E+00 4.578491E+00 1.300966E+01 7.664475E+00
|
|
17 5.754230E-02 1.749503E+00 5.049648E+00 1.319773E+01 7.664475E+00
|
|
18 3.573294E-01 1.740468E+00 8.562994E+00 1.437706E+01 7.664475E+00
|
|
19 5.047449E-02 1.737166E+00 8.830301E+00 1.590834E+01 7.664475E+00
|
|
20 1.542291E-01 1.733104E+00 1.069317E+01 1.600615E+01 7.664475E+00
|
|
21 6.164589E-03 1.720065E+00 1.070920E+01 1.734512E+01 7.664475E+00
|
|
Convergence was reached in nsiter = 21
|
|
|
|
Chemical potential (itemp = 1) = 7.6644747171E+00 eV
|
|
|
|
Temp (itemp = 1) = 17.000 K Free energy = -0.079912 meV
|
|
|
|
Min. / Max. values of superconducting gap = 3.687867 15.743482 meV
|
|
iaxis_imag : 8.83s CPU 9.03s WALL ( 1 calls)
|
|
|
|
|
|
Pade approximant of full-bandwidth anisotropic Eliashberg equations from imaginary-axis to real-axis
|
|
Cutoff frequency wscut = 0.5000
|
|
|
|
pade Re[znorm] Re[delta] [meV] Re[shift] [meV]
|
|
48 1.575896E+00 9.974450E+00 1.733068E+01
|
|
|
|
Convergence was reached for N = 48 Pade approximants
|
|
|
|
Min. / Max. values of superconducting gap = 3.721439 16.288288 meV
|
|
raxis_pade : 0.04s CPU 0.06s WALL ( 1 calls)
|
|
|
|
itemp = 1 total cpu time : 9.09 secs
|
|
|
|
Actual number of frequency points ( 2) = 46 for uniform sampling
|
|
|
|
temp( 2) = 20.00000 K
|
|
|
|
Solve full-bandwidth anisotropic Eliashberg equations on imaginary-axis
|
|
|
|
Total number of frequency points nsiw( 2) = 46
|
|
Cutoff frequency wscut = 0.5000 eV
|
|
Maximum frequency = 0.4927 eV
|
|
broyden mixing factor = 0.70000
|
|
|
|
|
|
Size of allocated memory per pool: ~= 0.0293 Gb
|
|
iter ethr znormi deltai [meV] shifti [meV] mu [eV]
|
|
1 4.048004E+00 1.667442E+00 8.016718E+00 3.653539E+00 7.664475E+00
|
|
2 2.390427E-01 1.757557E+00 1.122881E+01 1.032921E+01 7.664475E+00
|
|
3 7.536827E-02 1.704096E+00 1.243899E+01 9.630415E+00 7.664475E+00
|
|
4 1.216928E-01 1.668211E+00 1.376719E+01 9.686467E+00 7.664475E+00
|
|
5 2.062332E-02 1.657620E+00 1.389619E+01 8.524158E+00 7.664475E+00
|
|
6 4.983493E-02 1.672785E+00 1.344830E+01 9.244102E+00 7.664475E+00
|
|
7 2.816478E-03 1.677046E+00 1.344978E+01 9.470448E+00 7.664475E+00
|
|
Convergence was reached in nsiter = 7
|
|
|
|
Chemical potential (itemp = 2) = 7.6644747171E+00 eV
|
|
|
|
Temp (itemp = 2) = 20.000 K Free energy = -0.124167 meV
|
|
|
|
Min. / Max. values of superconducting gap = 2.082551 27.080631 meV
|
|
iaxis_imag : 11.09s CPU 11.34s WALL ( 2 calls)
|
|
|
|
|
|
Pade approximant of full-bandwidth anisotropic Eliashberg equations from imaginary-axis to real-axis
|
|
Cutoff frequency wscut = 0.5000
|
|
|
|
pade Re[znorm] Re[delta] [meV] Re[shift] [meV]
|
|
42 1.532863E+00 1.245641E+01 9.395281E+00
|
|
|
|
Convergence was reached for N = 42 Pade approximants
|
|
|
|
Min. / Max. values of superconducting gap = 2.112769 30.297335 meV
|
|
raxis_pade : 0.08s CPU 0.12s WALL ( 2 calls)
|
|
|
|
itemp = 2 total cpu time : 11.47 secs
|
|
|
|
Actual number of frequency points ( 3) = 31 for uniform sampling
|
|
|
|
temp( 3) = 30.00000 K
|
|
|
|
Solve full-bandwidth anisotropic Eliashberg equations on imaginary-axis
|
|
|
|
Total number of frequency points nsiw( 3) = 31
|
|
Cutoff frequency wscut = 0.5000 eV
|
|
Maximum frequency = 0.4954 eV
|
|
broyden mixing factor = 0.70000
|
|
|
|
|
|
Size of allocated memory per pool: ~= 0.0206 Gb
|
|
iter ethr znormi deltai [meV] shifti [meV] mu [eV]
|
|
1 4.193849E+00 1.656208E+00 9.690434E+00 5.269180E+00 7.664475E+00
|
|
2 1.819202E-01 1.736132E+00 1.255560E+01 1.138465E+01 7.664475E+00
|
|
3 2.589656E-02 1.684618E+00 1.306587E+01 1.038208E+01 7.664475E+00
|
|
4 4.252745E-02 1.669015E+00 1.348341E+01 1.036771E+01 7.664475E+00
|
|
5 2.948504E-02 1.660783E+00 1.376199E+01 9.598172E+00 7.664475E+00
|
|
6 3.124599E-02 1.667965E+00 1.341890E+01 9.737974E+00 7.664475E+00
|
|
7 3.654985E-02 1.662447E+00 1.388478E+01 1.146392E+01 7.664475E+00
|
|
8 1.487817E-02 1.665492E+00 1.369838E+01 1.051272E+01 7.664475E+00
|
|
9 3.927047E-03 1.665559E+00 1.375233E+01 1.055946E+01 7.664475E+00
|
|
Convergence was reached in nsiter = 9
|
|
|
|
Chemical potential (itemp = 3) = 7.6644747171E+00 eV
|
|
|
|
Temp (itemp = 3) = 30.000 K Free energy = -0.113421 meV
|
|
|
|
Min. / Max. values of superconducting gap = 2.214327 27.131686 meV
|
|
iaxis_imag : 12.39s CPU 12.66s WALL ( 3 calls)
|
|
|
|
|
|
Pade approximant of full-bandwidth anisotropic Eliashberg equations from imaginary-axis to real-axis
|
|
Cutoff frequency wscut = 0.5000
|
|
|
|
pade Re[znorm] Re[delta] [meV] Re[shift] [meV]
|
|
28 1.525206E+00 1.279604E+01 1.040918E+01
|
|
|
|
Convergence was reached for N = 28 Pade approximants
|
|
|
|
Min. / Max. values of superconducting gap = 2.274271 30.711877 meV
|
|
raxis_pade : 0.10s CPU 0.16s WALL ( 3 calls)
|
|
|
|
itemp = 3 total cpu time : 12.82 secs
|
|
|
|
|
|
Unfolding on the coarse grid
|
|
|
|
INITIALIZATION:
|
|
|
|
|
|
|
|
|
|
Electron-Phonon interpolation
|
|
|
|
|
|
ELIASHBERG : 12.55s CPU 12.92s WALL ( 1 calls)
|
|
|
|
Total program execution
|
|
EPW : 12.56s CPU 12.94s WALL
|
|
|
|
% Copyright (C) 2016-2023 EPW-Collaboration
|
|
|
|
===============================================================================
|
|
Please consider citing the following papers.
|
|
|
|
% Paper describing the method on which EPW relies
|
|
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
|
|
|
|
% Papers describing the EPW software
|
|
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
|
|
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
|
|
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
|
|
|
|
|
|
% Since you used the [eliashberg] input, please consider also citing
|
|
E. R. Margine and F. Giustino, Phys. Rev. B 87, 024505 (2013)
|
|
|
|
For your convenience, this information is also reported in the
|
|
functionality-dependent EPW.bib file.
|
|
===============================================================================
|
|
|