quantum-espresso/test-suite/epw_super/benchmark.out.git.inp=epw4....

314 lines
14 KiB
Plaintext

``:oss/
`.+s+. .+ys--yh+ `./ss+.
-sh//yy+` +yy +yy -+h+-oyy
-yh- .oyy/.-sh. .syo-.:sy- /yh
`.-.` `yh+ -oyyyo. `/syys: oys `.`
`/+ssys+-` `sh+ ` oys` .:osyo`
-yh- ./syyooyo` .sys+/oyo--yh/
`yy+ .-:-. `-/+/:` -sh-
/yh. oys
``..---hho---------` .---------..` `.-----.` -hd+---.
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
-yh- ```````````````` ````````` `` `` oys
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
npj Comput Mater 9, 156 (2023)
Program EPW v.5.8 starts on 9Jan2024 at 13:54:14
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 4 processors
MPI processes distributed on 1 nodes
K-points division: npool = 4
33610 MiB available memory on the printing compute node when the environment starts
Reading input from epw4.in
Reading supplied temperature list.
------------------------------------------------------------------------
RESTART - RESTART - RESTART - RESTART
Restart is done without reading PWSCF save file.
Be aware that some consistency checks are therefore not done.
------------------------------------------------------------------------
--
bravais-lattice index = 0
lattice parameter (a_0) = 0.0000 a.u.
unit-cell volume = 0.0000 (a.u.)^3
number of atoms/cell = 0
number of atomic types = 0
kinetic-energy cut-off = 0.0000 Ry
charge density cut-off = 0.0000 Ry
Exchange-correlation= not set
( -1 -1 -1 -1 -1 -1 -1)
celldm(1)= 0.00000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( 0.0000 0.0000 0.0000 )
a(2) = ( 0.0000 0.0000 0.0000 )
a(3) = ( 0.0000 0.0000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( 0.0000 0.0000 0.0000 )
b(2) = ( 0.0000 0.0000 0.0000 )
b(3) = ( 0.0000 0.0000 0.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (a_0 units)
No symmetry!
G cutoff = 0.0000 ( 0 G-vectors) FFT grid: ( 0, 0, 0)
number of k points= 0
cart. coord. in units 2pi/a_0
===================================================================
Solve anisotropic Eliashberg equations
===================================================================
Finish reading freq file
Fermi level (eV) = 7.6644747168E+00
DOS(states/spin/eV/Unit Cell) = 9.1308568651E-01
Electron smearing (eV) = 1.0000000000E-01
Fermi window (eV) = 2.0000000000E+01
Nr irreducible k-points within the Fermi shell = 28 out of 28
5 bands within the Fermi window
Finish reading egnv file
Max nr of q-points = 216
Finish reading ikmap files
Start reading .ephmat files
Finish reading .ephmat files
a2f file is found and will be used to estimate initial gap
Finish reading a2f file
Electron-phonon coupling strength = 0.8714948
Estimated Allen-Dynes Tc = 26.408172 K for muc = 0.16000
Estimated w_log in Allen-Dynes Tc = 61.470420 meV
Estimated BCS superconducting gap = 4.005197 meV
Estimated Tc from machine learning model = 31.501506 K
WARNING WARNING WARNING
The code may crash since tempsmax = 30.000 K is larger than Allen-Dynes Tc = 26.408 K
temp( 1) = 17.00000 K
Solve anisotropic Eliashberg equations on imaginary-axis
Total number of frequency points nsiw( 1) = 54
Cutoff frequency wscut = 0.5016
broyden mixing factor = 0.70000
Actual number of frequency points ( 1) = 54 for uniform sampling
Size of allocated memory per pool: ~= 0.0333 Gb
iter ethr znormi deltai [meV]
1 2.725055E+00 1.842711E+00 4.796926E+00
2 1.214253E-01 1.839269E+00 5.445808E+00
3 1.459295E-01 1.833751E+00 6.337931E+00
4 2.059958E-01 1.822654E+00 7.829510E+00
5 1.043174E-02 1.822535E+00 7.843509E+00
6 1.872265E-01 1.831183E+00 6.720453E+00
7 1.959032E-01 1.819962E+00 8.159867E+00
8 1.598753E-02 1.818893E+00 8.271571E+00
9 9.739202E-02 1.824422E+00 7.626187E+00
10 2.347234E-02 1.823109E+00 7.789320E+00
11 1.311646E-02 1.822356E+00 7.880095E+00
12 8.411077E-04 1.822314E+00 7.886231E+00
Convergence was reached in nsiter = 12
Chemical potential (itemp = 1) = 7.6644747168E+00 eV
Temp (itemp = 1) = 17.000 K Free energy = -0.021657 meV
Min. / Max. values of superconducting gap = 2.399893 14.222180 meV
iaxis_imag : 18.82s CPU 18.86s WALL ( 1 calls)
Pade approximant of anisotropic Eliashberg equations from imaginary-axis to real-axis
Cutoff frequency wscut = 0.5000
pade Re[znorm] Re[delta] [meV]
48 1.677335E+00 7.296695E+00
Convergence was reached for N = 48 Pade approximants
Min. / Max. values of superconducting gap = 2.418076 14.839889 meV
raxis_pade : 0.04s CPU 0.05s WALL ( 1 calls)
itemp = 1 total cpu time : 18.91 secs
temp( 2) = 20.00000 K
Solve anisotropic Eliashberg equations on imaginary-axis
Total number of frequency points nsiw( 2) = 46
Cutoff frequency wscut = 0.5035
broyden mixing factor = 0.70000
Actual number of frequency points ( 2) = 46 for uniform sampling
Size of allocated memory per pool: ~= 0.0288 Gb
iter ethr znormi deltai [meV]
1 3.207124E+00 1.823650E+00 7.674156E+00
2 3.397008E-02 1.822877E+00 7.781719E+00
3 2.102245E-02 1.821980E+00 7.882494E+00
4 6.592215E-03 1.821474E+00 7.939360E+00
Convergence was reached in nsiter = 4
Chemical potential (itemp = 2) = 7.6644747168E+00 eV
Temp (itemp = 2) = 20.000 K Free energy = -0.020332 meV
Min. / Max. values of superconducting gap = 2.388633 14.371011 meV
iaxis_imag : 23.37s CPU 23.44s WALL ( 2 calls)
Pade approximant of anisotropic Eliashberg equations from imaginary-axis to real-axis
Cutoff frequency wscut = 0.5000
pade Re[znorm] Re[delta] [meV]
42 1.678409E+00 7.353431E+00
Convergence was reached for N = 42 Pade approximants
Min. / Max. values of superconducting gap = 2.412154 15.015067 meV
raxis_pade : 0.08s CPU 0.09s WALL ( 2 calls)
itemp = 2 total cpu time : 23.52 secs
temp( 3) = 30.00000 K
Solve anisotropic Eliashberg equations on imaginary-axis
Total number of frequency points nsiw( 3) = 31
Cutoff frequency wscut = 0.5117
broyden mixing factor = 0.70000
Actual number of frequency points ( 3) = 31 for uniform sampling
Size of allocated memory per pool: ~= 0.0202 Gb
iter ethr znormi deltai [meV]
1 3.285980E+00 1.824087E+00 7.485312E+00
2 3.207292E-02 1.823945E+00 7.520146E+00
3 1.836742E-02 1.823728E+00 7.540063E+00
4 2.799169E-03 1.823672E+00 7.541870E+00
Convergence was reached in nsiter = 4
Chemical potential (itemp = 3) = 7.6644747168E+00 eV
Temp (itemp = 3) = 30.000 K Free energy = -0.012913 meV
Min. / Max. values of superconducting gap = 2.244321 13.672737 meV
iaxis_imag : 25.52s CPU 25.59s WALL ( 3 calls)
Pade approximant of anisotropic Eliashberg equations from imaginary-axis to real-axis
Cutoff frequency wscut = 0.5000
pade Re[znorm] Re[delta] [meV]
28 1.685368E+00 7.007490E+00
Convergence was reached for N = 28 Pade approximants
Min. / Max. values of superconducting gap = 2.287685 14.218107 meV
raxis_pade : 0.11s CPU 0.12s WALL ( 3 calls)
itemp = 3 total cpu time : 25.71 secs
Unfolding on the coarse grid
INITIALIZATION:
Electron-Phonon interpolation
ELIASHBERG : 25.74s CPU 25.82s WALL ( 1 calls)
Total program execution
EPW : 25.75s CPU 25.82s WALL
% Copyright (C) 2016-2023 EPW-Collaboration
===============================================================================
Please consider citing the following papers.
% Paper describing the method on which EPW relies
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
% Papers describing the EPW software
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
% Since you used the [eliashberg] input, please consider also citing
E. R. Margine and F. Giustino, Phys. Rev. B 87, 024505 (2013)
For your convenience, this information is also reported in the
functionality-dependent EPW.bib file.
===============================================================================