quantum-espresso/test-suite/epw_qdpt/benchmark.out.git.inp=epw1....

465 lines
21 KiB
Plaintext

``:oss/
`.+s+. .+ys--yh+ `./ss+.
-sh//yy+` +yy +yy -+h+-oyy
-yh- .oyy/.-sh. .syo-.:sy- /yh
`.-.` `yh+ -oyyyo. `/syys: oys `.`
`/+ssys+-` `sh+ ` oys` .:osyo`
-yh- ./syyooyo` .sys+/oyo--yh/
`yy+ .-:-. `-/+/:` -sh-
/yh. oys
``..---hho---------` .---------..` `.-----.` -hd+---.
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
-yh- ```````````````` ````````` `` `` oys
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
npj Comput Mater 9, 156 (2023)
Program EPW v.5.8 starts on 9Jan2024 at 13:48:23
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 4 processors
MPI processes distributed on 1 nodes
K-points division: npool = 4
34259 MiB available memory on the printing compute node when the environment starts
Reading input from epw1.in
Reading supplied temperature list.
Reading xml data from directory:
./si.save/
IMPORTANT: XC functional enforced from input :
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 859 859 271 16889 16889 2975
Using Slab Decomposition
Reading collected, re-writing distributed wavefunctions
--
bravais-lattice index = 2
lattice parameter (a_0) = 10.2620 a.u.
unit-cell volume = 270.1693 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 1
kinetic-energy cut-off = 60.0000 Ry
charge density cut-off = 240.0000 Ry
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
celldm(1)= 10.26200 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (a_0 units)
1 Si 28.0855 tau( 1) = ( 0.00000 0.00000 0.00000 )
2 Si 28.0855 tau( 2) = ( 0.25000 0.25000 0.25000 )
49 Sym.Ops. (with q -> -q+G )
G cutoff = 640.1998 ( 16889 G-vectors) FFT grid: ( 36, 36, 36)
number of k points= 64
cart. coord. in units 2pi/a_0
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500
k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500
k( 3) = ( -0.5000000 0.5000000 -0.5000000), wk = 0.0312500
k( 4) = ( -0.7500000 0.7500000 -0.7500000), wk = 0.0312500
k( 5) = ( 0.2500000 0.2500000 0.2500000), wk = 0.0312500
k( 6) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0312500
k( 7) = ( -0.2500000 0.7500000 -0.2500000), wk = 0.0312500
k( 8) = ( -0.5000000 1.0000000 -0.5000000), wk = 0.0312500
k( 9) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0312500
k( 10) = ( 0.2500000 0.7500000 0.2500000), wk = 0.0312500
k( 11) = ( 0.0000000 1.0000000 0.0000000), wk = 0.0312500
k( 12) = ( -0.2500000 1.2500000 -0.2500000), wk = 0.0312500
k( 13) = ( 0.7500000 0.7500000 0.7500000), wk = 0.0312500
k( 14) = ( 0.5000000 1.0000000 0.5000000), wk = 0.0312500
k( 15) = ( 0.2500000 1.2500000 0.2500000), wk = 0.0312500
k( 16) = ( 0.0000000 1.5000000 0.0000000), wk = 0.0312500
k( 17) = ( -0.2500000 -0.2500000 0.2500000), wk = 0.0312500
k( 18) = ( -0.5000000 0.0000000 0.0000000), wk = 0.0312500
k( 19) = ( -0.7500000 0.2500000 -0.2500000), wk = 0.0312500
k( 20) = ( -1.0000000 0.5000000 -0.5000000), wk = 0.0312500
k( 21) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0312500
k( 22) = ( -0.2500000 0.2500000 0.2500000), wk = 0.0312500
k( 23) = ( -0.5000000 0.5000000 0.0000000), wk = 0.0312500
k( 24) = ( -0.7500000 0.7500000 -0.2500000), wk = 0.0312500
k( 25) = ( 0.2500000 0.2500000 0.7500000), wk = 0.0312500
k( 26) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0312500
k( 27) = ( -0.2500000 0.7500000 0.2500000), wk = 0.0312500
k( 28) = ( -0.5000000 1.0000000 0.0000000), wk = 0.0312500
k( 29) = ( 0.5000000 0.5000000 1.0000000), wk = 0.0312500
k( 30) = ( 0.2500000 0.7500000 0.7500000), wk = 0.0312500
k( 31) = ( 0.0000000 1.0000000 0.5000000), wk = 0.0312500
k( 32) = ( -0.2500000 1.2500000 0.2500000), wk = 0.0312500
k( 33) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.0312500
k( 34) = ( -0.7500000 -0.2500000 0.2500000), wk = 0.0312500
k( 35) = ( -1.0000000 0.0000000 0.0000000), wk = 0.0312500
k( 36) = ( -1.2500000 0.2500000 -0.2500000), wk = 0.0312500
k( 37) = ( -0.2500000 -0.2500000 0.7500000), wk = 0.0312500
k( 38) = ( -0.5000000 0.0000000 0.5000000), wk = 0.0312500
k( 39) = ( -0.7500000 0.2500000 0.2500000), wk = 0.0312500
k( 40) = ( -1.0000000 0.5000000 0.0000000), wk = 0.0312500
k( 41) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0312500
k( 42) = ( -0.2500000 0.2500000 0.7500000), wk = 0.0312500
k( 43) = ( -0.5000000 0.5000000 0.5000000), wk = 0.0312500
k( 44) = ( -0.7500000 0.7500000 0.2500000), wk = 0.0312500
k( 45) = ( 0.2500000 0.2500000 1.2500000), wk = 0.0312500
k( 46) = ( 0.0000000 0.5000000 1.0000000), wk = 0.0312500
k( 47) = ( -0.2500000 0.7500000 0.7500000), wk = 0.0312500
k( 48) = ( -0.5000000 1.0000000 0.5000000), wk = 0.0312500
k( 49) = ( -0.7500000 -0.7500000 0.7500000), wk = 0.0312500
k( 50) = ( -1.0000000 -0.5000000 0.5000000), wk = 0.0312500
k( 51) = ( -1.2500000 -0.2500000 0.2500000), wk = 0.0312500
k( 52) = ( -1.5000000 0.0000000 0.0000000), wk = 0.0312500
k( 53) = ( -0.5000000 -0.5000000 1.0000000), wk = 0.0312500
k( 54) = ( -0.7500000 -0.2500000 0.7500000), wk = 0.0312500
k( 55) = ( -1.0000000 0.0000000 0.5000000), wk = 0.0312500
k( 56) = ( -1.2500000 0.2500000 0.2500000), wk = 0.0312500
k( 57) = ( -0.2500000 -0.2500000 1.2500000), wk = 0.0312500
k( 58) = ( -0.5000000 0.0000000 1.0000000), wk = 0.0312500
k( 59) = ( -0.7500000 0.2500000 0.7500000), wk = 0.0312500
k( 60) = ( -1.0000000 0.5000000 0.5000000), wk = 0.0312500
k( 61) = ( 0.0000000 0.0000000 1.5000000), wk = 0.0312500
k( 62) = ( -0.2500000 0.2500000 1.2500000), wk = 0.0312500
k( 63) = ( -0.5000000 0.5000000 1.0000000), wk = 0.0312500
k( 64) = ( -0.7500000 0.7500000 0.7500000), wk = 0.0312500
PseudoPot. # 1 for Si read from file:
../../pseudo/Si_r.upf
MD5 check sum: c84abb4b0aac9c93a8e9f74896432a0a
Pseudo is Norm-conserving + core correction, Zval = 4.0
Generated using ONCVPSP code by D. R. Hamann
Using radial grid of 1528 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
EPW : 0.32s CPU 0.35s WALL
EPW : 0.32s CPU 0.35s WALL
-------------------------------------------------------------------
Wannierization on 4 x 4 x 4 electronic grid
-------------------------------------------------------------------
Spin CASE ( default = unpolarized )
Initializing Wannier90
Initial Wannier projections
( 0.00000 0.00000 0.00000) : l = -3 mr = 1
( 0.00000 0.00000 0.00000) : l = -3 mr = 2
( 0.00000 0.00000 0.00000) : l = -3 mr = 3
( 0.00000 0.00000 0.00000) : l = -3 mr = 4
( -0.25000 0.75000 -0.25000) : l = -3 mr = 1
( -0.25000 0.75000 -0.25000) : l = -3 mr = 2
( -0.25000 0.75000 -0.25000) : l = -3 mr = 3
( -0.25000 0.75000 -0.25000) : l = -3 mr = 4
- Number of bands is ( 12)
- Number of total bands is ( 12)
- Number of excluded bands is ( 0)
- Number of wannier functions is ( 8)
- All guiding functions are given
Reading data about k-point neighbours
- All neighbours are found
AMN
k points = 64 in 4 pools
1 of 16 on ionode
2 of 16 on ionode
3 of 16 on ionode
4 of 16 on ionode
5 of 16 on ionode
6 of 16 on ionode
7 of 16 on ionode
8 of 16 on ionode
9 of 16 on ionode
10 of 16 on ionode
11 of 16 on ionode
12 of 16 on ionode
13 of 16 on ionode
14 of 16 on ionode
15 of 16 on ionode
16 of 16 on ionode
AMN calculated
MMN
k points = 64 in 4 pools
1 of 16 on ionode
2 of 16 on ionode
3 of 16 on ionode
4 of 16 on ionode
5 of 16 on ionode
6 of 16 on ionode
7 of 16 on ionode
8 of 16 on ionode
9 of 16 on ionode
10 of 16 on ionode
11 of 16 on ionode
12 of 16 on ionode
13 of 16 on ionode
14 of 16 on ionode
15 of 16 on ionode
16 of 16 on ionode
MMN calculated
Running Wannier90
Wannier Function centers (cartesian, alat) and spreads (ang):
( -0.08518 0.08507 0.08505) : 1.63559
( 0.08517 0.08508 -0.08514) : 1.63200
( -0.08518 -0.08506 -0.08515) : 1.63243
( 0.08516 -0.08505 0.08506) : 1.63757
( 0.33498 0.33535 0.33504) : 1.63265
( 0.33498 0.16462 0.16504) : 1.63535
( 0.16504 0.33534 0.16505) : 1.63774
( 0.16502 0.16461 0.33505) : 1.63166
-------------------------------------------------------------------
WANNIER : 28.43s CPU 28.68s WALL ( 1 calls)
-------------------------------------------------------------------
Calculating kgmap
Progress kgmap: ########################################
kmaps : 0.05s CPU 0.06s WALL ( 1 calls)
Symmetries of Bravais lattice: 48
Symmetries of crystal: 48
===================================================================
irreducible q point # 1
===================================================================
Symmetries of small group of q: 48
in addition sym. q -> -q+G:
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
Imposing acoustic sum rule on the dynamical matrix
Read dielectric tensor and effective charges
q( 1 ) = ( 0.0000000 0.0000000 0.0000000 )
===================================================================
irreducible q point # 2
===================================================================
Symmetries of small group of q: 12
in addition sym. q -> -q+G:
Number of q in the star = 4
List of q in the star:
1 0.500000000 -0.500000000 0.500000000
2 0.500000000 0.500000000 -0.500000000
3 -0.500000000 -0.500000000 -0.500000000
4 0.500000000 -0.500000000 -0.500000000
Message from routine init_vloc:
Interpolation table for Vloc re-allocated
q( 2 ) = ( 0.5000000 -0.5000000 0.5000000 )
q( 3 ) = ( 0.5000000 0.5000000 -0.5000000 )
q( 4 ) = ( -0.5000000 -0.5000000 -0.5000000 )
q( 5 ) = ( 0.5000000 -0.5000000 -0.5000000 )
===================================================================
irreducible q point # 3
===================================================================
Symmetries of small group of q: 16
in addition sym. q -> -q+G:
Number of q in the star = 3
List of q in the star:
1 0.000000000 -1.000000000 0.000000000
2 -1.000000000 0.000000000 0.000000000
3 0.000000000 0.000000000 1.000000000
q( 6 ) = ( 0.0000000 -1.0000000 0.0000000 )
q( 7 ) = ( -1.0000000 0.0000000 0.0000000 )
q( 8 ) = ( 0.0000000 0.0000000 1.0000000 )
Writing epmatq on .epb files
The .epb files have been correctly written
Band disentanglement is used: nbndsub = 8
Construct the Wigner-Seitz cell using Wannier centers and atomic positions
Number of WS vectors for electrons 123
Number of WS vectors for phonons 25
Number of WS vectors for electron-phonon 25
Maximum number of cores for efficient parallelization 50
Inside velocity step 1
Velocity matrix elements calculated
Bloch2wane: 1 / 8
Bloch2wane: 2 / 8
Bloch2wane: 3 / 8
Bloch2wane: 4 / 8
Bloch2wane: 5 / 8
Bloch2wane: 6 / 8
Bloch2wane: 7 / 8
Bloch2wane: 8 / 8
Bloch2wanp: 1 / 7
Bloch2wanp: 2 / 7
Bloch2wanp: 3 / 7
Bloch2wanp: 4 / 7
Bloch2wanp: 5 / 7
Bloch2wanp: 6 / 7
Bloch2wanp: 7 / 7
Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file
===================================================================
Memory usage: VmHWM = 95Mb
VmPeak = 3817Mb
===================================================================
Using q-mesh file: ./LGX.txt
Size of q point mesh for interpolation: 100
Using k-mesh file: ./LGX.txt
Size of k point mesh for interpolation: 200
Max number of k points per pool: 50
Fermi energy coarse grid = 6.339030 eV
===================================================================
Fermi energy corresponds to the coarse k-mesh
===================================================================
ibndmin = 2 ebndmin = 5.140 eV
ibndmax = 6 ebndmax = 7.534 eV
Number of ep-matrix elements per pool : 3750 ~= 29.30 Kb (@ 8 bytes/ DP)
Number selected, total 100 100
We only need to compute 100 q-points
Progression iq (fine) = 100/ 100
===================================================================
Memory usage: VmHWM = 95Mb
VmPeak = 3817Mb
===================================================================
Unfolding on the coarse grid
elphon_wrap : 21.49s CPU 21.74s WALL ( 1 calls)
INITIALIZATION:
set_drhoc : 0.02s CPU 0.02s WALL ( 9 calls)
init_vloc : 0.02s CPU 0.02s WALL ( 1 calls)
init_us_1 : 0.01s CPU 0.01s WALL ( 1 calls)
Electron-Phonon interpolation
ephwann : 4.34s CPU 4.46s WALL ( 1 calls)
ep-interp : 2.01s CPU 2.09s WALL ( 100 calls)
Ham: step 1 : 0.00s CPU 0.00s WALL ( 1 calls)
Ham: step 2 : 0.05s CPU 0.05s WALL ( 1 calls)
ep: step 1 : 0.00s CPU 0.00s WALL ( 8 calls)
ep: step 2 : 0.01s CPU 0.01s WALL ( 8 calls)
DynW2B : 0.00s CPU 0.00s WALL ( 100 calls)
HamW2B : 0.26s CPU 0.27s WALL ( 6101 calls)
ephW2Bp : 0.60s CPU 0.66s WALL ( 100 calls)
ephW2B : 0.14s CPU 0.14s WALL ( 1286 calls)
vmewan2bloch : 0.56s CPU 0.58s WALL ( 5000 calls)
vmewan2bloch : 0.56s CPU 0.58s WALL ( 5000 calls)
Total program execution
EPW : 54.57s CPU 55.23s WALL
% Copyright (C) 2016-2023 EPW-Collaboration
===============================================================================
Please consider citing the following papers.
% Paper describing the method on which EPW relies
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
% Papers describing the EPW software
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
For your convenience, this information is also reported in the
functionality-dependent EPW.bib file.
===============================================================================