quantum-espresso/test-suite/epw_plrn/benchmark.out.git.inp=epw1....

713 lines
32 KiB
Plaintext

``:oss/
`.+s+. .+ys--yh+ `./ss+.
-sh//yy+` +yy +yy -+h+-oyy
-yh- .oyy/.-sh. .syo-.:sy- /yh
`.-.` `yh+ -oyyyo. `/syys: oys `.`
`/+ssys+-` `sh+ ` oys` .:osyo`
-yh- ./syyooyo` .sys+/oyo--yh/
`yy+ .-:-. `-/+/:` -sh-
/yh. oys
``..---hho---------` .---------..` `.-----.` -hd+---.
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
-yh- ```````````````` ````````` `` `` oys
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
npj Comput Mater 9, 156 (2023)
Program EPW v.5.8 starts on 9Jan2024 at 13:46:18
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 4 processors
MPI processes distributed on 1 nodes
K-points division: npool = 4
34567 MiB available memory on the printing compute node when the environment starts
Reading input from epw1.in
No temperature supplied. Setting temps(:) to 300 K.
Reading xml data from directory:
./lif.save/
file Li.pbe-mt_fhi.UPF: wavefunction(s) 2p 4f renormalized
file F.pbe-mt_fhi.UPF: wavefunction(s) 4f renormalized
IMPORTANT: XC functional enforced from input :
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 475 475 163 6855 6855 1363
Using Slab Decomposition
Reading collected, re-writing distributed wavefunctions
--------
bravais-lattice index = 2
lattice parameter (a_0) = 7.5609 a.u.
unit-cell volume = 108.0579 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 2
kinetic-energy cut-off = 60.0000 Ry
charge density cut-off = 240.0000 Ry
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
celldm(1)= 7.56088 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (a_0 units)
1 Li 6.9410 tau( 1) = ( 0.00000 0.00000 0.00000 )
2 F 18.9984 tau( 2) = ( -0.50000 0.50000 0.50000 )
49 Sym.Ops. (with q -> -q+G )
G cutoff = 347.5328 ( 6855 G-vectors) FFT grid: ( 27, 27, 27)
number of k points= 64
cart. coord. in units 2pi/a_0
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500
k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500
k( 3) = ( -0.5000000 0.5000000 -0.5000000), wk = 0.0312500
k( 4) = ( -0.7500000 0.7500000 -0.7500000), wk = 0.0312500
k( 5) = ( 0.2500000 0.2500000 0.2500000), wk = 0.0312500
k( 6) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0312500
k( 7) = ( -0.2500000 0.7500000 -0.2500000), wk = 0.0312500
k( 8) = ( -0.5000000 1.0000000 -0.5000000), wk = 0.0312500
k( 9) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0312500
k( 10) = ( 0.2500000 0.7500000 0.2500000), wk = 0.0312500
k( 11) = ( 0.0000000 1.0000000 0.0000000), wk = 0.0312500
k( 12) = ( -0.2500000 1.2500000 -0.2500000), wk = 0.0312500
k( 13) = ( 0.7500000 0.7500000 0.7500000), wk = 0.0312500
k( 14) = ( 0.5000000 1.0000000 0.5000000), wk = 0.0312500
k( 15) = ( 0.2500000 1.2500000 0.2500000), wk = 0.0312500
k( 16) = ( 0.0000000 1.5000000 0.0000000), wk = 0.0312500
k( 17) = ( -0.2500000 -0.2500000 0.2500000), wk = 0.0312500
k( 18) = ( -0.5000000 0.0000000 0.0000000), wk = 0.0312500
k( 19) = ( -0.7500000 0.2500000 -0.2500000), wk = 0.0312500
k( 20) = ( -1.0000000 0.5000000 -0.5000000), wk = 0.0312500
k( 21) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0312500
k( 22) = ( -0.2500000 0.2500000 0.2500000), wk = 0.0312500
k( 23) = ( -0.5000000 0.5000000 0.0000000), wk = 0.0312500
k( 24) = ( -0.7500000 0.7500000 -0.2500000), wk = 0.0312500
k( 25) = ( 0.2500000 0.2500000 0.7500000), wk = 0.0312500
k( 26) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0312500
k( 27) = ( -0.2500000 0.7500000 0.2500000), wk = 0.0312500
k( 28) = ( -0.5000000 1.0000000 0.0000000), wk = 0.0312500
k( 29) = ( 0.5000000 0.5000000 1.0000000), wk = 0.0312500
k( 30) = ( 0.2500000 0.7500000 0.7500000), wk = 0.0312500
k( 31) = ( 0.0000000 1.0000000 0.5000000), wk = 0.0312500
k( 32) = ( -0.2500000 1.2500000 0.2500000), wk = 0.0312500
k( 33) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.0312500
k( 34) = ( -0.7500000 -0.2500000 0.2500000), wk = 0.0312500
k( 35) = ( -1.0000000 0.0000000 0.0000000), wk = 0.0312500
k( 36) = ( -1.2500000 0.2500000 -0.2500000), wk = 0.0312500
k( 37) = ( -0.2500000 -0.2500000 0.7500000), wk = 0.0312500
k( 38) = ( -0.5000000 0.0000000 0.5000000), wk = 0.0312500
k( 39) = ( -0.7500000 0.2500000 0.2500000), wk = 0.0312500
k( 40) = ( -1.0000000 0.5000000 0.0000000), wk = 0.0312500
k( 41) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0312500
k( 42) = ( -0.2500000 0.2500000 0.7500000), wk = 0.0312500
k( 43) = ( -0.5000000 0.5000000 0.5000000), wk = 0.0312500
k( 44) = ( -0.7500000 0.7500000 0.2500000), wk = 0.0312500
k( 45) = ( 0.2500000 0.2500000 1.2500000), wk = 0.0312500
k( 46) = ( 0.0000000 0.5000000 1.0000000), wk = 0.0312500
k( 47) = ( -0.2500000 0.7500000 0.7500000), wk = 0.0312500
k( 48) = ( -0.5000000 1.0000000 0.5000000), wk = 0.0312500
k( 49) = ( -0.7500000 -0.7500000 0.7500000), wk = 0.0312500
k( 50) = ( -1.0000000 -0.5000000 0.5000000), wk = 0.0312500
k( 51) = ( -1.2500000 -0.2500000 0.2500000), wk = 0.0312500
k( 52) = ( -1.5000000 0.0000000 0.0000000), wk = 0.0312500
k( 53) = ( -0.5000000 -0.5000000 1.0000000), wk = 0.0312500
k( 54) = ( -0.7500000 -0.2500000 0.7500000), wk = 0.0312500
k( 55) = ( -1.0000000 0.0000000 0.5000000), wk = 0.0312500
k( 56) = ( -1.2500000 0.2500000 0.2500000), wk = 0.0312500
k( 57) = ( -0.2500000 -0.2500000 1.2500000), wk = 0.0312500
k( 58) = ( -0.5000000 0.0000000 1.0000000), wk = 0.0312500
k( 59) = ( -0.7500000 0.2500000 0.7500000), wk = 0.0312500
k( 60) = ( -1.0000000 0.5000000 0.5000000), wk = 0.0312500
k( 61) = ( 0.0000000 0.0000000 1.5000000), wk = 0.0312500
k( 62) = ( -0.2500000 0.2500000 1.2500000), wk = 0.0312500
k( 63) = ( -0.5000000 0.5000000 1.0000000), wk = 0.0312500
k( 64) = ( -0.7500000 0.7500000 0.7500000), wk = 0.0312500
PseudoPot. # 1 for Li read from file:
../../pseudo/Li.pbe-mt_fhi.UPF
MD5 check sum: 3419f5616d131090147e867976aae79b
Pseudo is Norm-conserving + core correction, Zval = 1.0
Generated using FHI98PP, converted with fhi2upf.x v.5.0.2
Using radial grid of 433 points, 3 beta functions with:
l(1) = 0
l(2) = 1
l(3) = 3
PseudoPot. # 2 for F read from file:
../../pseudo/F.pbe-mt_fhi.UPF
MD5 check sum: bd08d802e66d287190150b65155e2e95
Pseudo is Norm-conserving, Zval = 7.0
Generated using FHI98PP, converted with fhi2upf.x v.5.0.2
Using radial grid of 477 points, 3 beta functions with:
l(1) = 0
l(2) = 1
l(3) = 3
EPW : 0.26s CPU 0.30s WALL
EPW : 0.27s CPU 0.30s WALL
-------------------------------------------------------------------
Wannierization on 4 x 4 x 4 electronic grid
-------------------------------------------------------------------
Spin CASE ( default = unpolarized )
Initializing Wannier90
Initial Wannier projections
( 0.50000 0.50000 0.50000) : l = 1 mr = 1
( 0.50000 0.50000 0.50000) : l = 1 mr = 2
( 0.50000 0.50000 0.50000) : l = 1 mr = 3
- Number of bands is ( 3)
- Number of total bands is ( 30)
- Number of excluded bands is ( 27)
- Number of wannier functions is ( 3)
- All guiding functions are given
Reading data about k-point neighbours
- All neighbours are found
AMN
k points = 64 in 4 pools
1 of 16 on ionode
2 of 16 on ionode
3 of 16 on ionode
4 of 16 on ionode
5 of 16 on ionode
6 of 16 on ionode
7 of 16 on ionode
8 of 16 on ionode
9 of 16 on ionode
10 of 16 on ionode
11 of 16 on ionode
12 of 16 on ionode
13 of 16 on ionode
14 of 16 on ionode
15 of 16 on ionode
16 of 16 on ionode
AMN calculated
MMN
k points = 64 in 4 pools
1 of 16 on ionode
2 of 16 on ionode
3 of 16 on ionode
4 of 16 on ionode
5 of 16 on ionode
6 of 16 on ionode
7 of 16 on ionode
8 of 16 on ionode
9 of 16 on ionode
10 of 16 on ionode
11 of 16 on ionode
12 of 16 on ionode
13 of 16 on ionode
14 of 16 on ionode
15 of 16 on ionode
16 of 16 on ionode
MMN calculated
Running Wannier90
Wannier Function centers (cartesian, alat) and spreads (ang):
( -0.50000 0.50000 0.50000) : 0.54928
( -0.50000 0.50000 0.50000) : 0.54928
( -0.50000 0.50000 0.50000) : 0.54928
Writing out Wannier function cube files
nr1s = 27, nr2s = 27, nr3s = 27
write_plot: wannier_plot_supercell = 4 4 4
Wannier Function Num: 1 Maximum Im/Re Ratio = 0.000000
Wannier Function Num: 2 Maximum Im/Re Ratio = 0.000000
Wannier Function Num: 3 Maximum Im/Re Ratio = 0.000000
cube files written
-------------------------------------------------------------------
WANNIER : 2.45s CPU 2.67s WALL ( 1 calls)
-------------------------------------------------------------------
Calculating kgmap
Progress kgmap: ########################################
kmaps : 0.02s CPU 0.02s WALL ( 1 calls)
Symmetries of Bravais lattice: 48
Symmetries of crystal: 48
===================================================================
irreducible q point # 1
===================================================================
Symmetries of small group of q: 48
in addition sym. q -> -q+G:
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
Imposing acoustic sum rule on the dynamical matrix
Read dielectric tensor and effective charges
q( 1 ) = ( 0.0000000 0.0000000 0.0000000 )
===================================================================
irreducible q point # 2
===================================================================
Symmetries of small group of q: 6
Number of q in the star = 8
List of q in the star:
1 -0.250000000 0.250000000 -0.250000000
2 0.250000000 -0.250000000 -0.250000000
3 0.250000000 -0.250000000 0.250000000
4 0.250000000 0.250000000 0.250000000
5 -0.250000000 -0.250000000 -0.250000000
6 -0.250000000 -0.250000000 0.250000000
7 -0.250000000 0.250000000 0.250000000
8 0.250000000 0.250000000 -0.250000000
Message from routine init_vloc:
Interpolation table for Vloc re-allocated
q( 2 ) = ( -0.2500000 0.2500000 -0.2500000 )
q( 3 ) = ( 0.2500000 -0.2500000 -0.2500000 )
q( 4 ) = ( 0.2500000 -0.2500000 0.2500000 )
q( 5 ) = ( 0.2500000 0.2500000 0.2500000 )
q( 6 ) = ( -0.2500000 -0.2500000 -0.2500000 )
q( 7 ) = ( -0.2500000 -0.2500000 0.2500000 )
q( 8 ) = ( -0.2500000 0.2500000 0.2500000 )
q( 9 ) = ( 0.2500000 0.2500000 -0.2500000 )
===================================================================
irreducible q point # 3
===================================================================
Symmetries of small group of q: 12
in addition sym. q -> -q+G:
Number of q in the star = 4
List of q in the star:
1 0.500000000 -0.500000000 0.500000000
2 0.500000000 0.500000000 0.500000000
3 -0.500000000 0.500000000 0.500000000
4 0.500000000 0.500000000 -0.500000000
q( 10 ) = ( 0.5000000 -0.5000000 0.5000000 )
q( 11 ) = ( 0.5000000 0.5000000 0.5000000 )
q( 12 ) = ( -0.5000000 0.5000000 0.5000000 )
q( 13 ) = ( 0.5000000 0.5000000 -0.5000000 )
===================================================================
irreducible q point # 4
===================================================================
Symmetries of small group of q: 8
Number of q in the star = 6
List of q in the star:
1 0.000000000 0.500000000 0.000000000
2 0.000000000 -0.500000000 0.000000000
3 0.500000000 0.000000000 0.000000000
4 0.000000000 0.000000000 0.500000000
5 0.000000000 0.000000000 -0.500000000
6 -0.500000000 0.000000000 0.000000000
q( 14 ) = ( 0.0000000 0.5000000 0.0000000 )
q( 15 ) = ( 0.0000000 -0.5000000 0.0000000 )
q( 16 ) = ( 0.5000000 0.0000000 0.0000000 )
q( 17 ) = ( 0.0000000 0.0000000 0.5000000 )
q( 18 ) = ( 0.0000000 0.0000000 -0.5000000 )
q( 19 ) = ( -0.5000000 0.0000000 0.0000000 )
===================================================================
irreducible q point # 5
===================================================================
Symmetries of small group of q: 2
Number of q in the star = 24
List of q in the star:
1 0.750000000 -0.250000000 0.750000000
2 0.750000000 -0.250000000 -0.750000000
3 -0.750000000 -0.250000000 -0.750000000
4 -0.750000000 -0.250000000 0.750000000
5 -0.750000000 0.250000000 -0.750000000
6 -0.250000000 0.750000000 -0.750000000
7 -0.750000000 0.750000000 -0.250000000
8 0.750000000 0.250000000 0.750000000
9 -0.750000000 0.250000000 0.750000000
10 0.750000000 0.250000000 -0.750000000
11 -0.750000000 0.750000000 0.250000000
12 -0.250000000 0.750000000 0.750000000
13 0.250000000 0.750000000 -0.750000000
14 -0.250000000 -0.750000000 -0.750000000
15 0.750000000 0.750000000 -0.250000000
16 0.750000000 -0.750000000 0.250000000
17 -0.750000000 -0.750000000 -0.250000000
18 0.250000000 -0.750000000 0.750000000
19 -0.750000000 -0.750000000 0.250000000
20 0.250000000 0.750000000 0.750000000
21 -0.250000000 -0.750000000 0.750000000
22 0.750000000 0.750000000 0.250000000
23 0.250000000 -0.750000000 -0.750000000
24 0.750000000 -0.750000000 -0.250000000
q( 20 ) = ( 0.7500000 -0.2500000 0.7500000 )
q( 21 ) = ( 0.7500000 -0.2500000 -0.7500000 )
q( 22 ) = ( -0.7500000 -0.2500000 -0.7500000 )
q( 23 ) = ( -0.7500000 -0.2500000 0.7500000 )
q( 24 ) = ( -0.7500000 0.2500000 -0.7500000 )
q( 25 ) = ( -0.2500000 0.7500000 -0.7500000 )
q( 26 ) = ( -0.7500000 0.7500000 -0.2500000 )
q( 27 ) = ( 0.7500000 0.2500000 0.7500000 )
q( 28 ) = ( -0.7500000 0.2500000 0.7500000 )
q( 29 ) = ( 0.7500000 0.2500000 -0.7500000 )
q( 30 ) = ( -0.7500000 0.7500000 0.2500000 )
q( 31 ) = ( -0.2500000 0.7500000 0.7500000 )
q( 32 ) = ( 0.2500000 0.7500000 -0.7500000 )
q( 33 ) = ( -0.2500000 -0.7500000 -0.7500000 )
q( 34 ) = ( 0.7500000 0.7500000 -0.2500000 )
q( 35 ) = ( 0.7500000 -0.7500000 0.2500000 )
q( 36 ) = ( -0.7500000 -0.7500000 -0.2500000 )
q( 37 ) = ( 0.2500000 -0.7500000 0.7500000 )
q( 38 ) = ( -0.7500000 -0.7500000 0.2500000 )
q( 39 ) = ( 0.2500000 0.7500000 0.7500000 )
q( 40 ) = ( -0.2500000 -0.7500000 0.7500000 )
q( 41 ) = ( 0.7500000 0.7500000 0.2500000 )
q( 42 ) = ( 0.2500000 -0.7500000 -0.7500000 )
q( 43 ) = ( 0.7500000 -0.7500000 -0.2500000 )
===================================================================
irreducible q point # 6
===================================================================
Symmetries of small group of q: 4
Number of q in the star = 12
List of q in the star:
1 0.500000000 0.000000000 0.500000000
2 -0.500000000 0.000000000 0.500000000
3 -0.500000000 0.000000000 -0.500000000
4 0.500000000 0.000000000 -0.500000000
5 0.000000000 0.500000000 -0.500000000
6 -0.500000000 0.500000000 0.000000000
7 0.000000000 0.500000000 0.500000000
8 0.000000000 -0.500000000 -0.500000000
9 0.500000000 0.500000000 0.000000000
10 0.500000000 -0.500000000 0.000000000
11 -0.500000000 -0.500000000 0.000000000
12 0.000000000 -0.500000000 0.500000000
q( 44 ) = ( 0.5000000 0.0000000 0.5000000 )
q( 45 ) = ( -0.5000000 0.0000000 0.5000000 )
q( 46 ) = ( -0.5000000 0.0000000 -0.5000000 )
q( 47 ) = ( 0.5000000 0.0000000 -0.5000000 )
q( 48 ) = ( 0.0000000 0.5000000 -0.5000000 )
q( 49 ) = ( -0.5000000 0.5000000 0.0000000 )
q( 50 ) = ( 0.0000000 0.5000000 0.5000000 )
q( 51 ) = ( 0.0000000 -0.5000000 -0.5000000 )
q( 52 ) = ( 0.5000000 0.5000000 0.0000000 )
q( 53 ) = ( 0.5000000 -0.5000000 0.0000000 )
q( 54 ) = ( -0.5000000 -0.5000000 0.0000000 )
q( 55 ) = ( 0.0000000 -0.5000000 0.5000000 )
===================================================================
irreducible q point # 7
===================================================================
Symmetries of small group of q: 16
in addition sym. q -> -q+G:
Number of q in the star = 3
List of q in the star:
1 0.000000000 -1.000000000 0.000000000
2 -1.000000000 0.000000000 0.000000000
3 0.000000000 0.000000000 -1.000000000
q( 56 ) = ( 0.0000000 -1.0000000 0.0000000 )
q( 57 ) = ( -1.0000000 0.0000000 0.0000000 )
q( 58 ) = ( 0.0000000 0.0000000 -1.0000000 )
===================================================================
irreducible q point # 8
===================================================================
Symmetries of small group of q: 8
Number of q in the star = 6
List of q in the star:
1 -0.500000000 -1.000000000 0.000000000
2 0.000000000 1.000000000 0.500000000
3 0.000000000 -1.000000000 -0.500000000
4 0.500000000 1.000000000 0.000000000
5 -1.000000000 -0.500000000 0.000000000
6 0.000000000 -0.500000000 -1.000000000
q( 59 ) = ( -0.5000000 -1.0000000 0.0000000 )
q( 60 ) = ( 0.0000000 1.0000000 0.5000000 )
q( 61 ) = ( 0.0000000 -1.0000000 -0.5000000 )
q( 62 ) = ( 0.5000000 1.0000000 0.0000000 )
q( 63 ) = ( -1.0000000 -0.5000000 0.0000000 )
q( 64 ) = ( 0.0000000 -0.5000000 -1.0000000 )
Computes the analytic long-range interaction for polar materials [lpolar]
Use zone-centred Wigner-Seitz cells
Number of WS vectors for electrons 93
Number of WS vectors for phonons 93
Number of WS vectors for electron-phonon 93
Maximum number of cores for efficient parallelization 558
Results may improve by using use_ws == .TRUE.
Inside velocity step 1
Velocity matrix elements calculated
Bloch2wane: 1 / 64
Bloch2wane: 2 / 64
Bloch2wane: 3 / 64
Bloch2wane: 4 / 64
Bloch2wane: 5 / 64
Bloch2wane: 6 / 64
Bloch2wane: 7 / 64
Bloch2wane: 8 / 64
Bloch2wane: 9 / 64
Bloch2wane: 10 / 64
Bloch2wane: 11 / 64
Bloch2wane: 12 / 64
Bloch2wane: 13 / 64
Bloch2wane: 14 / 64
Bloch2wane: 15 / 64
Bloch2wane: 16 / 64
Bloch2wane: 17 / 64
Bloch2wane: 18 / 64
Bloch2wane: 19 / 64
Bloch2wane: 20 / 64
Bloch2wane: 21 / 64
Bloch2wane: 22 / 64
Bloch2wane: 23 / 64
Bloch2wane: 24 / 64
Bloch2wane: 25 / 64
Bloch2wane: 26 / 64
Bloch2wane: 27 / 64
Bloch2wane: 28 / 64
Bloch2wane: 29 / 64
Bloch2wane: 30 / 64
Bloch2wane: 31 / 64
Bloch2wane: 32 / 64
Bloch2wane: 33 / 64
Bloch2wane: 34 / 64
Bloch2wane: 35 / 64
Bloch2wane: 36 / 64
Bloch2wane: 37 / 64
Bloch2wane: 38 / 64
Bloch2wane: 39 / 64
Bloch2wane: 40 / 64
Bloch2wane: 41 / 64
Bloch2wane: 42 / 64
Bloch2wane: 43 / 64
Bloch2wane: 44 / 64
Bloch2wane: 45 / 64
Bloch2wane: 46 / 64
Bloch2wane: 47 / 64
Bloch2wane: 48 / 64
Bloch2wane: 49 / 64
Bloch2wane: 50 / 64
Bloch2wane: 51 / 64
Bloch2wane: 52 / 64
Bloch2wane: 53 / 64
Bloch2wane: 54 / 64
Bloch2wane: 55 / 64
Bloch2wane: 56 / 64
Bloch2wane: 57 / 64
Bloch2wane: 58 / 64
Bloch2wane: 59 / 64
Bloch2wane: 60 / 64
Bloch2wane: 61 / 64
Bloch2wane: 62 / 64
Bloch2wane: 63 / 64
Bloch2wane: 64 / 64
Bloch2wanp: 1 / 24
Bloch2wanp: 2 / 24
Bloch2wanp: 3 / 24
Bloch2wanp: 4 / 24
Bloch2wanp: 5 / 24
Bloch2wanp: 6 / 24
Bloch2wanp: 7 / 24
Bloch2wanp: 8 / 24
Bloch2wanp: 9 / 24
Bloch2wanp: 10 / 24
Bloch2wanp: 11 / 24
Bloch2wanp: 12 / 24
Bloch2wanp: 13 / 24
Bloch2wanp: 14 / 24
Bloch2wanp: 15 / 24
Bloch2wanp: 16 / 24
Bloch2wanp: 17 / 24
Bloch2wanp: 18 / 24
Bloch2wanp: 19 / 24
Bloch2wanp: 20 / 24
Bloch2wanp: 21 / 24
Bloch2wanp: 22 / 24
Bloch2wanp: 23 / 24
Bloch2wanp: 24 / 24
Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file
===================================================================
Memory usage: VmHWM = 83Mb
VmPeak = 3810Mb
===================================================================
Using uniform q-mesh: 1 1 1
Size of q point mesh for interpolation: 1
Using uniform k-mesh: 1 1 1
Size of k point mesh for interpolation: 2
Max number of k points per pool: 2
Fermi energy coarse grid = 0.487315 eV
Skipping the first 1 bands:
The Fermi level will be determined with 6.00000 electrons
Fermi energy is calculated from the fine k-mesh: Ef = 0.612315 eV
===================================================================
ibndmin = 1 ebndmin = 0.487 eV
ibndmax = 3 ebndmax = 0.487 eV
Number of ep-matrix elements per pool : 54 ~= 0.42 Kb (@ 8 bytes/ DP)
We only need to compute 1 q-points
===================================================================
Memory usage: VmHWM = 83Mb
VmPeak = 3810Mb
===================================================================
Unfolding on the coarse grid
elphon_wrap : 25.59s CPU 26.74s WALL ( 1 calls)
INITIALIZATION:
set_drhoc : 0.01s CPU 0.02s WALL ( 65 calls)
init_vloc : 0.03s CPU 0.03s WALL ( 1 calls)
init_us_1 : 0.04s CPU 0.04s WALL ( 1 calls)
Electron-Phonon interpolation
ephwann : 0.41s CPU 0.43s WALL ( 1 calls)
ep-interp : 0.00s CPU 0.00s WALL ( 1 calls)
Ham: step 1 : 0.00s CPU 0.00s WALL ( 1 calls)
Ham: step 2 : 0.01s CPU 0.01s WALL ( 1 calls)
ep: step 1 : 0.00s CPU 0.01s WALL ( 64 calls)
ep: step 2 : 0.04s CPU 0.04s WALL ( 64 calls)
DynW2B : 0.00s CPU 0.00s WALL ( 1 calls)
HamW2B : 0.00s CPU 0.00s WALL ( 5 calls)
ephW2Bp : 0.00s CPU 0.00s WALL ( 1 calls)
ephW2B : 0.00s CPU 0.00s WALL ( 1 calls)
vmewan2bloch : 0.00s CPU 0.00s WALL ( 2 calls)
vmewan2bloch : 0.00s CPU 0.00s WALL ( 2 calls)
Total program execution
EPW : 28.71s CPU 30.13s WALL
% Copyright (C) 2016-2023 EPW-Collaboration
===============================================================================
Please consider citing the following papers.
% Paper describing the method on which EPW relies
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
% Papers describing the EPW software
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
% Since you used the [lpolar] input, please consider also citing
C. Verdi and F. Giustino, Phys. Rev. Lett. 115, 176401 (2015)
For your convenience, this information is also reported in the
functionality-dependent EPW.bib file.
===============================================================================