quantum-espresso/test-suite/epw_mob_ibte_sym/benchmark.out.git.inp=epw8....

389 lines
21 KiB
Plaintext

``:oss/
`.+s+. .+ys--yh+ `./ss+.
-sh//yy+` +yy +yy -+h+-oyy
-yh- .oyy/.-sh. .syo-.:sy- /yh
`.-.` `yh+ -oyyyo. `/syys: oys `.`
`/+ssys+-` `sh+ ` oys` .:osyo`
-yh- ./syyooyo` .sys+/oyo--yh/
`yy+ .-:-. `-/+/:` -sh-
/yh. oys
``..---hho---------` .---------..` `.-----.` -hd+---.
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
-yh- ```````````````` ````````` `` `` oys
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
npj Comput Mater 9, 156 (2023)
Program EPW v.5.8 starts on 9Jan2024 at 13:41: 8
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 4 processors
MPI processes distributed on 1 nodes
K-points division: npool = 4
35215 MiB available memory on the printing compute node when the environment starts
Reading input from epw8.in
Reading supplied temperature list.
------------------------------------------------------------------------
RESTART - RESTART - RESTART - RESTART
Restart is done without reading PWSCF save file.
Be aware that some consistency checks are therefore not done.
------------------------------------------------------------------------
--
bravais-lattice index = 0
lattice parameter (a_0) = 0.0000 a.u.
unit-cell volume = 0.0000 (a.u.)^3
number of atoms/cell = 0
number of atomic types = 0
kinetic-energy cut-off = 0.0000 Ry
charge density cut-off = 0.0000 Ry
Exchange-correlation= not set
( -1 -1 -1 -1 -1 -1 -1)
celldm(1)= 0.00000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( 0.0000 0.0000 0.0000 )
a(2) = ( 0.0000 0.0000 0.0000 )
a(3) = ( 0.0000 0.0000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( 0.0000 0.0000 0.0000 )
b(2) = ( 0.0000 0.0000 0.0000 )
b(3) = ( 0.0000 0.0000 0.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (a_0 units)
No symmetry!
G cutoff = 0.0000 ( 0 G-vectors) FFT grid: ( 0, 0, 0)
number of k points= 0
cart. coord. in units 2pi/a_0
EPW : 0.00s CPU 0.00s WALL
EPW : 0.00s CPU 0.00s WALL
-------------------------------------------------------------------
Using si.ukk from disk
-------------------------------------------------------------------
Symmetries of Bravais lattice: 48
Symmetries of crystal: 48
Do not need to read .epb files; read .fmt files
Band disentanglement is used: nbndsub = 8
Use zone-centred Wigner-Seitz cells
Number of WS vectors for electrons 279
Number of WS vectors for phonons 19
Number of WS vectors for electron-phonon 19
Maximum number of cores for efficient parallelization 114
Results may improve by using use_ws == .TRUE.
Reading Hamiltonian, Dynamical matrix and EP vertex in Wann rep from file
Finished reading Wann rep data from file
===================================================================
Memory usage: VmHWM = 53Mb
VmPeak = 3747Mb
===================================================================
Using uniform q-mesh: 12 12 12
Size of q point mesh for interpolation: 1728
Using uniform MP k-mesh: 12 12 12
Size of k point mesh for interpolation: 144
Max number of k points per pool: 36
Fermi energy coarse grid = 6.255484 eV
===================================================================
Fermi energy is read from the input file: Ef = 6.355486 eV
===================================================================
ibndmin = 2 ebndmin = 6.103 eV
ibndmax = 4 ebndmax = 6.255 eV
Number of ep-matrix elements per pool : 972 ~= 7.59 Kb (@ 8 bytes/ DP)
File ./Fepmatkq1/si.epmatkq1_0 deleted, as requested
File ./Fsparse/sparse_0 deleted, as requested
A selecq.fmt file was found but re-created because selecqread == .FALSE.
Number selected, total 5 13
Number selected, total 10 133
Number selected, total 15 147
Number selected, total 20 158
Number selected, total 25 277
Number selected, total 30 302
Number selected, total 35 1586
Number selected, total 40 1705
Number selected, total 45 1726
We only need to compute 47 q-points
Valence band maximum = 6.255484 eV
Conduction band minimum = 6.963667 eV
Temperature 100.000 K
Mobility VB Fermi level = 6.393157 eV
===================================================================
Scattering rate for IBTE
===================================================================
Restart and restart_step inputs deactivated (restart point at every q-points).
No intermediate mobility will be shown.
Fermi Surface thickness = 0.400000 eV
This is computed with respect to the fine Fermi level 6.355486 eV
Only states between 5.955486 eV and 6.755486 eV will be included
Save matrix elements larger than threshold: 0.372108862978E-23
Progression iq (fine) = 5/ 47
Adaptative smearing el-ph = Min: 1.414214 meV
Max: 310.733910 meV
Progression iq (fine) = 10/ 47
Adaptative smearing el-ph = Min: 34.675863 meV
Max: 310.555115 meV
Progression iq (fine) = 15/ 47
Adaptative smearing el-ph = Min: 48.091097 meV
Max: 313.422112 meV
Progression iq (fine) = 20/ 47
Adaptative smearing el-ph = Min: 24.096410 meV
Max: 220.310194 meV
Progression iq (fine) = 25/ 47
Adaptative smearing el-ph = Min: 27.525671 meV
Max: 310.280140 meV
Progression iq (fine) = 30/ 47
Adaptative smearing el-ph = Min: 24.292940 meV
Max: 220.107246 meV
Progression iq (fine) = 35/ 47
Adaptative smearing el-ph = Min: 35.094834 meV
Max: 310.743418 meV
Progression iq (fine) = 40/ 47
Adaptative smearing el-ph = Min: 33.784566 meV
Max: 306.180794 meV
Progression iq (fine) = 45/ 47
Adaptative smearing el-ph = Min: 24.278184 meV
Max: 310.197384 meV
100.000 6.3932 0.999994E+13
epmatkqread automatically changed to .TRUE. as all scattering have been computed.
===================================================================
Memory usage: VmHWM = 63Mb
VmPeak = 3867Mb
===================================================================
Number of elements per core 51
Symmetry mapping finished
=============================================================================================
BTE in the self-energy relaxation time approximation (SERTA)
=============================================================================================
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-3] [h per cell] [cm^2/Vs]
=============================================================================================
100.000 6.3932 0.99999E+13 0.33087E-23 0.830448E+00 0.000000E+00 0.000000E+00
0.00000E+00 0.000000E+00 0.830448E+00 0.000000E+00
-0.33087E-23 0.000000E+00 0.000000E+00 0.830448E+00
=============================================================================================
Start solving iterative Boltzmann Transport Equation
=============================================================================================
Iteration number: 1
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-3] [h per cell] [cm^2/Vs]
=============================================================================================
100.000 6.3932 0.99999E+13 0.00000E+00 0.803324E+00 0.000000E+00 0.000000E+00
0.00000E+00 0.000000E+00 0.803324E+00 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.803324E+00
0.803324E+00 Max error
Iteration number: 2
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-3] [h per cell] [cm^2/Vs]
=============================================================================================
100.000 6.3932 0.99999E+13 0.33087E-23 0.805147E+00 0.000000E+00 0.000000E+00
0.00000E+00 0.000000E+00 0.805147E+00 0.000000E+00
-0.33087E-23 0.000000E+00 0.000000E+00 0.805147E+00
0.182290E-02 Max error
Iteration number: 3
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-3] [h per cell] [cm^2/Vs]
=============================================================================================
100.000 6.3932 0.99999E+13 0.33087E-23 0.805625E+00 0.000000E+00 0.000000E+00
0.00000E+00 0.000000E+00 0.805625E+00 0.000000E+00
-0.33087E-23 0.000000E+00 0.000000E+00 0.805625E+00
0.478107E-03 Max error
Iteration number: 4
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-3] [h per cell] [cm^2/Vs]
=============================================================================================
100.000 6.3932 0.99999E+13 0.33087E-23 0.805751E+00 0.000000E+00 0.000000E+00
0.00000E+00 0.000000E+00 0.805751E+00 0.000000E+00
-0.33087E-23 0.000000E+00 0.000000E+00 0.805751E+00
0.126179E-03 Max error
Iteration number: 5
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-3] [h per cell] [cm^2/Vs]
=============================================================================================
100.000 6.3932 0.99999E+13 0.00000E+00 0.805785E+00 0.000000E+00 0.000000E+00
0.00000E+00 0.000000E+00 0.805785E+00 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.805785E+00
0.335446E-04 Max error
Iteration number: 6
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-3] [h per cell] [cm^2/Vs]
=============================================================================================
100.000 6.3932 0.99999E+13 0.33087E-23 0.805794E+00 0.000000E+00 0.000000E+00
0.00000E+00 0.000000E+00 0.805794E+00 0.000000E+00
-0.33087E-23 0.000000E+00 0.000000E+00 0.805794E+00
0.899370E-05 Max error
Iteration number: 7
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-3] [h per cell] [cm^2/Vs]
=============================================================================================
100.000 6.3932 0.99999E+13 -0.33087E-23 0.805796E+00 0.000000E+00 0.000000E+00
0.00000E+00 0.000000E+00 0.805796E+00 0.000000E+00
0.33087E-23 0.000000E+00 0.000000E+00 0.805796E+00
0.243472E-05 Max error
Iteration number: 8
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-3] [h per cell] [cm^2/Vs]
=============================================================================================
100.000 6.3932 0.99999E+13 0.00000E+00 0.805797E+00 0.000000E+00 0.000000E+00
0.00000E+00 0.000000E+00 0.805797E+00 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.805797E+00
0.666267E-06 Max error
Unfolding on the coarse grid
elphon_wrap : 0.01s CPU 0.01s WALL ( 1 calls)
INITIALIZATION:
Electron-Phonon interpolation
ephwann : 0.61s CPU 0.71s WALL ( 1 calls)
ep-interp : 0.21s CPU 0.30s WALL ( 47 calls)
DynW2B : 0.00s CPU 0.00s WALL ( 47 calls)
HamW2B : 0.06s CPU 0.06s WALL ( 1746 calls)
ephW2Bp : 0.10s CPU 0.17s WALL ( 47 calls)
ephW2B : 0.00s CPU 0.00s WALL ( 21 calls)
print_ibte : 0.02s CPU 0.04s WALL ( 47 calls)
vmewan2bloch : 0.01s CPU 0.01s WALL ( 89 calls)
vmewan2bloch : 0.01s CPU 0.01s WALL ( 89 calls)
Total program execution
EPW : 0.62s CPU 0.72s WALL
% Copyright (C) 2016-2023 EPW-Collaboration
===============================================================================
Please consider citing the following papers.
% Paper describing the method on which EPW relies
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
% Papers describing the EPW software
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
% Since you used the [scattering/iterative_bte] input, please consider also citing
S. Ponc\'e, E. R. Margine and F. Giustino, Phys. Rev. B 97, 121201 (2018)
F. Macheda and N. Bonini, Phys. Rev. B 98, 201201 (2018)
% Since you used the [adapt_smearing] input, please consider also citing
F. Macheda and N. Bonini, Phys. Rev. B 98, 201201 (2018)
For your convenience, this information is also reported in the
functionality-dependent EPW.bib file.
===============================================================================