mirror of https://gitlab.com/QEF/q-e.git
701 lines
35 KiB
Plaintext
701 lines
35 KiB
Plaintext
|
|
``:oss/
|
|
`.+s+. .+ys--yh+ `./ss+.
|
|
-sh//yy+` +yy +yy -+h+-oyy
|
|
-yh- .oyy/.-sh. .syo-.:sy- /yh
|
|
`.-.` `yh+ -oyyyo. `/syys: oys `.`
|
|
`/+ssys+-` `sh+ ` oys` .:osyo`
|
|
-yh- ./syyooyo` .sys+/oyo--yh/
|
|
`yy+ .-:-. `-/+/:` -sh-
|
|
/yh. oys
|
|
``..---hho---------` .---------..` `.-----.` -hd+---.
|
|
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
|
|
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
|
|
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
|
|
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
|
|
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
|
|
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
|
|
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
|
|
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
|
|
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
|
|
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
|
|
-yh- ```````````````` ````````` `` `` oys
|
|
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
|
|
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
|
|
|
|
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
|
|
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
|
|
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
|
|
npj Comput Mater 9, 156 (2023)
|
|
|
|
|
|
Program EPW v.5.8 starts on 9Jan2024 at 13:39:55
|
|
|
|
This program is part of the open-source Quantum ESPRESSO suite
|
|
for quantum simulation of materials; please cite
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
|
|
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
|
|
URL http://www.quantum-espresso.org",
|
|
in publications or presentations arising from this work. More details at
|
|
http://www.quantum-espresso.org/quote
|
|
|
|
Parallel version (MPI), running on 4 processors
|
|
|
|
MPI processes distributed on 1 nodes
|
|
K-points division: npool = 4
|
|
35365 MiB available memory on the printing compute node when the environment starts
|
|
|
|
Reading input from epw1.in
|
|
|
|
Reading supplied temperature list.
|
|
|
|
Reading xml data from directory:
|
|
|
|
./si.save/
|
|
|
|
IMPORTANT: XC functional enforced from input :
|
|
Exchange-correlation= PBE
|
|
( 1 4 3 4 0 0 0)
|
|
Any further DFT definition will be discarded
|
|
Please, verify this is what you really want
|
|
|
|
|
|
G-vector sticks info
|
|
--------------------
|
|
sticks: dense smooth PW G-vecs: dense smooth PW
|
|
Sum 151 151 61 1139 1139 331
|
|
|
|
Using Slab Decomposition
|
|
|
|
Reading collected, re-writing distributed wavefunctions
|
|
|
|
--
|
|
|
|
bravais-lattice index = 2
|
|
lattice parameter (a_0) = 10.2620 a.u.
|
|
unit-cell volume = 270.1693 (a.u.)^3
|
|
number of atoms/cell = 2
|
|
number of atomic types = 1
|
|
kinetic-energy cut-off = 10.0000 Ry
|
|
charge density cut-off = 40.0000 Ry
|
|
Exchange-correlation= PBE
|
|
( 1 4 3 4 0 0 0)
|
|
|
|
|
|
celldm(1)= 10.26200 celldm(2)= 0.00000 celldm(3)= 0.00000
|
|
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
|
|
|
|
crystal axes: (cart. coord. in units of a_0)
|
|
a(1) = ( -0.5000 0.0000 0.5000 )
|
|
a(2) = ( 0.0000 0.5000 0.5000 )
|
|
a(3) = ( -0.5000 0.5000 0.0000 )
|
|
|
|
reciprocal axes: (cart. coord. in units 2 pi/a_0)
|
|
b(1) = ( -1.0000 -1.0000 1.0000 )
|
|
b(2) = ( 1.0000 1.0000 1.0000 )
|
|
b(3) = ( -1.0000 1.0000 -1.0000 )
|
|
|
|
|
|
Atoms inside the unit cell:
|
|
|
|
Cartesian axes
|
|
|
|
site n. atom mass positions (a_0 units)
|
|
1 Si 28.0855 tau( 1) = ( 0.00000 0.00000 0.00000 )
|
|
2 Si 28.0855 tau( 2) = ( 0.25000 0.25000 0.25000 )
|
|
|
|
49 Sym.Ops. (with q -> -q+G )
|
|
|
|
|
|
G cutoff = 106.7000 ( 1139 G-vectors) FFT grid: ( 16, 16, 16)
|
|
number of k points= 216
|
|
cart. coord. in units 2pi/a_0
|
|
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0092593
|
|
k( 2) = ( -0.1666667 0.1666667 -0.1666667), wk = 0.0092593
|
|
k( 3) = ( -0.3333333 0.3333333 -0.3333333), wk = 0.0092593
|
|
k( 4) = ( -0.5000000 0.5000000 -0.5000000), wk = 0.0092593
|
|
k( 5) = ( -0.6666667 0.6666667 -0.6666667), wk = 0.0092593
|
|
k( 6) = ( -0.8333333 0.8333333 -0.8333333), wk = 0.0092593
|
|
k( 7) = ( 0.1666667 0.1666667 0.1666667), wk = 0.0092593
|
|
k( 8) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0092593
|
|
k( 9) = ( -0.1666667 0.5000000 -0.1666667), wk = 0.0092593
|
|
k( 10) = ( -0.3333333 0.6666667 -0.3333333), wk = 0.0092593
|
|
k( 11) = ( -0.5000000 0.8333333 -0.5000000), wk = 0.0092593
|
|
k( 12) = ( -0.6666667 1.0000000 -0.6666667), wk = 0.0092593
|
|
k( 13) = ( 0.3333333 0.3333333 0.3333333), wk = 0.0092593
|
|
k( 14) = ( 0.1666667 0.5000000 0.1666667), wk = 0.0092593
|
|
k( 15) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0092593
|
|
k( 16) = ( -0.1666667 0.8333333 -0.1666667), wk = 0.0092593
|
|
k( 17) = ( -0.3333333 1.0000000 -0.3333333), wk = 0.0092593
|
|
k( 18) = ( -0.5000000 1.1666667 -0.5000000), wk = 0.0092593
|
|
k( 19) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0092593
|
|
k( 20) = ( 0.3333333 0.6666667 0.3333333), wk = 0.0092593
|
|
k( 21) = ( 0.1666667 0.8333333 0.1666667), wk = 0.0092593
|
|
k( 22) = ( 0.0000000 1.0000000 0.0000000), wk = 0.0092593
|
|
k( 23) = ( -0.1666667 1.1666667 -0.1666667), wk = 0.0092593
|
|
k( 24) = ( -0.3333333 1.3333333 -0.3333333), wk = 0.0092593
|
|
k( 25) = ( 0.6666667 0.6666667 0.6666667), wk = 0.0092593
|
|
k( 26) = ( 0.5000000 0.8333333 0.5000000), wk = 0.0092593
|
|
k( 27) = ( 0.3333333 1.0000000 0.3333333), wk = 0.0092593
|
|
k( 28) = ( 0.1666667 1.1666667 0.1666667), wk = 0.0092593
|
|
k( 29) = ( 0.0000000 1.3333333 0.0000000), wk = 0.0092593
|
|
k( 30) = ( -0.1666667 1.5000000 -0.1666667), wk = 0.0092593
|
|
k( 31) = ( 0.8333333 0.8333333 0.8333333), wk = 0.0092593
|
|
k( 32) = ( 0.6666667 1.0000000 0.6666667), wk = 0.0092593
|
|
k( 33) = ( 0.5000000 1.1666667 0.5000000), wk = 0.0092593
|
|
k( 34) = ( 0.3333333 1.3333333 0.3333333), wk = 0.0092593
|
|
k( 35) = ( 0.1666667 1.5000000 0.1666667), wk = 0.0092593
|
|
k( 36) = ( 0.0000000 1.6666667 0.0000000), wk = 0.0092593
|
|
k( 37) = ( -0.1666667 -0.1666667 0.1666667), wk = 0.0092593
|
|
k( 38) = ( -0.3333333 0.0000000 0.0000000), wk = 0.0092593
|
|
k( 39) = ( -0.5000000 0.1666667 -0.1666667), wk = 0.0092593
|
|
k( 40) = ( -0.6666667 0.3333333 -0.3333333), wk = 0.0092593
|
|
k( 41) = ( -0.8333333 0.5000000 -0.5000000), wk = 0.0092593
|
|
k( 42) = ( -1.0000000 0.6666667 -0.6666667), wk = 0.0092593
|
|
k( 43) = ( 0.0000000 0.0000000 0.3333333), wk = 0.0092593
|
|
k( 44) = ( -0.1666667 0.1666667 0.1666667), wk = 0.0092593
|
|
k( 45) = ( -0.3333333 0.3333333 0.0000000), wk = 0.0092593
|
|
k( 46) = ( -0.5000000 0.5000000 -0.1666667), wk = 0.0092593
|
|
k( 47) = ( -0.6666667 0.6666667 -0.3333333), wk = 0.0092593
|
|
k( 48) = ( -0.8333333 0.8333333 -0.5000000), wk = 0.0092593
|
|
k( 49) = ( 0.1666667 0.1666667 0.5000000), wk = 0.0092593
|
|
k( 50) = ( -0.0000000 0.3333333 0.3333333), wk = 0.0092593
|
|
k( 51) = ( -0.1666667 0.5000000 0.1666667), wk = 0.0092593
|
|
k( 52) = ( -0.3333333 0.6666667 0.0000000), wk = 0.0092593
|
|
k( 53) = ( -0.5000000 0.8333333 -0.1666667), wk = 0.0092593
|
|
k( 54) = ( -0.6666667 1.0000000 -0.3333333), wk = 0.0092593
|
|
k( 55) = ( 0.3333333 0.3333333 0.6666667), wk = 0.0092593
|
|
k( 56) = ( 0.1666667 0.5000000 0.5000000), wk = 0.0092593
|
|
k( 57) = ( -0.0000000 0.6666667 0.3333333), wk = 0.0092593
|
|
k( 58) = ( -0.1666667 0.8333333 0.1666667), wk = 0.0092593
|
|
k( 59) = ( -0.3333333 1.0000000 0.0000000), wk = 0.0092593
|
|
k( 60) = ( -0.5000000 1.1666667 -0.1666667), wk = 0.0092593
|
|
k( 61) = ( 0.5000000 0.5000000 0.8333333), wk = 0.0092593
|
|
k( 62) = ( 0.3333333 0.6666667 0.6666667), wk = 0.0092593
|
|
k( 63) = ( 0.1666667 0.8333333 0.5000000), wk = 0.0092593
|
|
k( 64) = ( 0.0000000 1.0000000 0.3333333), wk = 0.0092593
|
|
k( 65) = ( -0.1666667 1.1666667 0.1666667), wk = 0.0092593
|
|
k( 66) = ( -0.3333333 1.3333333 0.0000000), wk = 0.0092593
|
|
k( 67) = ( 0.6666667 0.6666667 1.0000000), wk = 0.0092593
|
|
k( 68) = ( 0.5000000 0.8333333 0.8333333), wk = 0.0092593
|
|
k( 69) = ( 0.3333333 1.0000000 0.6666667), wk = 0.0092593
|
|
k( 70) = ( 0.1666667 1.1666667 0.5000000), wk = 0.0092593
|
|
k( 71) = ( -0.0000000 1.3333333 0.3333333), wk = 0.0092593
|
|
k( 72) = ( -0.1666667 1.5000000 0.1666667), wk = 0.0092593
|
|
k( 73) = ( -0.3333333 -0.3333333 0.3333333), wk = 0.0092593
|
|
k( 74) = ( -0.5000000 -0.1666667 0.1666667), wk = 0.0092593
|
|
k( 75) = ( -0.6666667 0.0000000 0.0000000), wk = 0.0092593
|
|
k( 76) = ( -0.8333333 0.1666667 -0.1666667), wk = 0.0092593
|
|
k( 77) = ( -1.0000000 0.3333333 -0.3333333), wk = 0.0092593
|
|
k( 78) = ( -1.1666667 0.5000000 -0.5000000), wk = 0.0092593
|
|
k( 79) = ( -0.1666667 -0.1666667 0.5000000), wk = 0.0092593
|
|
k( 80) = ( -0.3333333 0.0000000 0.3333333), wk = 0.0092593
|
|
k( 81) = ( -0.5000000 0.1666667 0.1666667), wk = 0.0092593
|
|
k( 82) = ( -0.6666667 0.3333333 0.0000000), wk = 0.0092593
|
|
k( 83) = ( -0.8333333 0.5000000 -0.1666667), wk = 0.0092593
|
|
k( 84) = ( -1.0000000 0.6666667 -0.3333333), wk = 0.0092593
|
|
k( 85) = ( 0.0000000 0.0000000 0.6666667), wk = 0.0092593
|
|
k( 86) = ( -0.1666667 0.1666667 0.5000000), wk = 0.0092593
|
|
k( 87) = ( -0.3333333 0.3333333 0.3333333), wk = 0.0092593
|
|
k( 88) = ( -0.5000000 0.5000000 0.1666667), wk = 0.0092593
|
|
k( 89) = ( -0.6666667 0.6666667 -0.0000000), wk = 0.0092593
|
|
k( 90) = ( -0.8333333 0.8333333 -0.1666667), wk = 0.0092593
|
|
k( 91) = ( 0.1666667 0.1666667 0.8333333), wk = 0.0092593
|
|
k( 92) = ( -0.0000000 0.3333333 0.6666667), wk = 0.0092593
|
|
k( 93) = ( -0.1666667 0.5000000 0.5000000), wk = 0.0092593
|
|
k( 94) = ( -0.3333333 0.6666667 0.3333333), wk = 0.0092593
|
|
k( 95) = ( -0.5000000 0.8333333 0.1666667), wk = 0.0092593
|
|
k( 96) = ( -0.6666667 1.0000000 0.0000000), wk = 0.0092593
|
|
k( 97) = ( 0.3333333 0.3333333 1.0000000), wk = 0.0092593
|
|
k( 98) = ( 0.1666667 0.5000000 0.8333333), wk = 0.0092593
|
|
k( 99) = ( 0.0000000 0.6666667 0.6666667), wk = 0.0092593
|
|
k( 100) = ( -0.1666667 0.8333333 0.5000000), wk = 0.0092593
|
|
k( 101) = ( -0.3333333 1.0000000 0.3333333), wk = 0.0092593
|
|
k( 102) = ( -0.5000000 1.1666667 0.1666667), wk = 0.0092593
|
|
k( 103) = ( 0.5000000 0.5000000 1.1666667), wk = 0.0092593
|
|
k( 104) = ( 0.3333333 0.6666667 1.0000000), wk = 0.0092593
|
|
k( 105) = ( 0.1666667 0.8333333 0.8333333), wk = 0.0092593
|
|
k( 106) = ( -0.0000000 1.0000000 0.6666667), wk = 0.0092593
|
|
k( 107) = ( -0.1666667 1.1666667 0.5000000), wk = 0.0092593
|
|
k( 108) = ( -0.3333333 1.3333333 0.3333333), wk = 0.0092593
|
|
k( 109) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.0092593
|
|
k( 110) = ( -0.6666667 -0.3333333 0.3333333), wk = 0.0092593
|
|
k( 111) = ( -0.8333333 -0.1666667 0.1666667), wk = 0.0092593
|
|
k( 112) = ( -1.0000000 0.0000000 0.0000000), wk = 0.0092593
|
|
k( 113) = ( -1.1666667 0.1666667 -0.1666667), wk = 0.0092593
|
|
k( 114) = ( -1.3333333 0.3333333 -0.3333333), wk = 0.0092593
|
|
k( 115) = ( -0.3333333 -0.3333333 0.6666667), wk = 0.0092593
|
|
k( 116) = ( -0.5000000 -0.1666667 0.5000000), wk = 0.0092593
|
|
k( 117) = ( -0.6666667 0.0000000 0.3333333), wk = 0.0092593
|
|
k( 118) = ( -0.8333333 0.1666667 0.1666667), wk = 0.0092593
|
|
k( 119) = ( -1.0000000 0.3333333 0.0000000), wk = 0.0092593
|
|
k( 120) = ( -1.1666667 0.5000000 -0.1666667), wk = 0.0092593
|
|
k( 121) = ( -0.1666667 -0.1666667 0.8333333), wk = 0.0092593
|
|
k( 122) = ( -0.3333333 0.0000000 0.6666667), wk = 0.0092593
|
|
k( 123) = ( -0.5000000 0.1666667 0.5000000), wk = 0.0092593
|
|
k( 124) = ( -0.6666667 0.3333333 0.3333333), wk = 0.0092593
|
|
k( 125) = ( -0.8333333 0.5000000 0.1666667), wk = 0.0092593
|
|
k( 126) = ( -1.0000000 0.6666667 0.0000000), wk = 0.0092593
|
|
k( 127) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0092593
|
|
k( 128) = ( -0.1666667 0.1666667 0.8333333), wk = 0.0092593
|
|
k( 129) = ( -0.3333333 0.3333333 0.6666667), wk = 0.0092593
|
|
k( 130) = ( -0.5000000 0.5000000 0.5000000), wk = 0.0092593
|
|
k( 131) = ( -0.6666667 0.6666667 0.3333333), wk = 0.0092593
|
|
k( 132) = ( -0.8333333 0.8333333 0.1666667), wk = 0.0092593
|
|
k( 133) = ( 0.1666667 0.1666667 1.1666667), wk = 0.0092593
|
|
k( 134) = ( 0.0000000 0.3333333 1.0000000), wk = 0.0092593
|
|
k( 135) = ( -0.1666667 0.5000000 0.8333333), wk = 0.0092593
|
|
k( 136) = ( -0.3333333 0.6666667 0.6666667), wk = 0.0092593
|
|
k( 137) = ( -0.5000000 0.8333333 0.5000000), wk = 0.0092593
|
|
k( 138) = ( -0.6666667 1.0000000 0.3333333), wk = 0.0092593
|
|
k( 139) = ( 0.3333333 0.3333333 1.3333333), wk = 0.0092593
|
|
k( 140) = ( 0.1666667 0.5000000 1.1666667), wk = 0.0092593
|
|
k( 141) = ( -0.0000000 0.6666667 1.0000000), wk = 0.0092593
|
|
k( 142) = ( -0.1666667 0.8333333 0.8333333), wk = 0.0092593
|
|
k( 143) = ( -0.3333333 1.0000000 0.6666667), wk = 0.0092593
|
|
k( 144) = ( -0.5000000 1.1666667 0.5000000), wk = 0.0092593
|
|
k( 145) = ( -0.6666667 -0.6666667 0.6666667), wk = 0.0092593
|
|
k( 146) = ( -0.8333333 -0.5000000 0.5000000), wk = 0.0092593
|
|
k( 147) = ( -1.0000000 -0.3333333 0.3333333), wk = 0.0092593
|
|
k( 148) = ( -1.1666667 -0.1666667 0.1666667), wk = 0.0092593
|
|
k( 149) = ( -1.3333333 0.0000000 0.0000000), wk = 0.0092593
|
|
k( 150) = ( -1.5000000 0.1666667 -0.1666667), wk = 0.0092593
|
|
k( 151) = ( -0.5000000 -0.5000000 0.8333333), wk = 0.0092593
|
|
k( 152) = ( -0.6666667 -0.3333333 0.6666667), wk = 0.0092593
|
|
k( 153) = ( -0.8333333 -0.1666667 0.5000000), wk = 0.0092593
|
|
k( 154) = ( -1.0000000 0.0000000 0.3333333), wk = 0.0092593
|
|
k( 155) = ( -1.1666667 0.1666667 0.1666667), wk = 0.0092593
|
|
k( 156) = ( -1.3333333 0.3333333 0.0000000), wk = 0.0092593
|
|
k( 157) = ( -0.3333333 -0.3333333 1.0000000), wk = 0.0092593
|
|
k( 158) = ( -0.5000000 -0.1666667 0.8333333), wk = 0.0092593
|
|
k( 159) = ( -0.6666667 -0.0000000 0.6666667), wk = 0.0092593
|
|
k( 160) = ( -0.8333333 0.1666667 0.5000000), wk = 0.0092593
|
|
k( 161) = ( -1.0000000 0.3333333 0.3333333), wk = 0.0092593
|
|
k( 162) = ( -1.1666667 0.5000000 0.1666667), wk = 0.0092593
|
|
k( 163) = ( -0.1666667 -0.1666667 1.1666667), wk = 0.0092593
|
|
k( 164) = ( -0.3333333 -0.0000000 1.0000000), wk = 0.0092593
|
|
k( 165) = ( -0.5000000 0.1666667 0.8333333), wk = 0.0092593
|
|
k( 166) = ( -0.6666667 0.3333333 0.6666667), wk = 0.0092593
|
|
k( 167) = ( -0.8333333 0.5000000 0.5000000), wk = 0.0092593
|
|
k( 168) = ( -1.0000000 0.6666667 0.3333333), wk = 0.0092593
|
|
k( 169) = ( 0.0000000 0.0000000 1.3333333), wk = 0.0092593
|
|
k( 170) = ( -0.1666667 0.1666667 1.1666667), wk = 0.0092593
|
|
k( 171) = ( -0.3333333 0.3333333 1.0000000), wk = 0.0092593
|
|
k( 172) = ( -0.5000000 0.5000000 0.8333333), wk = 0.0092593
|
|
k( 173) = ( -0.6666667 0.6666667 0.6666667), wk = 0.0092593
|
|
k( 174) = ( -0.8333333 0.8333333 0.5000000), wk = 0.0092593
|
|
k( 175) = ( 0.1666667 0.1666667 1.5000000), wk = 0.0092593
|
|
k( 176) = ( -0.0000000 0.3333333 1.3333333), wk = 0.0092593
|
|
k( 177) = ( -0.1666667 0.5000000 1.1666667), wk = 0.0092593
|
|
k( 178) = ( -0.3333333 0.6666667 1.0000000), wk = 0.0092593
|
|
k( 179) = ( -0.5000000 0.8333333 0.8333333), wk = 0.0092593
|
|
k( 180) = ( -0.6666667 1.0000000 0.6666667), wk = 0.0092593
|
|
k( 181) = ( -0.8333333 -0.8333333 0.8333333), wk = 0.0092593
|
|
k( 182) = ( -1.0000000 -0.6666667 0.6666667), wk = 0.0092593
|
|
k( 183) = ( -1.1666667 -0.5000000 0.5000000), wk = 0.0092593
|
|
k( 184) = ( -1.3333333 -0.3333333 0.3333333), wk = 0.0092593
|
|
k( 185) = ( -1.5000000 -0.1666667 0.1666667), wk = 0.0092593
|
|
k( 186) = ( -1.6666667 0.0000000 0.0000000), wk = 0.0092593
|
|
k( 187) = ( -0.6666667 -0.6666667 1.0000000), wk = 0.0092593
|
|
k( 188) = ( -0.8333333 -0.5000000 0.8333333), wk = 0.0092593
|
|
k( 189) = ( -1.0000000 -0.3333333 0.6666667), wk = 0.0092593
|
|
k( 190) = ( -1.1666667 -0.1666667 0.5000000), wk = 0.0092593
|
|
k( 191) = ( -1.3333333 0.0000000 0.3333333), wk = 0.0092593
|
|
k( 192) = ( -1.5000000 0.1666667 0.1666667), wk = 0.0092593
|
|
k( 193) = ( -0.5000000 -0.5000000 1.1666667), wk = 0.0092593
|
|
k( 194) = ( -0.6666667 -0.3333333 1.0000000), wk = 0.0092593
|
|
k( 195) = ( -0.8333333 -0.1666667 0.8333333), wk = 0.0092593
|
|
k( 196) = ( -1.0000000 0.0000000 0.6666667), wk = 0.0092593
|
|
k( 197) = ( -1.1666667 0.1666667 0.5000000), wk = 0.0092593
|
|
k( 198) = ( -1.3333333 0.3333333 0.3333333), wk = 0.0092593
|
|
k( 199) = ( -0.3333333 -0.3333333 1.3333333), wk = 0.0092593
|
|
k( 200) = ( -0.5000000 -0.1666667 1.1666667), wk = 0.0092593
|
|
k( 201) = ( -0.6666667 0.0000000 1.0000000), wk = 0.0092593
|
|
k( 202) = ( -0.8333333 0.1666667 0.8333333), wk = 0.0092593
|
|
k( 203) = ( -1.0000000 0.3333333 0.6666667), wk = 0.0092593
|
|
k( 204) = ( -1.1666667 0.5000000 0.5000000), wk = 0.0092593
|
|
k( 205) = ( -0.1666667 -0.1666667 1.5000000), wk = 0.0092593
|
|
k( 206) = ( -0.3333333 0.0000000 1.3333333), wk = 0.0092593
|
|
k( 207) = ( -0.5000000 0.1666667 1.1666667), wk = 0.0092593
|
|
k( 208) = ( -0.6666667 0.3333333 1.0000000), wk = 0.0092593
|
|
k( 209) = ( -0.8333333 0.5000000 0.8333333), wk = 0.0092593
|
|
k( 210) = ( -1.0000000 0.6666667 0.6666667), wk = 0.0092593
|
|
k( 211) = ( 0.0000000 0.0000000 1.6666667), wk = 0.0092593
|
|
k( 212) = ( -0.1666667 0.1666667 1.5000000), wk = 0.0092593
|
|
k( 213) = ( -0.3333333 0.3333333 1.3333333), wk = 0.0092593
|
|
k( 214) = ( -0.5000000 0.5000000 1.1666667), wk = 0.0092593
|
|
k( 215) = ( -0.6666667 0.6666667 1.0000000), wk = 0.0092593
|
|
k( 216) = ( -0.8333333 0.8333333 0.8333333), wk = 0.0092593
|
|
|
|
PseudoPot. # 1 for Si read from file:
|
|
../../pseudo/Si_r.upf
|
|
MD5 check sum: c84abb4b0aac9c93a8e9f74896432a0a
|
|
Pseudo is Norm-conserving + core correction, Zval = 4.0
|
|
Generated using ONCVPSP code by D. R. Hamann
|
|
Using radial grid of 1528 points, 6 beta functions with:
|
|
l(1) = 0
|
|
l(2) = 0
|
|
l(3) = 1
|
|
l(4) = 1
|
|
l(5) = 2
|
|
l(6) = 2
|
|
EPW : 0.18s CPU 0.19s WALL
|
|
|
|
EPW : 0.18s CPU 0.19s WALL
|
|
|
|
-------------------------------------------------------------------
|
|
Wannierization on 6 x 6 x 6 electronic grid
|
|
-------------------------------------------------------------------
|
|
|
|
Spin CASE ( default = unpolarized )
|
|
|
|
Initializing Wannier90
|
|
|
|
|
|
Initial Wannier projections
|
|
|
|
( 0.00000 0.00000 0.00000) : l = -3 mr = 1
|
|
( 0.00000 0.00000 0.00000) : l = -3 mr = 2
|
|
( 0.00000 0.00000 0.00000) : l = -3 mr = 3
|
|
( 0.00000 0.00000 0.00000) : l = -3 mr = 4
|
|
( -0.25000 0.75000 -0.25000) : l = -3 mr = 1
|
|
( -0.25000 0.75000 -0.25000) : l = -3 mr = 2
|
|
( -0.25000 0.75000 -0.25000) : l = -3 mr = 3
|
|
( -0.25000 0.75000 -0.25000) : l = -3 mr = 4
|
|
|
|
- Number of bands is ( 10)
|
|
- Number of total bands is ( 10)
|
|
- Number of excluded bands is ( 0)
|
|
- Number of wannier functions is ( 8)
|
|
- All guiding functions are given
|
|
|
|
Reading data about k-point neighbours
|
|
|
|
- All neighbours are found
|
|
|
|
AMN
|
|
k points = 216 in 4 pools
|
|
1 of 54 on ionode
|
|
2 of 54 on ionode
|
|
3 of 54 on ionode
|
|
4 of 54 on ionode
|
|
5 of 54 on ionode
|
|
6 of 54 on ionode
|
|
7 of 54 on ionode
|
|
8 of 54 on ionode
|
|
9 of 54 on ionode
|
|
10 of 54 on ionode
|
|
11 of 54 on ionode
|
|
12 of 54 on ionode
|
|
13 of 54 on ionode
|
|
14 of 54 on ionode
|
|
15 of 54 on ionode
|
|
16 of 54 on ionode
|
|
17 of 54 on ionode
|
|
18 of 54 on ionode
|
|
19 of 54 on ionode
|
|
20 of 54 on ionode
|
|
21 of 54 on ionode
|
|
22 of 54 on ionode
|
|
23 of 54 on ionode
|
|
24 of 54 on ionode
|
|
25 of 54 on ionode
|
|
26 of 54 on ionode
|
|
27 of 54 on ionode
|
|
28 of 54 on ionode
|
|
29 of 54 on ionode
|
|
30 of 54 on ionode
|
|
31 of 54 on ionode
|
|
32 of 54 on ionode
|
|
33 of 54 on ionode
|
|
34 of 54 on ionode
|
|
35 of 54 on ionode
|
|
36 of 54 on ionode
|
|
37 of 54 on ionode
|
|
38 of 54 on ionode
|
|
39 of 54 on ionode
|
|
40 of 54 on ionode
|
|
41 of 54 on ionode
|
|
42 of 54 on ionode
|
|
43 of 54 on ionode
|
|
44 of 54 on ionode
|
|
45 of 54 on ionode
|
|
46 of 54 on ionode
|
|
47 of 54 on ionode
|
|
48 of 54 on ionode
|
|
49 of 54 on ionode
|
|
50 of 54 on ionode
|
|
51 of 54 on ionode
|
|
52 of 54 on ionode
|
|
53 of 54 on ionode
|
|
54 of 54 on ionode
|
|
|
|
AMN calculated
|
|
|
|
MMN
|
|
k points = 216 in 4 pools
|
|
1 of 54 on ionode
|
|
2 of 54 on ionode
|
|
3 of 54 on ionode
|
|
4 of 54 on ionode
|
|
5 of 54 on ionode
|
|
6 of 54 on ionode
|
|
7 of 54 on ionode
|
|
8 of 54 on ionode
|
|
9 of 54 on ionode
|
|
10 of 54 on ionode
|
|
11 of 54 on ionode
|
|
12 of 54 on ionode
|
|
13 of 54 on ionode
|
|
14 of 54 on ionode
|
|
15 of 54 on ionode
|
|
16 of 54 on ionode
|
|
17 of 54 on ionode
|
|
18 of 54 on ionode
|
|
19 of 54 on ionode
|
|
20 of 54 on ionode
|
|
21 of 54 on ionode
|
|
22 of 54 on ionode
|
|
23 of 54 on ionode
|
|
24 of 54 on ionode
|
|
25 of 54 on ionode
|
|
26 of 54 on ionode
|
|
27 of 54 on ionode
|
|
28 of 54 on ionode
|
|
29 of 54 on ionode
|
|
30 of 54 on ionode
|
|
31 of 54 on ionode
|
|
32 of 54 on ionode
|
|
33 of 54 on ionode
|
|
34 of 54 on ionode
|
|
35 of 54 on ionode
|
|
36 of 54 on ionode
|
|
37 of 54 on ionode
|
|
38 of 54 on ionode
|
|
39 of 54 on ionode
|
|
40 of 54 on ionode
|
|
41 of 54 on ionode
|
|
42 of 54 on ionode
|
|
43 of 54 on ionode
|
|
44 of 54 on ionode
|
|
45 of 54 on ionode
|
|
46 of 54 on ionode
|
|
47 of 54 on ionode
|
|
48 of 54 on ionode
|
|
49 of 54 on ionode
|
|
50 of 54 on ionode
|
|
51 of 54 on ionode
|
|
52 of 54 on ionode
|
|
53 of 54 on ionode
|
|
54 of 54 on ionode
|
|
MMN calculated
|
|
|
|
Running Wannier90
|
|
|
|
Wannier Function centers (cartesian, alat) and spreads (ang):
|
|
|
|
( 0.04064 0.04064 0.04064) : 2.52564
|
|
( 0.04064 -0.04064 -0.04064) : 2.52564
|
|
( -0.04064 0.04064 -0.04064) : 2.52564
|
|
( -0.04064 -0.04064 0.04064) : 2.52564
|
|
( 0.33426 0.33426 0.33426) : 2.12921
|
|
( 0.33426 0.16574 0.16574) : 2.12921
|
|
( 0.16574 0.33426 0.16574) : 2.12921
|
|
( 0.16574 0.16574 0.33426) : 2.12921
|
|
|
|
-------------------------------------------------------------------
|
|
WANNIER : 3.84s CPU 3.91s WALL ( 1 calls)
|
|
-------------------------------------------------------------------
|
|
|
|
Dipole matrix elements calculated
|
|
|
|
|
|
Calculating kgmap
|
|
|
|
Progress kgmap: ########################################
|
|
kmaps : 0.00s CPU 0.00s WALL ( 1 calls)
|
|
Symmetries of Bravais lattice: 48
|
|
Symmetries of crystal: 48
|
|
|
|
Reading interatomic force constants
|
|
|
|
Read Z* and epsilon
|
|
IFC last -0.0026125
|
|
Norm of the difference between old and new effective charges: 0.0000000
|
|
Norm of the difference between old and new force-constants: 0.0000051
|
|
Imposed crystal ASR
|
|
|
|
Finished reading ifcs
|
|
|
|
|
|
|
|
===================================================================
|
|
irreducible q point # 1
|
|
===================================================================
|
|
|
|
Symmetries of small group of q: 48
|
|
in addition sym. q -> -q+G:
|
|
|
|
Number of q in the star = 1
|
|
List of q in the star:
|
|
1 0.000000000 0.000000000 0.000000000
|
|
Imposing acoustic sum rule on the dynamical matrix
|
|
Read dielectric tensor and effective charges
|
|
Dyn mat calculated from ifcs
|
|
|
|
q( 1 ) = ( 0.0000000 0.0000000 0.0000000 )
|
|
|
|
|
|
===================================================================
|
|
irreducible q point # 2
|
|
===================================================================
|
|
|
|
Symmetries of small group of q: 12
|
|
in addition sym. q -> -q+G:
|
|
|
|
Number of q in the star = 4
|
|
List of q in the star:
|
|
1 0.500000000 -0.500000000 0.500000000
|
|
2 0.500000000 0.500000000 -0.500000000
|
|
3 -0.500000000 -0.500000000 -0.500000000
|
|
4 0.500000000 -0.500000000 -0.500000000
|
|
Dyn mat calculated from ifcs
|
|
Message from routine init_vloc:
|
|
Interpolation table for Vloc re-allocated
|
|
|
|
q( 2 ) = ( 0.5000000 -0.5000000 0.5000000 )
|
|
q( 3 ) = ( 0.5000000 0.5000000 -0.5000000 )
|
|
q( 4 ) = ( -0.5000000 -0.5000000 -0.5000000 )
|
|
q( 5 ) = ( 0.5000000 -0.5000000 -0.5000000 )
|
|
|
|
|
|
===================================================================
|
|
irreducible q point # 3
|
|
===================================================================
|
|
|
|
Symmetries of small group of q: 16
|
|
in addition sym. q -> -q+G:
|
|
|
|
Number of q in the star = 3
|
|
List of q in the star:
|
|
1 0.000000000 -1.000000000 0.000000000
|
|
2 -1.000000000 0.000000000 0.000000000
|
|
3 0.000000000 0.000000000 1.000000000
|
|
Dyn mat calculated from ifcs
|
|
|
|
q( 6 ) = ( 0.0000000 -1.0000000 0.0000000 )
|
|
q( 7 ) = ( -1.0000000 0.0000000 0.0000000 )
|
|
q( 8 ) = ( 0.0000000 0.0000000 1.0000000 )
|
|
|
|
Writing epmatq on .epb files
|
|
|
|
|
|
The .epb files have been correctly written
|
|
|
|
|
|
Band disentanglement is used: nbndsub = 8
|
|
Use zone-centred Wigner-Seitz cells
|
|
Number of WS vectors for electrons 279
|
|
Number of WS vectors for phonons 19
|
|
Number of WS vectors for electron-phonon 19
|
|
Maximum number of cores for efficient parallelization 114
|
|
Results may improve by using use_ws == .TRUE.
|
|
|
|
Bloch2wane: 1 / 8
|
|
Bloch2wane: 2 / 8
|
|
Bloch2wane: 3 / 8
|
|
Bloch2wane: 4 / 8
|
|
Bloch2wane: 5 / 8
|
|
Bloch2wane: 6 / 8
|
|
Bloch2wane: 7 / 8
|
|
Bloch2wane: 8 / 8
|
|
Bloch2wanp: 1 / 5
|
|
Bloch2wanp: 2 / 5
|
|
Bloch2wanp: 3 / 5
|
|
Bloch2wanp: 4 / 5
|
|
Bloch2wanp: 5 / 5
|
|
|
|
Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file
|
|
|
|
===================================================================
|
|
Memory usage: VmHWM = 84Mb
|
|
VmPeak = 3805Mb
|
|
===================================================================
|
|
|
|
Using q-mesh file: ./LGX.txt
|
|
Size of q point mesh for interpolation: 100
|
|
Using k-mesh file: ./LGX.txt
|
|
Size of k point mesh for interpolation: 200
|
|
Max number of k points per pool: 50
|
|
|
|
Fermi energy coarse grid = 6.255484 eV
|
|
|
|
===================================================================
|
|
|
|
Fermi energy corresponds to the coarse k-mesh
|
|
|
|
===================================================================
|
|
|
|
ibndmin = 2 ebndmin = 4.261 eV
|
|
ibndmax = 6 ebndmax = 8.240 eV
|
|
|
|
|
|
Number of ep-matrix elements per pool : 3750 ~= 29.30 Kb (@ 8 bytes/ DP)
|
|
Number selected, total 100 100
|
|
We only need to compute 100 q-points
|
|
|
|
Progression iq (fine) = 100/ 100
|
|
===================================================================
|
|
Memory usage: VmHWM = 85Mb
|
|
VmPeak = 3805Mb
|
|
===================================================================
|
|
|
|
|
|
Unfolding on the coarse grid
|
|
elphon_wrap : 5.32s CPU 5.58s WALL ( 1 calls)
|
|
|
|
INITIALIZATION:
|
|
|
|
set_drhoc : 0.01s CPU 0.01s WALL ( 9 calls)
|
|
init_vloc : 0.01s CPU 0.01s WALL ( 1 calls)
|
|
init_us_1 : 0.01s CPU 0.01s WALL ( 1 calls)
|
|
|
|
|
|
|
|
Electron-Phonon interpolation
|
|
ephwann : 1.44s CPU 1.65s WALL ( 1 calls)
|
|
ep-interp : 0.82s CPU 0.98s WALL ( 100 calls)
|
|
|
|
Ham: step 1 : 0.00s CPU 0.00s WALL ( 1 calls)
|
|
Ham: step 2 : 0.01s CPU 0.01s WALL ( 1 calls)
|
|
ep: step 1 : 0.00s CPU 0.00s WALL ( 8 calls)
|
|
ep: step 2 : 0.11s CPU 0.12s WALL ( 8 calls)
|
|
DynW2B : 0.00s CPU 0.00s WALL ( 100 calls)
|
|
HamW2B : 0.16s CPU 0.16s WALL ( 5175 calls)
|
|
ephW2Bp : 0.20s CPU 0.34s WALL ( 100 calls)
|
|
ephW2B : 0.20s CPU 0.20s WALL ( 2500 calls)
|
|
|
|
|
|
Total program execution
|
|
EPW : 10.79s CPU 11.34s WALL
|
|
|
|
% Copyright (C) 2016-2023 EPW-Collaboration
|
|
|
|
===============================================================================
|
|
Please consider citing the following papers.
|
|
|
|
% Paper describing the method on which EPW relies
|
|
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
|
|
|
|
% Papers describing the EPW software
|
|
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
|
|
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
|
|
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
|
|
|
|
|
|
For your convenience, this information is also reported in the
|
|
functionality-dependent EPW.bib file.
|
|
===============================================================================
|
|
|