quantum-espresso/test-suite/epw_mob_ibte/benchmark.out.git.inp=epw1....

701 lines
35 KiB
Plaintext

``:oss/
`.+s+. .+ys--yh+ `./ss+.
-sh//yy+` +yy +yy -+h+-oyy
-yh- .oyy/.-sh. .syo-.:sy- /yh
`.-.` `yh+ -oyyyo. `/syys: oys `.`
`/+ssys+-` `sh+ ` oys` .:osyo`
-yh- ./syyooyo` .sys+/oyo--yh/
`yy+ .-:-. `-/+/:` -sh-
/yh. oys
``..---hho---------` .---------..` `.-----.` -hd+---.
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
-yh- ```````````````` ````````` `` `` oys
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
npj Comput Mater 9, 156 (2023)
Program EPW v.5.8 starts on 9Jan2024 at 13:39:55
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 4 processors
MPI processes distributed on 1 nodes
K-points division: npool = 4
35365 MiB available memory on the printing compute node when the environment starts
Reading input from epw1.in
Reading supplied temperature list.
Reading xml data from directory:
./si.save/
IMPORTANT: XC functional enforced from input :
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 151 151 61 1139 1139 331
Using Slab Decomposition
Reading collected, re-writing distributed wavefunctions
--
bravais-lattice index = 2
lattice parameter (a_0) = 10.2620 a.u.
unit-cell volume = 270.1693 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 1
kinetic-energy cut-off = 10.0000 Ry
charge density cut-off = 40.0000 Ry
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
celldm(1)= 10.26200 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (a_0 units)
1 Si 28.0855 tau( 1) = ( 0.00000 0.00000 0.00000 )
2 Si 28.0855 tau( 2) = ( 0.25000 0.25000 0.25000 )
49 Sym.Ops. (with q -> -q+G )
G cutoff = 106.7000 ( 1139 G-vectors) FFT grid: ( 16, 16, 16)
number of k points= 216
cart. coord. in units 2pi/a_0
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0092593
k( 2) = ( -0.1666667 0.1666667 -0.1666667), wk = 0.0092593
k( 3) = ( -0.3333333 0.3333333 -0.3333333), wk = 0.0092593
k( 4) = ( -0.5000000 0.5000000 -0.5000000), wk = 0.0092593
k( 5) = ( -0.6666667 0.6666667 -0.6666667), wk = 0.0092593
k( 6) = ( -0.8333333 0.8333333 -0.8333333), wk = 0.0092593
k( 7) = ( 0.1666667 0.1666667 0.1666667), wk = 0.0092593
k( 8) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0092593
k( 9) = ( -0.1666667 0.5000000 -0.1666667), wk = 0.0092593
k( 10) = ( -0.3333333 0.6666667 -0.3333333), wk = 0.0092593
k( 11) = ( -0.5000000 0.8333333 -0.5000000), wk = 0.0092593
k( 12) = ( -0.6666667 1.0000000 -0.6666667), wk = 0.0092593
k( 13) = ( 0.3333333 0.3333333 0.3333333), wk = 0.0092593
k( 14) = ( 0.1666667 0.5000000 0.1666667), wk = 0.0092593
k( 15) = ( 0.0000000 0.6666667 0.0000000), wk = 0.0092593
k( 16) = ( -0.1666667 0.8333333 -0.1666667), wk = 0.0092593
k( 17) = ( -0.3333333 1.0000000 -0.3333333), wk = 0.0092593
k( 18) = ( -0.5000000 1.1666667 -0.5000000), wk = 0.0092593
k( 19) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0092593
k( 20) = ( 0.3333333 0.6666667 0.3333333), wk = 0.0092593
k( 21) = ( 0.1666667 0.8333333 0.1666667), wk = 0.0092593
k( 22) = ( 0.0000000 1.0000000 0.0000000), wk = 0.0092593
k( 23) = ( -0.1666667 1.1666667 -0.1666667), wk = 0.0092593
k( 24) = ( -0.3333333 1.3333333 -0.3333333), wk = 0.0092593
k( 25) = ( 0.6666667 0.6666667 0.6666667), wk = 0.0092593
k( 26) = ( 0.5000000 0.8333333 0.5000000), wk = 0.0092593
k( 27) = ( 0.3333333 1.0000000 0.3333333), wk = 0.0092593
k( 28) = ( 0.1666667 1.1666667 0.1666667), wk = 0.0092593
k( 29) = ( 0.0000000 1.3333333 0.0000000), wk = 0.0092593
k( 30) = ( -0.1666667 1.5000000 -0.1666667), wk = 0.0092593
k( 31) = ( 0.8333333 0.8333333 0.8333333), wk = 0.0092593
k( 32) = ( 0.6666667 1.0000000 0.6666667), wk = 0.0092593
k( 33) = ( 0.5000000 1.1666667 0.5000000), wk = 0.0092593
k( 34) = ( 0.3333333 1.3333333 0.3333333), wk = 0.0092593
k( 35) = ( 0.1666667 1.5000000 0.1666667), wk = 0.0092593
k( 36) = ( 0.0000000 1.6666667 0.0000000), wk = 0.0092593
k( 37) = ( -0.1666667 -0.1666667 0.1666667), wk = 0.0092593
k( 38) = ( -0.3333333 0.0000000 0.0000000), wk = 0.0092593
k( 39) = ( -0.5000000 0.1666667 -0.1666667), wk = 0.0092593
k( 40) = ( -0.6666667 0.3333333 -0.3333333), wk = 0.0092593
k( 41) = ( -0.8333333 0.5000000 -0.5000000), wk = 0.0092593
k( 42) = ( -1.0000000 0.6666667 -0.6666667), wk = 0.0092593
k( 43) = ( 0.0000000 0.0000000 0.3333333), wk = 0.0092593
k( 44) = ( -0.1666667 0.1666667 0.1666667), wk = 0.0092593
k( 45) = ( -0.3333333 0.3333333 0.0000000), wk = 0.0092593
k( 46) = ( -0.5000000 0.5000000 -0.1666667), wk = 0.0092593
k( 47) = ( -0.6666667 0.6666667 -0.3333333), wk = 0.0092593
k( 48) = ( -0.8333333 0.8333333 -0.5000000), wk = 0.0092593
k( 49) = ( 0.1666667 0.1666667 0.5000000), wk = 0.0092593
k( 50) = ( -0.0000000 0.3333333 0.3333333), wk = 0.0092593
k( 51) = ( -0.1666667 0.5000000 0.1666667), wk = 0.0092593
k( 52) = ( -0.3333333 0.6666667 0.0000000), wk = 0.0092593
k( 53) = ( -0.5000000 0.8333333 -0.1666667), wk = 0.0092593
k( 54) = ( -0.6666667 1.0000000 -0.3333333), wk = 0.0092593
k( 55) = ( 0.3333333 0.3333333 0.6666667), wk = 0.0092593
k( 56) = ( 0.1666667 0.5000000 0.5000000), wk = 0.0092593
k( 57) = ( -0.0000000 0.6666667 0.3333333), wk = 0.0092593
k( 58) = ( -0.1666667 0.8333333 0.1666667), wk = 0.0092593
k( 59) = ( -0.3333333 1.0000000 0.0000000), wk = 0.0092593
k( 60) = ( -0.5000000 1.1666667 -0.1666667), wk = 0.0092593
k( 61) = ( 0.5000000 0.5000000 0.8333333), wk = 0.0092593
k( 62) = ( 0.3333333 0.6666667 0.6666667), wk = 0.0092593
k( 63) = ( 0.1666667 0.8333333 0.5000000), wk = 0.0092593
k( 64) = ( 0.0000000 1.0000000 0.3333333), wk = 0.0092593
k( 65) = ( -0.1666667 1.1666667 0.1666667), wk = 0.0092593
k( 66) = ( -0.3333333 1.3333333 0.0000000), wk = 0.0092593
k( 67) = ( 0.6666667 0.6666667 1.0000000), wk = 0.0092593
k( 68) = ( 0.5000000 0.8333333 0.8333333), wk = 0.0092593
k( 69) = ( 0.3333333 1.0000000 0.6666667), wk = 0.0092593
k( 70) = ( 0.1666667 1.1666667 0.5000000), wk = 0.0092593
k( 71) = ( -0.0000000 1.3333333 0.3333333), wk = 0.0092593
k( 72) = ( -0.1666667 1.5000000 0.1666667), wk = 0.0092593
k( 73) = ( -0.3333333 -0.3333333 0.3333333), wk = 0.0092593
k( 74) = ( -0.5000000 -0.1666667 0.1666667), wk = 0.0092593
k( 75) = ( -0.6666667 0.0000000 0.0000000), wk = 0.0092593
k( 76) = ( -0.8333333 0.1666667 -0.1666667), wk = 0.0092593
k( 77) = ( -1.0000000 0.3333333 -0.3333333), wk = 0.0092593
k( 78) = ( -1.1666667 0.5000000 -0.5000000), wk = 0.0092593
k( 79) = ( -0.1666667 -0.1666667 0.5000000), wk = 0.0092593
k( 80) = ( -0.3333333 0.0000000 0.3333333), wk = 0.0092593
k( 81) = ( -0.5000000 0.1666667 0.1666667), wk = 0.0092593
k( 82) = ( -0.6666667 0.3333333 0.0000000), wk = 0.0092593
k( 83) = ( -0.8333333 0.5000000 -0.1666667), wk = 0.0092593
k( 84) = ( -1.0000000 0.6666667 -0.3333333), wk = 0.0092593
k( 85) = ( 0.0000000 0.0000000 0.6666667), wk = 0.0092593
k( 86) = ( -0.1666667 0.1666667 0.5000000), wk = 0.0092593
k( 87) = ( -0.3333333 0.3333333 0.3333333), wk = 0.0092593
k( 88) = ( -0.5000000 0.5000000 0.1666667), wk = 0.0092593
k( 89) = ( -0.6666667 0.6666667 -0.0000000), wk = 0.0092593
k( 90) = ( -0.8333333 0.8333333 -0.1666667), wk = 0.0092593
k( 91) = ( 0.1666667 0.1666667 0.8333333), wk = 0.0092593
k( 92) = ( -0.0000000 0.3333333 0.6666667), wk = 0.0092593
k( 93) = ( -0.1666667 0.5000000 0.5000000), wk = 0.0092593
k( 94) = ( -0.3333333 0.6666667 0.3333333), wk = 0.0092593
k( 95) = ( -0.5000000 0.8333333 0.1666667), wk = 0.0092593
k( 96) = ( -0.6666667 1.0000000 0.0000000), wk = 0.0092593
k( 97) = ( 0.3333333 0.3333333 1.0000000), wk = 0.0092593
k( 98) = ( 0.1666667 0.5000000 0.8333333), wk = 0.0092593
k( 99) = ( 0.0000000 0.6666667 0.6666667), wk = 0.0092593
k( 100) = ( -0.1666667 0.8333333 0.5000000), wk = 0.0092593
k( 101) = ( -0.3333333 1.0000000 0.3333333), wk = 0.0092593
k( 102) = ( -0.5000000 1.1666667 0.1666667), wk = 0.0092593
k( 103) = ( 0.5000000 0.5000000 1.1666667), wk = 0.0092593
k( 104) = ( 0.3333333 0.6666667 1.0000000), wk = 0.0092593
k( 105) = ( 0.1666667 0.8333333 0.8333333), wk = 0.0092593
k( 106) = ( -0.0000000 1.0000000 0.6666667), wk = 0.0092593
k( 107) = ( -0.1666667 1.1666667 0.5000000), wk = 0.0092593
k( 108) = ( -0.3333333 1.3333333 0.3333333), wk = 0.0092593
k( 109) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.0092593
k( 110) = ( -0.6666667 -0.3333333 0.3333333), wk = 0.0092593
k( 111) = ( -0.8333333 -0.1666667 0.1666667), wk = 0.0092593
k( 112) = ( -1.0000000 0.0000000 0.0000000), wk = 0.0092593
k( 113) = ( -1.1666667 0.1666667 -0.1666667), wk = 0.0092593
k( 114) = ( -1.3333333 0.3333333 -0.3333333), wk = 0.0092593
k( 115) = ( -0.3333333 -0.3333333 0.6666667), wk = 0.0092593
k( 116) = ( -0.5000000 -0.1666667 0.5000000), wk = 0.0092593
k( 117) = ( -0.6666667 0.0000000 0.3333333), wk = 0.0092593
k( 118) = ( -0.8333333 0.1666667 0.1666667), wk = 0.0092593
k( 119) = ( -1.0000000 0.3333333 0.0000000), wk = 0.0092593
k( 120) = ( -1.1666667 0.5000000 -0.1666667), wk = 0.0092593
k( 121) = ( -0.1666667 -0.1666667 0.8333333), wk = 0.0092593
k( 122) = ( -0.3333333 0.0000000 0.6666667), wk = 0.0092593
k( 123) = ( -0.5000000 0.1666667 0.5000000), wk = 0.0092593
k( 124) = ( -0.6666667 0.3333333 0.3333333), wk = 0.0092593
k( 125) = ( -0.8333333 0.5000000 0.1666667), wk = 0.0092593
k( 126) = ( -1.0000000 0.6666667 0.0000000), wk = 0.0092593
k( 127) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0092593
k( 128) = ( -0.1666667 0.1666667 0.8333333), wk = 0.0092593
k( 129) = ( -0.3333333 0.3333333 0.6666667), wk = 0.0092593
k( 130) = ( -0.5000000 0.5000000 0.5000000), wk = 0.0092593
k( 131) = ( -0.6666667 0.6666667 0.3333333), wk = 0.0092593
k( 132) = ( -0.8333333 0.8333333 0.1666667), wk = 0.0092593
k( 133) = ( 0.1666667 0.1666667 1.1666667), wk = 0.0092593
k( 134) = ( 0.0000000 0.3333333 1.0000000), wk = 0.0092593
k( 135) = ( -0.1666667 0.5000000 0.8333333), wk = 0.0092593
k( 136) = ( -0.3333333 0.6666667 0.6666667), wk = 0.0092593
k( 137) = ( -0.5000000 0.8333333 0.5000000), wk = 0.0092593
k( 138) = ( -0.6666667 1.0000000 0.3333333), wk = 0.0092593
k( 139) = ( 0.3333333 0.3333333 1.3333333), wk = 0.0092593
k( 140) = ( 0.1666667 0.5000000 1.1666667), wk = 0.0092593
k( 141) = ( -0.0000000 0.6666667 1.0000000), wk = 0.0092593
k( 142) = ( -0.1666667 0.8333333 0.8333333), wk = 0.0092593
k( 143) = ( -0.3333333 1.0000000 0.6666667), wk = 0.0092593
k( 144) = ( -0.5000000 1.1666667 0.5000000), wk = 0.0092593
k( 145) = ( -0.6666667 -0.6666667 0.6666667), wk = 0.0092593
k( 146) = ( -0.8333333 -0.5000000 0.5000000), wk = 0.0092593
k( 147) = ( -1.0000000 -0.3333333 0.3333333), wk = 0.0092593
k( 148) = ( -1.1666667 -0.1666667 0.1666667), wk = 0.0092593
k( 149) = ( -1.3333333 0.0000000 0.0000000), wk = 0.0092593
k( 150) = ( -1.5000000 0.1666667 -0.1666667), wk = 0.0092593
k( 151) = ( -0.5000000 -0.5000000 0.8333333), wk = 0.0092593
k( 152) = ( -0.6666667 -0.3333333 0.6666667), wk = 0.0092593
k( 153) = ( -0.8333333 -0.1666667 0.5000000), wk = 0.0092593
k( 154) = ( -1.0000000 0.0000000 0.3333333), wk = 0.0092593
k( 155) = ( -1.1666667 0.1666667 0.1666667), wk = 0.0092593
k( 156) = ( -1.3333333 0.3333333 0.0000000), wk = 0.0092593
k( 157) = ( -0.3333333 -0.3333333 1.0000000), wk = 0.0092593
k( 158) = ( -0.5000000 -0.1666667 0.8333333), wk = 0.0092593
k( 159) = ( -0.6666667 -0.0000000 0.6666667), wk = 0.0092593
k( 160) = ( -0.8333333 0.1666667 0.5000000), wk = 0.0092593
k( 161) = ( -1.0000000 0.3333333 0.3333333), wk = 0.0092593
k( 162) = ( -1.1666667 0.5000000 0.1666667), wk = 0.0092593
k( 163) = ( -0.1666667 -0.1666667 1.1666667), wk = 0.0092593
k( 164) = ( -0.3333333 -0.0000000 1.0000000), wk = 0.0092593
k( 165) = ( -0.5000000 0.1666667 0.8333333), wk = 0.0092593
k( 166) = ( -0.6666667 0.3333333 0.6666667), wk = 0.0092593
k( 167) = ( -0.8333333 0.5000000 0.5000000), wk = 0.0092593
k( 168) = ( -1.0000000 0.6666667 0.3333333), wk = 0.0092593
k( 169) = ( 0.0000000 0.0000000 1.3333333), wk = 0.0092593
k( 170) = ( -0.1666667 0.1666667 1.1666667), wk = 0.0092593
k( 171) = ( -0.3333333 0.3333333 1.0000000), wk = 0.0092593
k( 172) = ( -0.5000000 0.5000000 0.8333333), wk = 0.0092593
k( 173) = ( -0.6666667 0.6666667 0.6666667), wk = 0.0092593
k( 174) = ( -0.8333333 0.8333333 0.5000000), wk = 0.0092593
k( 175) = ( 0.1666667 0.1666667 1.5000000), wk = 0.0092593
k( 176) = ( -0.0000000 0.3333333 1.3333333), wk = 0.0092593
k( 177) = ( -0.1666667 0.5000000 1.1666667), wk = 0.0092593
k( 178) = ( -0.3333333 0.6666667 1.0000000), wk = 0.0092593
k( 179) = ( -0.5000000 0.8333333 0.8333333), wk = 0.0092593
k( 180) = ( -0.6666667 1.0000000 0.6666667), wk = 0.0092593
k( 181) = ( -0.8333333 -0.8333333 0.8333333), wk = 0.0092593
k( 182) = ( -1.0000000 -0.6666667 0.6666667), wk = 0.0092593
k( 183) = ( -1.1666667 -0.5000000 0.5000000), wk = 0.0092593
k( 184) = ( -1.3333333 -0.3333333 0.3333333), wk = 0.0092593
k( 185) = ( -1.5000000 -0.1666667 0.1666667), wk = 0.0092593
k( 186) = ( -1.6666667 0.0000000 0.0000000), wk = 0.0092593
k( 187) = ( -0.6666667 -0.6666667 1.0000000), wk = 0.0092593
k( 188) = ( -0.8333333 -0.5000000 0.8333333), wk = 0.0092593
k( 189) = ( -1.0000000 -0.3333333 0.6666667), wk = 0.0092593
k( 190) = ( -1.1666667 -0.1666667 0.5000000), wk = 0.0092593
k( 191) = ( -1.3333333 0.0000000 0.3333333), wk = 0.0092593
k( 192) = ( -1.5000000 0.1666667 0.1666667), wk = 0.0092593
k( 193) = ( -0.5000000 -0.5000000 1.1666667), wk = 0.0092593
k( 194) = ( -0.6666667 -0.3333333 1.0000000), wk = 0.0092593
k( 195) = ( -0.8333333 -0.1666667 0.8333333), wk = 0.0092593
k( 196) = ( -1.0000000 0.0000000 0.6666667), wk = 0.0092593
k( 197) = ( -1.1666667 0.1666667 0.5000000), wk = 0.0092593
k( 198) = ( -1.3333333 0.3333333 0.3333333), wk = 0.0092593
k( 199) = ( -0.3333333 -0.3333333 1.3333333), wk = 0.0092593
k( 200) = ( -0.5000000 -0.1666667 1.1666667), wk = 0.0092593
k( 201) = ( -0.6666667 0.0000000 1.0000000), wk = 0.0092593
k( 202) = ( -0.8333333 0.1666667 0.8333333), wk = 0.0092593
k( 203) = ( -1.0000000 0.3333333 0.6666667), wk = 0.0092593
k( 204) = ( -1.1666667 0.5000000 0.5000000), wk = 0.0092593
k( 205) = ( -0.1666667 -0.1666667 1.5000000), wk = 0.0092593
k( 206) = ( -0.3333333 0.0000000 1.3333333), wk = 0.0092593
k( 207) = ( -0.5000000 0.1666667 1.1666667), wk = 0.0092593
k( 208) = ( -0.6666667 0.3333333 1.0000000), wk = 0.0092593
k( 209) = ( -0.8333333 0.5000000 0.8333333), wk = 0.0092593
k( 210) = ( -1.0000000 0.6666667 0.6666667), wk = 0.0092593
k( 211) = ( 0.0000000 0.0000000 1.6666667), wk = 0.0092593
k( 212) = ( -0.1666667 0.1666667 1.5000000), wk = 0.0092593
k( 213) = ( -0.3333333 0.3333333 1.3333333), wk = 0.0092593
k( 214) = ( -0.5000000 0.5000000 1.1666667), wk = 0.0092593
k( 215) = ( -0.6666667 0.6666667 1.0000000), wk = 0.0092593
k( 216) = ( -0.8333333 0.8333333 0.8333333), wk = 0.0092593
PseudoPot. # 1 for Si read from file:
../../pseudo/Si_r.upf
MD5 check sum: c84abb4b0aac9c93a8e9f74896432a0a
Pseudo is Norm-conserving + core correction, Zval = 4.0
Generated using ONCVPSP code by D. R. Hamann
Using radial grid of 1528 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
EPW : 0.18s CPU 0.19s WALL
EPW : 0.18s CPU 0.19s WALL
-------------------------------------------------------------------
Wannierization on 6 x 6 x 6 electronic grid
-------------------------------------------------------------------
Spin CASE ( default = unpolarized )
Initializing Wannier90
Initial Wannier projections
( 0.00000 0.00000 0.00000) : l = -3 mr = 1
( 0.00000 0.00000 0.00000) : l = -3 mr = 2
( 0.00000 0.00000 0.00000) : l = -3 mr = 3
( 0.00000 0.00000 0.00000) : l = -3 mr = 4
( -0.25000 0.75000 -0.25000) : l = -3 mr = 1
( -0.25000 0.75000 -0.25000) : l = -3 mr = 2
( -0.25000 0.75000 -0.25000) : l = -3 mr = 3
( -0.25000 0.75000 -0.25000) : l = -3 mr = 4
- Number of bands is ( 10)
- Number of total bands is ( 10)
- Number of excluded bands is ( 0)
- Number of wannier functions is ( 8)
- All guiding functions are given
Reading data about k-point neighbours
- All neighbours are found
AMN
k points = 216 in 4 pools
1 of 54 on ionode
2 of 54 on ionode
3 of 54 on ionode
4 of 54 on ionode
5 of 54 on ionode
6 of 54 on ionode
7 of 54 on ionode
8 of 54 on ionode
9 of 54 on ionode
10 of 54 on ionode
11 of 54 on ionode
12 of 54 on ionode
13 of 54 on ionode
14 of 54 on ionode
15 of 54 on ionode
16 of 54 on ionode
17 of 54 on ionode
18 of 54 on ionode
19 of 54 on ionode
20 of 54 on ionode
21 of 54 on ionode
22 of 54 on ionode
23 of 54 on ionode
24 of 54 on ionode
25 of 54 on ionode
26 of 54 on ionode
27 of 54 on ionode
28 of 54 on ionode
29 of 54 on ionode
30 of 54 on ionode
31 of 54 on ionode
32 of 54 on ionode
33 of 54 on ionode
34 of 54 on ionode
35 of 54 on ionode
36 of 54 on ionode
37 of 54 on ionode
38 of 54 on ionode
39 of 54 on ionode
40 of 54 on ionode
41 of 54 on ionode
42 of 54 on ionode
43 of 54 on ionode
44 of 54 on ionode
45 of 54 on ionode
46 of 54 on ionode
47 of 54 on ionode
48 of 54 on ionode
49 of 54 on ionode
50 of 54 on ionode
51 of 54 on ionode
52 of 54 on ionode
53 of 54 on ionode
54 of 54 on ionode
AMN calculated
MMN
k points = 216 in 4 pools
1 of 54 on ionode
2 of 54 on ionode
3 of 54 on ionode
4 of 54 on ionode
5 of 54 on ionode
6 of 54 on ionode
7 of 54 on ionode
8 of 54 on ionode
9 of 54 on ionode
10 of 54 on ionode
11 of 54 on ionode
12 of 54 on ionode
13 of 54 on ionode
14 of 54 on ionode
15 of 54 on ionode
16 of 54 on ionode
17 of 54 on ionode
18 of 54 on ionode
19 of 54 on ionode
20 of 54 on ionode
21 of 54 on ionode
22 of 54 on ionode
23 of 54 on ionode
24 of 54 on ionode
25 of 54 on ionode
26 of 54 on ionode
27 of 54 on ionode
28 of 54 on ionode
29 of 54 on ionode
30 of 54 on ionode
31 of 54 on ionode
32 of 54 on ionode
33 of 54 on ionode
34 of 54 on ionode
35 of 54 on ionode
36 of 54 on ionode
37 of 54 on ionode
38 of 54 on ionode
39 of 54 on ionode
40 of 54 on ionode
41 of 54 on ionode
42 of 54 on ionode
43 of 54 on ionode
44 of 54 on ionode
45 of 54 on ionode
46 of 54 on ionode
47 of 54 on ionode
48 of 54 on ionode
49 of 54 on ionode
50 of 54 on ionode
51 of 54 on ionode
52 of 54 on ionode
53 of 54 on ionode
54 of 54 on ionode
MMN calculated
Running Wannier90
Wannier Function centers (cartesian, alat) and spreads (ang):
( 0.04064 0.04064 0.04064) : 2.52564
( 0.04064 -0.04064 -0.04064) : 2.52564
( -0.04064 0.04064 -0.04064) : 2.52564
( -0.04064 -0.04064 0.04064) : 2.52564
( 0.33426 0.33426 0.33426) : 2.12921
( 0.33426 0.16574 0.16574) : 2.12921
( 0.16574 0.33426 0.16574) : 2.12921
( 0.16574 0.16574 0.33426) : 2.12921
-------------------------------------------------------------------
WANNIER : 3.84s CPU 3.91s WALL ( 1 calls)
-------------------------------------------------------------------
Dipole matrix elements calculated
Calculating kgmap
Progress kgmap: ########################################
kmaps : 0.00s CPU 0.00s WALL ( 1 calls)
Symmetries of Bravais lattice: 48
Symmetries of crystal: 48
Reading interatomic force constants
Read Z* and epsilon
IFC last -0.0026125
Norm of the difference between old and new effective charges: 0.0000000
Norm of the difference between old and new force-constants: 0.0000051
Imposed crystal ASR
Finished reading ifcs
===================================================================
irreducible q point # 1
===================================================================
Symmetries of small group of q: 48
in addition sym. q -> -q+G:
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
Imposing acoustic sum rule on the dynamical matrix
Read dielectric tensor and effective charges
Dyn mat calculated from ifcs
q( 1 ) = ( 0.0000000 0.0000000 0.0000000 )
===================================================================
irreducible q point # 2
===================================================================
Symmetries of small group of q: 12
in addition sym. q -> -q+G:
Number of q in the star = 4
List of q in the star:
1 0.500000000 -0.500000000 0.500000000
2 0.500000000 0.500000000 -0.500000000
3 -0.500000000 -0.500000000 -0.500000000
4 0.500000000 -0.500000000 -0.500000000
Dyn mat calculated from ifcs
Message from routine init_vloc:
Interpolation table for Vloc re-allocated
q( 2 ) = ( 0.5000000 -0.5000000 0.5000000 )
q( 3 ) = ( 0.5000000 0.5000000 -0.5000000 )
q( 4 ) = ( -0.5000000 -0.5000000 -0.5000000 )
q( 5 ) = ( 0.5000000 -0.5000000 -0.5000000 )
===================================================================
irreducible q point # 3
===================================================================
Symmetries of small group of q: 16
in addition sym. q -> -q+G:
Number of q in the star = 3
List of q in the star:
1 0.000000000 -1.000000000 0.000000000
2 -1.000000000 0.000000000 0.000000000
3 0.000000000 0.000000000 1.000000000
Dyn mat calculated from ifcs
q( 6 ) = ( 0.0000000 -1.0000000 0.0000000 )
q( 7 ) = ( -1.0000000 0.0000000 0.0000000 )
q( 8 ) = ( 0.0000000 0.0000000 1.0000000 )
Writing epmatq on .epb files
The .epb files have been correctly written
Band disentanglement is used: nbndsub = 8
Use zone-centred Wigner-Seitz cells
Number of WS vectors for electrons 279
Number of WS vectors for phonons 19
Number of WS vectors for electron-phonon 19
Maximum number of cores for efficient parallelization 114
Results may improve by using use_ws == .TRUE.
Bloch2wane: 1 / 8
Bloch2wane: 2 / 8
Bloch2wane: 3 / 8
Bloch2wane: 4 / 8
Bloch2wane: 5 / 8
Bloch2wane: 6 / 8
Bloch2wane: 7 / 8
Bloch2wane: 8 / 8
Bloch2wanp: 1 / 5
Bloch2wanp: 2 / 5
Bloch2wanp: 3 / 5
Bloch2wanp: 4 / 5
Bloch2wanp: 5 / 5
Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file
===================================================================
Memory usage: VmHWM = 84Mb
VmPeak = 3805Mb
===================================================================
Using q-mesh file: ./LGX.txt
Size of q point mesh for interpolation: 100
Using k-mesh file: ./LGX.txt
Size of k point mesh for interpolation: 200
Max number of k points per pool: 50
Fermi energy coarse grid = 6.255484 eV
===================================================================
Fermi energy corresponds to the coarse k-mesh
===================================================================
ibndmin = 2 ebndmin = 4.261 eV
ibndmax = 6 ebndmax = 8.240 eV
Number of ep-matrix elements per pool : 3750 ~= 29.30 Kb (@ 8 bytes/ DP)
Number selected, total 100 100
We only need to compute 100 q-points
Progression iq (fine) = 100/ 100
===================================================================
Memory usage: VmHWM = 85Mb
VmPeak = 3805Mb
===================================================================
Unfolding on the coarse grid
elphon_wrap : 5.32s CPU 5.58s WALL ( 1 calls)
INITIALIZATION:
set_drhoc : 0.01s CPU 0.01s WALL ( 9 calls)
init_vloc : 0.01s CPU 0.01s WALL ( 1 calls)
init_us_1 : 0.01s CPU 0.01s WALL ( 1 calls)
Electron-Phonon interpolation
ephwann : 1.44s CPU 1.65s WALL ( 1 calls)
ep-interp : 0.82s CPU 0.98s WALL ( 100 calls)
Ham: step 1 : 0.00s CPU 0.00s WALL ( 1 calls)
Ham: step 2 : 0.01s CPU 0.01s WALL ( 1 calls)
ep: step 1 : 0.00s CPU 0.00s WALL ( 8 calls)
ep: step 2 : 0.11s CPU 0.12s WALL ( 8 calls)
DynW2B : 0.00s CPU 0.00s WALL ( 100 calls)
HamW2B : 0.16s CPU 0.16s WALL ( 5175 calls)
ephW2Bp : 0.20s CPU 0.34s WALL ( 100 calls)
ephW2B : 0.20s CPU 0.20s WALL ( 2500 calls)
Total program execution
EPW : 10.79s CPU 11.34s WALL
% Copyright (C) 2016-2023 EPW-Collaboration
===============================================================================
Please consider citing the following papers.
% Paper describing the method on which EPW relies
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
% Papers describing the EPW software
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
For your convenience, this information is also reported in the
functionality-dependent EPW.bib file.
===============================================================================