quantum-espresso/test-suite/epw_2D/benchmark.out.git.inp=epw5....

838 lines
44 KiB
Plaintext

``:oss/
`.+s+. .+ys--yh+ `./ss+.
-sh//yy+` +yy +yy -+h+-oyy
-yh- .oyy/.-sh. .syo-.:sy- /yh
`.-.` `yh+ -oyyyo. `/syys: oys `.`
`/+ssys+-` `sh+ ` oys` .:osyo`
-yh- ./syyooyo` .sys+/oyo--yh/
`yy+ .-:-. `-/+/:` -sh-
/yh. oys
``..---hho---------` .---------..` `.-----.` -hd+---.
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
-yh- ```````````````` ````````` `` `` oys
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
npj Comput Mater 9, 156 (2023)
Program EPW v.5.8 starts on 9Jan2024 at 13:27:46
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 4 processors
MPI processes distributed on 1 nodes
K-points division: npool = 4
35991 MiB available memory on the printing compute node when the environment starts
Reading input from epw5.in
WARNING: The specified dis_win_min is ignored.
You should instead use bands_skipped = 'exclude_bands = ...'
to control the lower bound of band manifold.
Reading supplied temperature list.
Reading xml data from directory:
./mos2.save/
IMPORTANT: XC functional enforced from input :
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 253 253 109 17131 17131 4855
Using Slab Decomposition
----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D
The code is running with the 2D cutoff
Please refer to:
Sohier, T., Calandra, M., & Mauri, F. (2017),
Density functional perturbation theory for gated two-dimensional heterostructu
res:
Theoretical developments and application to flexural phonons in graphene.
Physical Review B, 96(7), 75448. https://doi.org/10.1103/PhysRevB.96.075448
----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D
Check: negative core charge= -0.000002
Reading collected, re-writing distributed wavefunctions
--
bravais-lattice index = 4
lattice parameter (a_0) = 6.0202 a.u.
unit-cell volume = 1008.3196 (a.u.)^3
number of atoms/cell = 3
number of atomic types = 2
kinetic-energy cut-off = 25.0000 Ry
charge density cut-off = 100.0000 Ry
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
Non magnetic calculation with spin-orbit
celldm(1)= 6.02019 celldm(2)= 0.00000 celldm(3)= 5.33626
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( 1.0000 0.0000 0.0000 )
a(2) = ( -0.5000 0.8660 0.0000 )
a(3) = ( 0.0000 0.0000 5.3363 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( 1.0000 0.5774 0.0000 )
b(2) = ( 0.0000 1.1547 0.0000 )
b(3) = ( 0.0000 0.0000 0.1874 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (a_0 units)
1 Mo 95.9620 tau( 1) = ( 0.00000 0.57735 0.00000 )
2 S 32.0650 tau( 2) = ( 0.50000 0.28868 -0.49064 )
3 S 32.0650 tau( 3) = ( 0.50000 0.28868 0.49064 )
13 Sym.Ops. (with q -> -q+G )
G cutoff = 91.8038 ( 17131 G-vectors) FFT grid: ( 20, 20,108)
number of k points= 16
cart. coord. in units 2pi/a_0
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0625000
k( 2) = ( 0.0000000 0.2886751 0.0000000), wk = 0.0625000
k( 3) = ( 0.0000000 0.5773503 0.0000000), wk = 0.0625000
k( 4) = ( 0.0000000 0.8660254 0.0000000), wk = 0.0625000
k( 5) = ( 0.2500000 0.1443376 0.0000000), wk = 0.0625000
k( 6) = ( 0.2500000 0.4330127 0.0000000), wk = 0.0625000
k( 7) = ( 0.2500000 0.7216878 0.0000000), wk = 0.0625000
k( 8) = ( 0.2500000 1.0103630 0.0000000), wk = 0.0625000
k( 9) = ( 0.5000000 0.2886751 0.0000000), wk = 0.0625000
k( 10) = ( 0.5000000 0.5773503 0.0000000), wk = 0.0625000
k( 11) = ( 0.5000000 0.8660254 0.0000000), wk = 0.0625000
k( 12) = ( 0.5000000 1.1547005 0.0000000), wk = 0.0625000
k( 13) = ( 0.7500000 0.4330127 0.0000000), wk = 0.0625000
k( 14) = ( 0.7500000 0.7216878 0.0000000), wk = 0.0625000
k( 15) = ( 0.7500000 1.0103630 0.0000000), wk = 0.0625000
k( 16) = ( 0.7500000 1.2990381 0.0000000), wk = 0.0625000
PseudoPot. # 1 for Mo read from file:
../../pseudo/Mo-PBE.upf
MD5 check sum: 7ca7a9feba7bf08d88d14bc7fbf60c1e
Pseudo is Norm-conserving + core correction, Zval = 14.0
Generated using ONCVPSP code by D. R. Hamann
Using radial grid of 1640 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
PseudoPot. # 2 for S read from file:
../../pseudo/S-PBE.upf
MD5 check sum: b72b6a9ca752e39de1a6cc592280dae2
Pseudo is Norm-conserving + core correction, Zval = 6.0
Generated using ONCVPSP code by D. R. Hamann
Using radial grid of 1148 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
EPW : 0.32s CPU 0.36s WALL
EPW : 0.32s CPU 0.36s WALL
-------------------------------------------------------------------
Wannierization on 4 x 4 x 1 electronic grid
-------------------------------------------------------------------
Spin CASE ( non-collinear )
Initializing Wannier90
Initial Wannier projections
( 0.33333 0.66667 0.00000) : l = 2 mr = 1
( 0.33333 0.66667 0.00000) : l = 2 mr = 1
( 0.33333 0.66667 0.00000) : l = 2 mr = 2
( 0.33333 0.66667 0.00000) : l = 2 mr = 2
( 0.33333 0.66667 0.00000) : l = 2 mr = 3
( 0.33333 0.66667 0.00000) : l = 2 mr = 3
( 0.33333 0.66667 0.00000) : l = 2 mr = 4
( 0.33333 0.66667 0.00000) : l = 2 mr = 4
( 0.33333 0.66667 0.00000) : l = 2 mr = 5
( 0.33333 0.66667 0.00000) : l = 2 mr = 5
- Number of bands is ( 10)
- Number of total bands is ( 34)
- Number of excluded bands is ( 24)
- Number of wannier functions is ( 10)
- All guiding functions are given
Reading data about k-point neighbours
- All neighbours are found
AMN
k points = 16 in 4 pools
1 of 4 on ionode
2 of 4 on ionode
3 of 4 on ionode
4 of 4 on ionode
AMN calculated
MMN
k points = 16 in 4 pools
1 of 4 on ionode
2 of 4 on ionode
3 of 4 on ionode
4 of 4 on ionode
MMN calculated
Running Wannier90
Wannier Function centers (cartesian, alat) and spreads (ang):
( -0.05452 0.60883 -0.00000) : 3.41473
( -0.05452 0.60883 -0.00000) : 3.41473
( -0.00000 0.45161 -0.00000) : 4.11189
( 0.00000 0.45161 -0.00000) : 4.11189
( 0.00000 0.71603 0.00000) : 4.11458
( -0.00000 0.71603 0.00000) : 4.11458
( -0.00000 0.51439 0.00000) : 3.41476
( -0.00000 0.51439 0.00000) : 3.41476
( 0.05452 0.60883 0.00000) : 3.41475
( 0.05452 0.60883 0.00000) : 3.41475
-------------------------------------------------------------------
WANNIER : 3.34s CPU 3.39s WALL ( 1 calls)
-------------------------------------------------------------------
Dipole matrix elements calculated
Calculating kgmap
Progress kgmap: ########################################
kmaps : 0.05s CPU 0.06s WALL ( 1 calls)
Area is 31.38708819 [Bohr^2]
Symmetries of Bravais lattice: 24
Symmetries of crystal: 12
===================================================================
irreducible q point # 1
===================================================================
Symmetries of small group of q: 12
in addition sym. q -> -q+G:
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
Read dielectric tensor and effective charges
Imposing acoustic sum rule on the dynamical matrix
q( 1 ) = ( 0.0000000 0.0000000 0.0000000 )
===================================================================
irreducible q point # 2
===================================================================
Symmetries of small group of q: 4
in addition sym. q -> -q+G:
Number of q in the star = 3
List of q in the star:
1 0.000000000 -0.577350269 0.000000000
2 0.500000000 0.288675135 0.000000000
3 -0.500000000 0.288675135 0.000000000
Message from routine init_vloc:
Interpolation table for Vloc re-allocated
q( 2 ) = ( 0.0000000 -0.5773503 0.0000000 )
q( 3 ) = ( 0.5000000 0.2886751 0.0000000 )
q( 4 ) = ( -0.5000000 0.2886751 0.0000000 )
Writing epmatq on .epb files
The .epb files have been correctly written
Computes the analytic long-range interaction for polar materials [lpolar]
Use zone-centred Wigner-Seitz cells
Number of WS vectors for electrons 19
Number of WS vectors for phonons 7
Number of WS vectors for electron-phonon 7
Maximum number of cores for efficient parallelization 63
Results may improve by using use_ws == .TRUE.
Find optimal range separation length L
L 53.66667 Bohr with IFC = 1.078787067642
L 62.44444 Bohr with IFC = 1.078787067642
L 68.29630 Bohr with IFC = 1.078787067642
L 72.19753 Bohr with IFC = 1.078787067642
L 74.79835 Bohr with IFC = 1.078787067642
L 76.53224 Bohr with IFC = 1.078787067642
L 77.68816 Bohr with IFC = 1.078787067642
L 78.45877 Bohr with IFC = 1.078787067642
L 78.97251 Bohr with IFC = 1.078787067642
L 79.31501 Bohr with IFC = 1.078787067642
L 79.54334 Bohr with IFC = 1.078787067642
L 79.69556 Bohr with IFC = 1.078787067642
L 79.79704 Bohr with IFC = 1.078787067642
L 79.86469 Bohr with IFC = 1.078787067642
L 79.90980 Bohr with IFC = 1.078787067642
L 79.93986 Bohr with IFC = 1.078787067642
L 79.95991 Bohr with IFC = 1.078787067642
L 79.97327 Bohr with IFC = 1.078787067642
L 79.98218 Bohr with IFC = 1.078787067642
L 79.98812 Bohr with IFC = 1.078787067642
L 79.99208 Bohr with IFC = 1.078787067642
L 79.99472 Bohr with IFC = 1.078787067642
L 79.99648 Bohr with IFC = 1.078787067642
L 79.99765 Bohr with IFC = 1.078787067642
L 79.99844 Bohr with IFC = 1.078787067642
L 79.99896 Bohr with IFC = 1.078787067642
L 79.99930 Bohr with IFC = 1.078787067642
L 79.99954 Bohr with IFC = 1.078787067642
L 79.99969 Bohr with IFC = 1.078787067642
L 79.99979 Bohr with IFC = 1.078787067642
L 79.99986 Bohr with IFC = 1.078787067642
L 79.99991 Bohr with IFC = 1.078787067642
L 79.99994 Bohr with IFC = 1.078787067642
L 79.99996 Bohr with IFC = 1.078787067642
L 79.99997 Bohr with IFC = 1.078787067642
L 79.99998 Bohr with IFC = 1.078787067642
L 79.99999 Bohr with IFC = 1.078787067642
L 79.99999 Bohr with IFC = 1.078787067642
L 79.99999 Bohr with IFC = 1.078787067642
L 80.00000 Bohr with IFC = 1.078787067642
L 80.00000 Bohr with IFC = 1.078787067642
L 80.00000 Bohr with IFC = 1.078787067642
L 80.00000 Bohr with IFC = 1.078787067642
L 80.00000 Bohr with IFC = 1.078787067642
L 80.00000 Bohr with IFC = 1.078787067642
In-plane polarizability in cartesian axis
15.4037473785559 -5.676459467344822E-015
-5.676459467344822E-015 15.4037473785537
Out-of-plane polarizability in cartesian axis 0.774951257983103
Bloch2wane: 1 / 4
Bloch2wane: 2 / 4
Bloch2wane: 3 / 4
Bloch2wane: 4 / 4
Bloch2wanp: 1 / 2
Bloch2wanp: 2 / 2
Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file
===================================================================
Memory usage: VmHWM = 104Mb
VmPeak = 3843Mb
===================================================================
Using uniform q-mesh: 30 30 1
Size of q point mesh for interpolation: 900
Using uniform MP k-mesh: 30 30 1
Size of k point mesh for interpolation: 332
Max number of k points per pool: 84
Fermi energy coarse grid = -5.953587 eV
===================================================================
Fermi energy is read from the input file: Ef = -5.780000 eV
===================================================================
Skipping the first 24 bands:
The Fermi level will be determined with 2.00000 electrons
ibndmin = 1 ebndmin = -6.075 eV
ibndmax = 2 ebndmax = -5.954 eV
Number of ep-matrix elements per pool : 1512 ~= 11.81 Kb (@ 8 bytes/ DP)
File ./Fepmatkq1/mos2.epmatkq1_0 deleted, as requested
File ./Fsparse/sparse_0 deleted, as requested
A selecq.fmt file was found but re-created because selecqread == .FALSE.
Number selected, total 100 873
We only need to compute 109 q-points
Valence band maximum = -5.953587 eV
Conduction band minimum = -3.984993 eV
Temperature 300.000 K
Mobility VB Fermi level = -5.749330 eV
===================================================================
Scattering rate for IBTE
===================================================================
Restart and restart_step inputs deactivated (restart point at every q-points).
No intermediate mobility will be shown.
Fermi Surface thickness = 0.300000 eV
This is computed with respect to the fine Fermi level -5.780000 eV
Only states between -6.080000 eV and -5.480000 eV will be included
Save matrix elements larger than threshold: 0.308641975309E-22
Progression iq (fine) = 100/ 109
300.000 -5.7493 0.100000E+11
epmatkqread automatically changed to .TRUE. as all scattering have been computed.
===================================================================
Memory usage: VmHWM = 104Mb
VmPeak = 3915Mb
===================================================================
Number of elements per core 458
Symmetry mapping finished
=============================================================================================
BTE in the self-energy relaxation time approximation (SERTA)
=============================================================================================
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.10000E+11 -0.17347E-17 0.473375E+02 -0.616639E-14 0.000000E+00
0.00000E+00 -0.629759E-14 0.473375E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
=============================================================================================
Start solving iterative Boltzmann Transport Equation
=============================================================================================
Iteration number: 1
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.10000E+11 0.52042E-17 0.581513E+02 -0.787198E-14 0.000000E+00
-0.86736E-17 -0.787198E-14 0.581513E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.581513E+02 Max error
Iteration number: 2
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.10000E+11 0.52042E-17 0.610645E+02 -0.813438E-14 0.000000E+00
-0.34694E-17 -0.813438E-14 0.610645E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.291326E+01 Max error
Iteration number: 3
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.10000E+11 0.69389E-17 0.618919E+02 -0.760958E-14 0.000000E+00
0.34694E-17 -0.760958E-14 0.618919E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.827386E+00 Max error
Iteration number: 4
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.10000E+11 -0.17347E-17 0.621340E+02 -0.813438E-14 0.000000E+00
-0.69389E-17 -0.760958E-14 0.621340E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.242100E+00 Max error
Iteration number: 5
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.10000E+11 0.00000E+00 0.622058E+02 -0.839678E-14 0.000000E+00
-0.34694E-17 -0.682239E-14 0.622058E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.717846E-01 Max error
Iteration number: 6
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.10000E+11 -0.69389E-17 0.622272E+02 -0.787198E-14 0.000000E+00
0.00000E+00 -0.839678E-14 0.622272E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.214568E-01 Max error
Iteration number: 7
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.10000E+11 0.00000E+00 0.622337E+02 -0.787198E-14 0.000000E+00
-0.34694E-17 -0.734718E-14 0.622337E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.643309E-02 Max error
Iteration number: 8
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.10000E+11 0.00000E+00 0.622356E+02 -0.839678E-14 0.000000E+00
0.00000E+00 -0.760958E-14 0.622356E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.193317E-02 Max error
Iteration number: 9
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.10000E+11 -0.34694E-17 0.622362E+02 -0.892158E-14 0.000000E+00
-0.69389E-17 -0.734718E-14 0.622362E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.581230E-03 Max error
Iteration number: 10
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.10000E+11 -0.34694E-17 0.622364E+02 -0.787198E-14 0.000000E+00
-0.34694E-17 -0.682239E-14 0.622364E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.174888E-03 Max error
Iteration number: 11
=============================================================================================
The iteration reached the maximum but did not converge.
=============================================================================================
=============================================================================================
BTE in the SERTA with B-field
=============================================================================================
Number of contributing elements for the master core 5496
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.98858E+10 -0.10564E-07 0.478844E+02 0.109150E-03 0.000000E+00
0.34694E-17 -0.138162E-03 0.478844E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.143519E+02 Max error
=============================================================================================
Start solving iterative Boltzmann Transport Equation with B-field
=============================================================================================
Iteration number: 1
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.98858E+10 -0.42538E-07 0.588232E+02 0.131370E-03 0.000000E+00
-0.15994E-14 -0.168047E-03 0.588232E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.109387E+02 Max error
Iteration number: 2
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.98858E+10 -0.83652E-07 0.617701E+02 0.164182E-03 0.000000E+00
-0.57877E-13 -0.208707E-03 0.617701E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.294692E+01 Max error
Iteration number: 3
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.98858E+10 -0.12786E-06 0.626070E+02 0.178365E-03 0.000000E+00
-0.12830E-12 -0.227315E-03 0.626070E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.836946E+00 Max error
Iteration number: 4
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.98858E+10 -0.17322E-06 0.628519E+02 0.183948E-03 0.000000E+00
-0.20683E-12 -0.234369E-03 0.628519E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.244898E+00 Max error
Iteration number: 5
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.98858E+10 -0.21876E-06 0.629245E+02 0.186004E-03 0.000000E+00
-0.29262E-12 -0.236877E-03 0.629245E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.726140E-01 Max error
Iteration number: 6
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.98858E+10 -0.26450E-06 0.629462E+02 0.186738E-03 0.000000E+00
-0.38640E-12 -0.237743E-03 0.629462E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.217047E-01 Max error
Iteration number: 7
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.98858E+10 -0.31029E-06 0.629527E+02 0.186993E-03 0.000000E+00
-0.48232E-12 -0.238036E-03 0.629527E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.650742E-02 Max error
Iteration number: 8
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.98858E+10 -0.35610E-06 0.629547E+02 0.187080E-03 0.000000E+00
-0.57970E-12 -0.238134E-03 0.629547E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.195551E-02 Max error
Iteration number: 9
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.98858E+10 -0.40190E-06 0.629553E+02 0.187109E-03 0.000000E+00
-0.67756E-12 -0.238167E-03 0.629553E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.587946E-03 Max error
Iteration number: 10
=============================================================================================
Temp Fermi Hole density Population SR Drift Hole mobility
[K] [eV] [cm^-2] [h per cell] [cm^2/Vs]
=============================================================================================
300.000 -5.7493 0.98858E+10 -0.44768E-06 0.629555E+02 0.187119E-03 0.000000E+00
-0.77580E-12 -0.238177E-03 0.629555E+02 0.000000E+00
0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.176909E-03 Max error
Iteration number: 11
=============================================================================================
The iteration reached the maximum but did not converge.
=============================================================================================
=============================================================================================
Summary and Hall factor
=============================================================================================
=============================================================================================
BTE in the self-energy relaxation time approximation (SERTA)
=============================================================================================
Temperature: 300.0000 K
Conductivity tensor without magnetic field | with magnetic field [Siemens]
0.75843E-07 -0.98797E-23 0.00000E+00 | 0.75843E-07 0.17288E-12 0.00000E+00
-0.10090E-22 0.75843E-07 0.00000E+00 | -0.21883E-12 0.75843E-07 0.00000E+00
0.00000E+00 0.00000E+00 0.00000E+00 | 0.00000E+00 0.00000E+00 0.00000E+00
Mobility tensor without magnetic field | Hall mobility [cm^2/Vs]
0.47884E+02 -0.62376E-14 0.00000E+00 | 0.47283E-07 0.60528E+02 0.00000E+00
-0.63704E-14 0.47884E+02 0.00000E+00 | -0.76616E+02 0.39402E-07 0.00000E+00
0.00000E+00 0.00000E+00 0.10000E+01 | 0.00000E+00 0.00000E+00 0.00000E+00
Hall factor
0.987436E-09 0.126404E+01 0.000000E+00
-0.160002E+01 0.822863E-09 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00
=============================================================================================
BTE
=============================================================================================
Temperature: 300.0000 K
Conductivity tensor without magnetic field | with magnetic field [Siemens]
0.99714E-07 -0.12612E-22 0.00000E+00 | 0.99714E-07 0.29637E-12 0.00000E+00
-0.10931E-22 0.99714E-07 0.00000E+00 | -0.37724E-12 0.99714E-07 0.00000E+00
0.00000E+00 0.00000E+00 0.00000E+00 | 0.00000E+00 0.00000E+00 0.00000E+00
Mobility tensor without magnetic field | Hall mobility [cm^2/Vs]
0.62955E+02 -0.79629E-14 0.00000E+00 | -0.26856E-03 0.78924E+02 0.00000E+00
-0.69012E-14 0.62955E+02 0.00000E+00 | -0.10046E+03 -0.29438E-03 0.00000E+00
0.00000E+00 0.00000E+00 0.10000E+01 | 0.00000E+00 0.00000E+00 0.00000E+00
Hall factor
-0.426590E-05 0.125365E+01 0.000000E+00
-0.159573E+01 -0.467601E-05 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00
Unfolding on the coarse grid
elphon_wrap : 8.60s CPU 8.83s WALL ( 1 calls)
INITIALIZATION:
set_drhoc : 0.03s CPU 0.03s WALL ( 5 calls)
init_vloc : 0.05s CPU 0.05s WALL ( 1 calls)
init_us_1 : 0.02s CPU 0.02s WALL ( 1 calls)
Electron-Phonon interpolation
ephwann : 1.11s CPU 1.26s WALL ( 1 calls)
ep-interp : 0.91s CPU 1.05s WALL ( 109 calls)
Ham: step 1 : 0.00s CPU 0.00s WALL ( 1 calls)
Ham: step 2 : 0.00s CPU 0.00s WALL ( 1 calls)
ep: step 1 : 0.00s CPU 0.00s WALL ( 4 calls)
ep: step 2 : 0.00s CPU 0.00s WALL ( 4 calls)
DynW2B : 0.02s CPU 0.02s WALL ( 109 calls)
HamW2B : 0.31s CPU 0.33s WALL ( 9282 calls)
ephW2Bp : 0.03s CPU 0.04s WALL ( 109 calls)
ephW2B : 0.41s CPU 0.42s WALL ( 129 calls)
print_ibte : 0.13s CPU 0.22s WALL ( 109 calls)
Total program execution
EPW : 13.38s CPU 13.85s WALL
% Copyright (C) 2016-2023 EPW-Collaboration
===============================================================================
Please consider citing the following papers.
% Paper describing the method on which EPW relies
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
% Papers describing the EPW software
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
% Since you used the [lpolar] input, please consider also citing
C. Verdi and F. Giustino, Phys. Rev. Lett. 115, 176401 (2015)
% Since you used the [scattering/iterative_bte] input, please consider also citing
S. Ponc\'e, E. R. Margine and F. Giustino, Phys. Rev. B 97, 121201 (2018)
F. Macheda and N. Bonini, Phys. Rev. B 98, 201201 (2018)
% Since you used the [bfield] input, please consider also citing
F. Macheda and N. Bonini, Phys. Rev. B 98, 201201 (2018)
S. Ponc\'e et al, Phys. Rev. Res. 4, 143022 (2021)
% Since you used the [system_2d=dipole_sp or quadrupole] input, please consider also citing
S. Ponc\'e et al, Phys. Rev. B 107, 155424 (2023)
S. Ponc\'e et al, Phys. Rev. Lett. 130, 166301 (2023)
For your convenience, this information is also reported in the
functionality-dependent EPW.bib file.
===============================================================================