mirror of https://gitlab.com/QEF/q-e.git
349 lines
14 KiB
Plaintext
349 lines
14 KiB
Plaintext
|
|
Program LD1 v.4.2CVS starts on 8Feb2010 at 15:38:41
|
|
|
|
This program is part of the open-source Quantum ESPRESSO suite
|
|
for quantum simulation of materials; please acknowledge
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
|
|
URL http://www.quantum-espresso.org",
|
|
in publications or presentations arising from this work. More details at
|
|
http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO
|
|
|
|
Parallel version (MPI), running on 1 processors
|
|
--------------------------- All-electron run ----------------------------
|
|
|
|
F
|
|
|
|
atomic number is 9.00
|
|
dft =PBE lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14
|
|
mesh =1105 r(mesh) = 99.76081 xmin = -7.00 dx = 0.01250
|
|
1 Ry = 13.60569193 eV
|
|
|
|
n l nl e(Ry) e(Ha) e(eV)
|
|
1 0 1S 1( 2.00) -48.7034 -24.3517 -662.6435
|
|
2 0 2S 1( 2.00) -2.1917 -1.0959 -29.8198
|
|
2 1 2P 1( 5.00) -0.8174 -0.4087 -11.1215
|
|
|
|
eps = 2.9E-15 iter = 35
|
|
|
|
Etot = -199.302123 Ry, -99.651061 Ha, -2711.643281 eV
|
|
|
|
Ekin = 198.789676 Ry, 99.394838 Ha, 2704.671090 eV
|
|
Encl = -476.948650 Ry, -238.474325 Ha, -6489.216399 eV
|
|
Eh = 99.262081 Ry, 49.631041 Ha, 1350.529297 eV
|
|
Exc = -20.405230 Ry, -10.202615 Ha, -277.627269 eV
|
|
|
|
|
|
normalization and overlap integrals
|
|
|
|
s(1S/1S) = 1.000000 <r> = 0.1765 <r2> = 0.0421 r(max) = 0.1139
|
|
s(1S/2S) = -0.000000
|
|
s(2S/2S) = 1.000000 <r> = 1.0049 <r2> = 1.2317 r(max) = 0.7617
|
|
s(2P/2P) = 1.000000 <r> = 1.1050 <r2> = 1.6382 r(max) = 0.7066
|
|
|
|
------------------------ End of All-electron run ------------------------
|
|
|
|
|
|
--------------------- Generating PAW atomic setup --------------------
|
|
|
|
|
|
Generating local pot.: lloc=2, matching radius rcloc = 1.3000
|
|
|
|
Computing core charge for nlcc:
|
|
|
|
r > 0.80 : true rho core
|
|
Core charge pseudized with two Bessel functions
|
|
Integrated core pseudo-charge : 0.04
|
|
|
|
|
|
Wfc 2S rcut= 1.003 Using Troullier-Martins method
|
|
Wfc-us 2S rcutus= 1.459 Estimated cut-off energy= 23.75 Ry
|
|
|
|
|
|
Wfc 2S rcut= 1.003 Using Troullier-Martins method
|
|
Wfc-us 2S rcutus= 1.459 Estimated cut-off energy= 43.61 Ry
|
|
|
|
|
|
Wfc 2P rcut= 1.003 Using Troullier-Martins method
|
|
Wfc-us 2P rcutus= 1.612 Estimated cut-off energy= 30.79 Ry
|
|
|
|
|
|
Wfc 2P rcut= 1.003 Using Troullier-Martins method
|
|
Wfc-us 2P rcutus= 1.612 Estimated cut-off energy= 44.83 Ry
|
|
|
|
The bmat matrix
|
|
1.95983 1.94888 0.00000 0.00000
|
|
1.70002 1.59065 0.00000 0.00000
|
|
0.00000 0.00000 -0.54728 -0.48063
|
|
0.00000 0.00000 -0.27375 -0.27948
|
|
|
|
The bmat + epsilon qq matrix
|
|
2.10970 1.94333 0.00000 0.00000
|
|
1.94336 1.58415 0.00000 0.00000
|
|
0.00000 0.00000 -0.82416 -0.45808
|
|
0.00000 0.00000 -0.45807 -0.26439
|
|
|
|
The qq matrix
|
|
-0.06838 -0.11103 0.00000 0.00000
|
|
-0.11103 -0.13014 0.00000 0.00000
|
|
0.00000 0.00000 0.33872 0.22550
|
|
0.00000 0.00000 0.22550 0.15091
|
|
|
|
|
|
multipoles (all-electron charge) - (pseudo charge)
|
|
ns l1:ns1 l2 l=0 l=1 l=2 l=3 l=4 l=5
|
|
1 0: 1 0 -0.0684
|
|
2 0: 1 0 -0.1110
|
|
2 0: 2 0 -0.1301
|
|
3 1: 1 0 0.0000 -0.1186
|
|
3 1: 2 0 0.0000 -0.0602
|
|
3 1: 3 1 0.3387 0.0000 0.1390
|
|
4 1: 1 0 0.0000 -0.0684
|
|
4 1: 2 0 0.0000 -0.0332
|
|
4 1: 3 1 0.2255 0.0000 0.0859
|
|
4 1: 4 1 0.1509 0.0000 0.0536
|
|
Required augmentation: BESSEL
|
|
Suggested rho cutoff for augmentation: 54.19 Ry
|
|
|
|
Estimated PAW energy = -59.031316 Ryd
|
|
|
|
The PAW screened D coefficients
|
|
2.10970 1.94333 0.00000 0.00000
|
|
1.94333 1.58415 0.00000 0.00000
|
|
0.00000 0.00000 -0.82414 -0.45808
|
|
0.00000 0.00000 -0.45808 -0.26439
|
|
|
|
The PAW descreened D coefficients (US)
|
|
1.73974 0.97566 0.00000 0.00000
|
|
0.97566 0.33310 0.00000 0.00000
|
|
0.00000 0.00000 3.39088 2.32633
|
|
0.00000 0.00000 2.32633 1.58668
|
|
|
|
------------------- End of pseudopotential generation -------------------
|
|
|
|
--------------------------- All-electron run ----------------------------
|
|
|
|
F
|
|
|
|
atomic number is 9.00
|
|
dft = SLA PW PBX PBC lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14
|
|
mesh =1105 r(mesh) = 99.76081 xmin = -7.00 dx = 0.01250
|
|
1 Ry = 13.60569193 eV
|
|
|
|
n l nl e(Ry) e(Ha) e(eV)
|
|
1 0 1S 1( 2.00) -48.7034 -24.3517 -662.6435
|
|
2 0 2S 1( 2.00) -2.1917 -1.0959 -29.8198
|
|
2 1 2P 1( 5.00) -0.8174 -0.4087 -11.1215
|
|
|
|
eps = 2.9E-15 iter = 35
|
|
|
|
Etot = -199.302123 Ry, -99.651061 Ha, -2711.643281 eV
|
|
|
|
Ekin = 198.789676 Ry, 99.394838 Ha, 2704.671090 eV
|
|
Encl = -476.948650 Ry, -238.474325 Ha, -6489.216399 eV
|
|
Eh = 99.262081 Ry, 49.631041 Ha, 1350.529297 eV
|
|
Exc = -20.405230 Ry, -10.202615 Ha, -277.627269 eV
|
|
|
|
|
|
normalization and overlap integrals
|
|
|
|
s(1S/1S) = 1.000000 <r> = 0.1765 <r2> = 0.0421 r(max) = 0.1139
|
|
s(1S/2S) = -0.000000
|
|
s(2S/2S) = 1.000000 <r> = 1.0049 <r2> = 1.2317 r(max) = 0.7617
|
|
s(2P/2P) = 1.000000 <r> = 1.1050 <r2> = 1.6382 r(max) = 0.7066
|
|
|
|
------------------------ End of All-electron run ------------------------
|
|
|
|
Computing logarithmic derivative in 1.64303
|
|
Computing logarithmic derivative in 1.64303
|
|
Computing the partial wave expansion
|
|
no projector for channel: 2
|
|
|
|
---------------------- Testing the pseudopotential ----------------------
|
|
|
|
F
|
|
|
|
atomic number is 9.00 valence charge is 7.00
|
|
dft = SLA PW PBX PBC lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14
|
|
mesh =1105 r(mesh) = 99.76081 xmin = -7.00 dx = 0.01250
|
|
|
|
n l nl e AE (Ry) e PS (Ry) De AE-PS (Ry)
|
|
1 0 2S 1( 2.00) -2.19171 -2.19171 0.00000
|
|
2 1 2P 1( 5.00) -0.81742 -0.81741 -0.00000
|
|
|
|
eps = 5.7E-15 iter = 3
|
|
|
|
Etot = -199.302123 Ry, -99.651061 Ha, -2711.643281 eV
|
|
Etotps = -59.031303 Ry, -29.515651 Ha, -803.161722 eV
|
|
|
|
Ekin = 50.319797 Ry, 25.159898 Ha, 684.635650 eV
|
|
Encl = -131.379816 Ry, -65.689908 Ha, -1787.513297 eV
|
|
Ehrt = 42.433944 Ry, 21.216972 Ha, 577.343171 eV
|
|
Ecxc = -20.405228 Ry, -10.202614 Ha, -277.627246 eV
|
|
(Ecc = -0.031434 Ry, -0.015717 Ha, -0.427688 eV)
|
|
|
|
---------------------- End of pseudopotential test ----------------------
|
|
|
|
|
|
-------------- Test with a basis set of Bessel functions ----------
|
|
|
|
Box size (a.u.) : 30.0
|
|
|
|
Cutoff (Ry) : 10.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1087 Ry -0.0085 Ry 0.0249 Ry
|
|
E(L=1) = -0.5344 Ry 0.0213 Ry 0.0601 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 12.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1481 Ry -0.0095 Ry 0.0246 Ry
|
|
E(L=1) = -0.6440 Ry 0.0211 Ry 0.0593 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 14.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1644 Ry -0.0100 Ry 0.0244 Ry
|
|
E(L=1) = -0.7201 Ry 0.0210 Ry 0.0587 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 16.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1791 Ry -0.0106 Ry 0.0242 Ry
|
|
E(L=1) = -0.7546 Ry 0.0210 Ry 0.0585 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 18.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1846 Ry -0.0108 Ry 0.0241 Ry
|
|
E(L=1) = -0.7873 Ry 0.0210 Ry 0.0582 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 20.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1879 Ry -0.0110 Ry 0.0241 Ry
|
|
E(L=1) = -0.7998 Ry 0.0209 Ry 0.0581 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 22.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1897 Ry -0.0112 Ry 0.0240 Ry
|
|
E(L=1) = -0.8074 Ry 0.0209 Ry 0.0580 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 24.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1906 Ry -0.0113 Ry 0.0240 Ry
|
|
E(L=1) = -0.8118 Ry 0.0209 Ry 0.0580 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 26.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1911 Ry -0.0114 Ry 0.0240 Ry
|
|
E(L=1) = -0.8143 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 28.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1913 Ry -0.0114 Ry 0.0239 Ry
|
|
E(L=1) = -0.8153 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 30.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8156 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 32.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8158 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 34.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8158 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 36.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8159 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 38.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8159 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 40.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8159 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 42.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8159 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 44.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8160 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 46.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8160 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 48.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 50.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 52.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 54.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 56.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 58.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8162 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
Cutoff (Ry) : 60.0
|
|
N = 1 N = 2 N = 3
|
|
E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry
|
|
E(L=1) = -0.8162 Ry 0.0209 Ry 0.0579 Ry
|
|
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
|
|
|
|
-------------- End of Bessel function test ------------------------
|
|
|