mirror of https://gitlab.com/QEF/q-e.git
451 lines
27 KiB
Plaintext
451 lines
27 KiB
Plaintext
|
|
Program PWCOND v.6.0 (svn rev. 13317) starts on 18Feb2017 at 20:36:52
|
|
|
|
This program is part of the open-source Quantum ESPRESSO suite
|
|
for quantum simulation of materials; please cite
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
|
|
URL http://www.quantum-espresso.org",
|
|
in publications or presentations arising from this work. More details at
|
|
http://www.quantum-espresso.org/quote
|
|
|
|
Parallel version (MPI), running on 1 processors
|
|
|
|
Reading data from directory:
|
|
/scratch/scitas/nvarini/espresso_trunk_svn/tempdir/pt4.save
|
|
|
|
Info: using nr1, nr2, nr3 values from input
|
|
|
|
Info: using nr1, nr2, nr3 values from input
|
|
|
|
IMPORTANT: XC functional enforced from input :
|
|
Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0 0)
|
|
Any further DFT definition will be discarded
|
|
Please, verify this is what you really want
|
|
|
|
|
|
G-vector sticks info
|
|
--------------------
|
|
sticks: dense smooth PW G-vecs: dense smooth PW
|
|
Sum 325 221 69 12501 6843 1149
|
|
|
|
|
|
Check: negative/imaginary core charge= -0.000009 0.000000
|
|
|
|
===== INPUT FILE containing all the regions =====
|
|
|
|
GEOMETRY:
|
|
|
|
lattice parameter (alat) = 5.2300 a.u.
|
|
the volume = 404.6186 (a.u.)^3
|
|
the cross section = 27.3529 (a.u.)^2
|
|
l of the unit cell = 2.8284 (alat)
|
|
number of atoms/cell = 4
|
|
number of atomic types = 1
|
|
|
|
crystal axes: (cart. coord. in units of alat)
|
|
a(1) = ( 1.0000 0.0000 0.0000 )
|
|
a(2) = ( 0.0000 1.0000 0.0000 )
|
|
a(3) = ( 0.0000 0.0000 2.8284 )
|
|
|
|
|
|
Cartesian axes
|
|
|
|
site n. atom positions (alat units)
|
|
1 Pt tau( 1)=( 0.0000 0.0000 2.8284 )
|
|
2 Pt tau( 2)=( 0.5000 0.5000 0.7071 )
|
|
3 Pt tau( 3)=( 0.0000 0.0000 1.4142 )
|
|
4 Pt tau( 4)=( 0.5000 0.5000 2.1213 )
|
|
|
|
nr1s = 18
|
|
nr2s = 18
|
|
nr3s = 48
|
|
nr1sx = 18
|
|
nr2sx = 18
|
|
nr3sx = 48
|
|
nr1 = 24
|
|
nr2 = 24
|
|
nr3 = 60
|
|
nr1x = 24
|
|
nr2x = 24
|
|
nr3x = 60
|
|
|
|
_______________________________
|
|
Radii of nonlocal spheres:
|
|
|
|
type ibeta ang. mom. radius (alat units)
|
|
Pt 1 2 0.6547
|
|
Pt 2 2 0.6547
|
|
Pt 3 2 0.6547
|
|
Pt 4 2 0.6547
|
|
Pt 5 1 0.6547
|
|
Pt 6 1 0.6547
|
|
----- General information -----
|
|
|
|
--- T calc. with identical leads (ikind=1) ---
|
|
Non magnetic calculation with spin-orbit
|
|
|
|
|
|
nrx = 18
|
|
nry = 18
|
|
nz1 = 11
|
|
|
|
|
|
energy0 = 0.0E+00
|
|
denergy = -2.0E-01
|
|
nenergy = 1
|
|
ecut2d = 2.5E+01
|
|
ewind = 4.0E+00
|
|
epsproj = 1.0E-07
|
|
|
|
|
|
number of k_|| points= 1
|
|
cryst. coord.
|
|
k( 1) = ( 0.0000000 0.0000000), wk = 1.0000000
|
|
----- Information about left/right lead -----
|
|
|
|
nocros = 26
|
|
noins = 26
|
|
norb = 78
|
|
norbf = 78
|
|
nrz = 24
|
|
|
|
iorb type ibeta ang. mom. m position (alat)
|
|
1 1 1 2 1 taunew( 1)=( 0.0000 0.0000 0.0000)
|
|
2 1 1 2 2 taunew( 2)=( 0.0000 0.0000 0.0000)
|
|
3 1 1 2 3 taunew( 3)=( 0.0000 0.0000 0.0000)
|
|
4 1 1 2 4 taunew( 4)=( 0.0000 0.0000 0.0000)
|
|
5 1 1 2 5 taunew( 5)=( 0.0000 0.0000 0.0000)
|
|
6 1 2 2 1 taunew( 6)=( 0.0000 0.0000 0.0000)
|
|
7 1 2 2 2 taunew( 7)=( 0.0000 0.0000 0.0000)
|
|
8 1 2 2 3 taunew( 8)=( 0.0000 0.0000 0.0000)
|
|
9 1 2 2 4 taunew( 9)=( 0.0000 0.0000 0.0000)
|
|
10 1 2 2 5 taunew( 10)=( 0.0000 0.0000 0.0000)
|
|
11 1 3 2 1 taunew( 11)=( 0.0000 0.0000 0.0000)
|
|
12 1 3 2 2 taunew( 12)=( 0.0000 0.0000 0.0000)
|
|
13 1 3 2 3 taunew( 13)=( 0.0000 0.0000 0.0000)
|
|
14 1 3 2 4 taunew( 14)=( 0.0000 0.0000 0.0000)
|
|
15 1 3 2 5 taunew( 15)=( 0.0000 0.0000 0.0000)
|
|
16 1 4 2 1 taunew( 16)=( 0.0000 0.0000 0.0000)
|
|
17 1 4 2 2 taunew( 17)=( 0.0000 0.0000 0.0000)
|
|
18 1 4 2 3 taunew( 18)=( 0.0000 0.0000 0.0000)
|
|
19 1 4 2 4 taunew( 19)=( 0.0000 0.0000 0.0000)
|
|
20 1 4 2 5 taunew( 20)=( 0.0000 0.0000 0.0000)
|
|
21 1 5 1 1 taunew( 21)=( 0.0000 0.0000 0.0000)
|
|
22 1 5 1 2 taunew( 22)=( 0.0000 0.0000 0.0000)
|
|
23 1 5 1 3 taunew( 23)=( 0.0000 0.0000 0.0000)
|
|
24 1 6 1 1 taunew( 24)=( 0.0000 0.0000 0.0000)
|
|
25 1 6 1 2 taunew( 25)=( 0.0000 0.0000 0.0000)
|
|
26 1 6 1 3 taunew( 26)=( 0.0000 0.0000 0.0000)
|
|
27 1 1 2 1 taunew( 27)=( 0.5000 0.5000 0.7071)
|
|
28 1 1 2 2 taunew( 28)=( 0.5000 0.5000 0.7071)
|
|
29 1 1 2 3 taunew( 29)=( 0.5000 0.5000 0.7071)
|
|
30 1 1 2 4 taunew( 30)=( 0.5000 0.5000 0.7071)
|
|
31 1 1 2 5 taunew( 31)=( 0.5000 0.5000 0.7071)
|
|
32 1 2 2 1 taunew( 32)=( 0.5000 0.5000 0.7071)
|
|
33 1 2 2 2 taunew( 33)=( 0.5000 0.5000 0.7071)
|
|
34 1 2 2 3 taunew( 34)=( 0.5000 0.5000 0.7071)
|
|
35 1 2 2 4 taunew( 35)=( 0.5000 0.5000 0.7071)
|
|
36 1 2 2 5 taunew( 36)=( 0.5000 0.5000 0.7071)
|
|
37 1 3 2 1 taunew( 37)=( 0.5000 0.5000 0.7071)
|
|
38 1 3 2 2 taunew( 38)=( 0.5000 0.5000 0.7071)
|
|
39 1 3 2 3 taunew( 39)=( 0.5000 0.5000 0.7071)
|
|
40 1 3 2 4 taunew( 40)=( 0.5000 0.5000 0.7071)
|
|
41 1 3 2 5 taunew( 41)=( 0.5000 0.5000 0.7071)
|
|
42 1 4 2 1 taunew( 42)=( 0.5000 0.5000 0.7071)
|
|
43 1 4 2 2 taunew( 43)=( 0.5000 0.5000 0.7071)
|
|
44 1 4 2 3 taunew( 44)=( 0.5000 0.5000 0.7071)
|
|
45 1 4 2 4 taunew( 45)=( 0.5000 0.5000 0.7071)
|
|
46 1 4 2 5 taunew( 46)=( 0.5000 0.5000 0.7071)
|
|
47 1 5 1 1 taunew( 47)=( 0.5000 0.5000 0.7071)
|
|
48 1 5 1 2 taunew( 48)=( 0.5000 0.5000 0.7071)
|
|
49 1 5 1 3 taunew( 49)=( 0.5000 0.5000 0.7071)
|
|
50 1 6 1 1 taunew( 50)=( 0.5000 0.5000 0.7071)
|
|
51 1 6 1 2 taunew( 51)=( 0.5000 0.5000 0.7071)
|
|
52 1 6 1 3 taunew( 52)=( 0.5000 0.5000 0.7071)
|
|
53 1 1 2 1 taunew( 53)=( 0.0000 0.0000 1.4142)
|
|
54 1 1 2 2 taunew( 54)=( 0.0000 0.0000 1.4142)
|
|
55 1 1 2 3 taunew( 55)=( 0.0000 0.0000 1.4142)
|
|
56 1 1 2 4 taunew( 56)=( 0.0000 0.0000 1.4142)
|
|
57 1 1 2 5 taunew( 57)=( 0.0000 0.0000 1.4142)
|
|
58 1 2 2 1 taunew( 58)=( 0.0000 0.0000 1.4142)
|
|
59 1 2 2 2 taunew( 59)=( 0.0000 0.0000 1.4142)
|
|
60 1 2 2 3 taunew( 60)=( 0.0000 0.0000 1.4142)
|
|
61 1 2 2 4 taunew( 61)=( 0.0000 0.0000 1.4142)
|
|
62 1 2 2 5 taunew( 62)=( 0.0000 0.0000 1.4142)
|
|
63 1 3 2 1 taunew( 63)=( 0.0000 0.0000 1.4142)
|
|
64 1 3 2 2 taunew( 64)=( 0.0000 0.0000 1.4142)
|
|
65 1 3 2 3 taunew( 65)=( 0.0000 0.0000 1.4142)
|
|
66 1 3 2 4 taunew( 66)=( 0.0000 0.0000 1.4142)
|
|
67 1 3 2 5 taunew( 67)=( 0.0000 0.0000 1.4142)
|
|
68 1 4 2 1 taunew( 68)=( 0.0000 0.0000 1.4142)
|
|
69 1 4 2 2 taunew( 69)=( 0.0000 0.0000 1.4142)
|
|
70 1 4 2 3 taunew( 70)=( 0.0000 0.0000 1.4142)
|
|
71 1 4 2 4 taunew( 71)=( 0.0000 0.0000 1.4142)
|
|
72 1 4 2 5 taunew( 72)=( 0.0000 0.0000 1.4142)
|
|
73 1 5 1 1 taunew( 73)=( 0.0000 0.0000 1.4142)
|
|
74 1 5 1 2 taunew( 74)=( 0.0000 0.0000 1.4142)
|
|
75 1 5 1 3 taunew( 75)=( 0.0000 0.0000 1.4142)
|
|
76 1 6 1 1 taunew( 76)=( 0.0000 0.0000 1.4142)
|
|
77 1 6 1 2 taunew( 77)=( 0.0000 0.0000 1.4142)
|
|
78 1 6 1 3 taunew( 78)=( 0.0000 0.0000 1.4142)
|
|
k slab z(k) z(k+1) crossing(iorb=1,norb)
|
|
1 0.0000 0.0589 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
2 0.0589 0.1178 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
3 0.1178 0.1768 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
4 0.1768 0.2357 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
5 0.2357 0.2946 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
6 0.2946 0.3535 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
7 0.3535 0.4125 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
8 0.4125 0.4714 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
9 0.4714 0.5303 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
10 0.5303 0.5892 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
11 0.5892 0.6482 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
12 0.6482 0.7071 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
13 0.7071 0.7660 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
14 0.7660 0.8249 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
15 0.8249 0.8839 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
16 0.8839 0.9428 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
17 0.9428 1.0017 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
18 1.0017 1.0606 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
19 1.0606 1.1196 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
20 1.1196 1.1785 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
21 1.1785 1.2374 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
22 1.2374 1.2963 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
23 1.2963 1.3553 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
24 1.3553 1.4142 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
----- Information about scattering region -----
|
|
|
|
noins = 26
|
|
norb = 78
|
|
norbf = 78
|
|
nrz = 24
|
|
|
|
iorb type ibeta ang. mom. m position (alat)
|
|
1 1 1 2 1 taunew( 1)=( 0.0000 0.0000 0.0000)
|
|
2 1 1 2 2 taunew( 2)=( 0.0000 0.0000 0.0000)
|
|
3 1 1 2 3 taunew( 3)=( 0.0000 0.0000 0.0000)
|
|
4 1 1 2 4 taunew( 4)=( 0.0000 0.0000 0.0000)
|
|
5 1 1 2 5 taunew( 5)=( 0.0000 0.0000 0.0000)
|
|
6 1 2 2 1 taunew( 6)=( 0.0000 0.0000 0.0000)
|
|
7 1 2 2 2 taunew( 7)=( 0.0000 0.0000 0.0000)
|
|
8 1 2 2 3 taunew( 8)=( 0.0000 0.0000 0.0000)
|
|
9 1 2 2 4 taunew( 9)=( 0.0000 0.0000 0.0000)
|
|
10 1 2 2 5 taunew( 10)=( 0.0000 0.0000 0.0000)
|
|
11 1 3 2 1 taunew( 11)=( 0.0000 0.0000 0.0000)
|
|
12 1 3 2 2 taunew( 12)=( 0.0000 0.0000 0.0000)
|
|
13 1 3 2 3 taunew( 13)=( 0.0000 0.0000 0.0000)
|
|
14 1 3 2 4 taunew( 14)=( 0.0000 0.0000 0.0000)
|
|
15 1 3 2 5 taunew( 15)=( 0.0000 0.0000 0.0000)
|
|
16 1 4 2 1 taunew( 16)=( 0.0000 0.0000 0.0000)
|
|
17 1 4 2 2 taunew( 17)=( 0.0000 0.0000 0.0000)
|
|
18 1 4 2 3 taunew( 18)=( 0.0000 0.0000 0.0000)
|
|
19 1 4 2 4 taunew( 19)=( 0.0000 0.0000 0.0000)
|
|
20 1 4 2 5 taunew( 20)=( 0.0000 0.0000 0.0000)
|
|
21 1 5 1 1 taunew( 21)=( 0.0000 0.0000 0.0000)
|
|
22 1 5 1 2 taunew( 22)=( 0.0000 0.0000 0.0000)
|
|
23 1 5 1 3 taunew( 23)=( 0.0000 0.0000 0.0000)
|
|
24 1 6 1 1 taunew( 24)=( 0.0000 0.0000 0.0000)
|
|
25 1 6 1 2 taunew( 25)=( 0.0000 0.0000 0.0000)
|
|
26 1 6 1 3 taunew( 26)=( 0.0000 0.0000 0.0000)
|
|
27 1 1 2 1 taunew( 27)=( 0.5000 0.5000 0.7071)
|
|
28 1 1 2 2 taunew( 28)=( 0.5000 0.5000 0.7071)
|
|
29 1 1 2 3 taunew( 29)=( 0.5000 0.5000 0.7071)
|
|
30 1 1 2 4 taunew( 30)=( 0.5000 0.5000 0.7071)
|
|
31 1 1 2 5 taunew( 31)=( 0.5000 0.5000 0.7071)
|
|
32 1 2 2 1 taunew( 32)=( 0.5000 0.5000 0.7071)
|
|
33 1 2 2 2 taunew( 33)=( 0.5000 0.5000 0.7071)
|
|
34 1 2 2 3 taunew( 34)=( 0.5000 0.5000 0.7071)
|
|
35 1 2 2 4 taunew( 35)=( 0.5000 0.5000 0.7071)
|
|
36 1 2 2 5 taunew( 36)=( 0.5000 0.5000 0.7071)
|
|
37 1 3 2 1 taunew( 37)=( 0.5000 0.5000 0.7071)
|
|
38 1 3 2 2 taunew( 38)=( 0.5000 0.5000 0.7071)
|
|
39 1 3 2 3 taunew( 39)=( 0.5000 0.5000 0.7071)
|
|
40 1 3 2 4 taunew( 40)=( 0.5000 0.5000 0.7071)
|
|
41 1 3 2 5 taunew( 41)=( 0.5000 0.5000 0.7071)
|
|
42 1 4 2 1 taunew( 42)=( 0.5000 0.5000 0.7071)
|
|
43 1 4 2 2 taunew( 43)=( 0.5000 0.5000 0.7071)
|
|
44 1 4 2 3 taunew( 44)=( 0.5000 0.5000 0.7071)
|
|
45 1 4 2 4 taunew( 45)=( 0.5000 0.5000 0.7071)
|
|
46 1 4 2 5 taunew( 46)=( 0.5000 0.5000 0.7071)
|
|
47 1 5 1 1 taunew( 47)=( 0.5000 0.5000 0.7071)
|
|
48 1 5 1 2 taunew( 48)=( 0.5000 0.5000 0.7071)
|
|
49 1 5 1 3 taunew( 49)=( 0.5000 0.5000 0.7071)
|
|
50 1 6 1 1 taunew( 50)=( 0.5000 0.5000 0.7071)
|
|
51 1 6 1 2 taunew( 51)=( 0.5000 0.5000 0.7071)
|
|
52 1 6 1 3 taunew( 52)=( 0.5000 0.5000 0.7071)
|
|
53 1 1 2 1 taunew( 53)=( 0.0000 0.0000 1.4142)
|
|
54 1 1 2 2 taunew( 54)=( 0.0000 0.0000 1.4142)
|
|
55 1 1 2 3 taunew( 55)=( 0.0000 0.0000 1.4142)
|
|
56 1 1 2 4 taunew( 56)=( 0.0000 0.0000 1.4142)
|
|
57 1 1 2 5 taunew( 57)=( 0.0000 0.0000 1.4142)
|
|
58 1 2 2 1 taunew( 58)=( 0.0000 0.0000 1.4142)
|
|
59 1 2 2 2 taunew( 59)=( 0.0000 0.0000 1.4142)
|
|
60 1 2 2 3 taunew( 60)=( 0.0000 0.0000 1.4142)
|
|
61 1 2 2 4 taunew( 61)=( 0.0000 0.0000 1.4142)
|
|
62 1 2 2 5 taunew( 62)=( 0.0000 0.0000 1.4142)
|
|
63 1 3 2 1 taunew( 63)=( 0.0000 0.0000 1.4142)
|
|
64 1 3 2 2 taunew( 64)=( 0.0000 0.0000 1.4142)
|
|
65 1 3 2 3 taunew( 65)=( 0.0000 0.0000 1.4142)
|
|
66 1 3 2 4 taunew( 66)=( 0.0000 0.0000 1.4142)
|
|
67 1 3 2 5 taunew( 67)=( 0.0000 0.0000 1.4142)
|
|
68 1 4 2 1 taunew( 68)=( 0.0000 0.0000 1.4142)
|
|
69 1 4 2 2 taunew( 69)=( 0.0000 0.0000 1.4142)
|
|
70 1 4 2 3 taunew( 70)=( 0.0000 0.0000 1.4142)
|
|
71 1 4 2 4 taunew( 71)=( 0.0000 0.0000 1.4142)
|
|
72 1 4 2 5 taunew( 72)=( 0.0000 0.0000 1.4142)
|
|
73 1 5 1 1 taunew( 73)=( 0.0000 0.0000 1.4142)
|
|
74 1 5 1 2 taunew( 74)=( 0.0000 0.0000 1.4142)
|
|
75 1 5 1 3 taunew( 75)=( 0.0000 0.0000 1.4142)
|
|
76 1 6 1 1 taunew( 76)=( 0.0000 0.0000 1.4142)
|
|
77 1 6 1 2 taunew( 77)=( 0.0000 0.0000 1.4142)
|
|
78 1 6 1 3 taunew( 78)=( 0.0000 0.0000 1.4142)
|
|
k slab z(k) z(k+1) crossing(iorb=1,norb)
|
|
1 0.0000 0.0589 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
2 0.0589 0.1179 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
3 0.1179 0.1768 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
4 0.1768 0.2357 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
5 0.2357 0.2946 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
6 0.2946 0.3536 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
7 0.3536 0.4125 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
8 0.4125 0.4714 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
9 0.4714 0.5303 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
10 0.5303 0.5893 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
11 0.5893 0.6482 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
12 0.6482 0.7071 0.0589 111111111111111111111111111111111111111111111111111100000000000000000000000000
|
|
13 0.7071 0.7660 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
14 0.7660 0.8250 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
15 0.8250 0.8839 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
16 0.8839 0.9428 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
17 0.9428 1.0017 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
18 1.0017 1.0607 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
19 1.0607 1.1196 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
20 1.1196 1.1785 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
21 1.1785 1.2374 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
22 1.2374 1.2963 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
23 1.2963 1.3553 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
24 1.3553 1.4142 0.0589 000000000000000000000000001111111111111111111111111111111111111111111111111111
|
|
ngper, shell number = 57 11
|
|
ngper, ngper*npol, n2d = 57 114 108
|
|
--- E-Ef = 0.0000000 k = 0.0000000 0.0000000
|
|
--- ie = 1 ik = 1
|
|
Nchannels of the left tip = 8
|
|
Right moving states:
|
|
k1(2pi/a) k2(2pi/a) E-Ef (eV)
|
|
-0.0861024 0.0000006 0.0000000
|
|
-0.0861024 0.0000006 0.0000000
|
|
-0.0960538 0.0000009 0.0000000
|
|
-0.0960538 0.0000009 0.0000000
|
|
-0.2110361 0.0000002 0.0000000
|
|
-0.2110361 0.0000002 0.0000000
|
|
-0.3729527 0.0000004 0.0000000
|
|
-0.3729527 0.0000004 0.0000000
|
|
Left moving states:
|
|
k1(2pi/a) k2(2pi/a) E-Ef (eV)
|
|
0.0861023 0.0000006 0.0000000
|
|
0.0861023 0.0000006 0.0000000
|
|
0.0960538 0.0000009 0.0000000
|
|
0.0960538 0.0000009 0.0000000
|
|
0.2110361 0.0000002 0.0000000
|
|
0.2110361 0.0000002 0.0000000
|
|
0.3729527 0.0000004 0.0000000
|
|
0.3729527 0.0000004 0.0000000
|
|
|
|
to transmit
|
|
Band j to band i transmissions and reflections:
|
|
j i |T_ij|^2 |R_ij|^2
|
|
|
|
1 --> 1 1.00000 0.00000
|
|
1 --> 2 0.00000 0.00000
|
|
1 --> 3 0.00000 0.00000
|
|
1 --> 4 0.00000 0.00000
|
|
1 --> 5 0.00000 0.00000
|
|
1 --> 6 0.00000 0.00000
|
|
1 --> 7 0.00000 0.00000
|
|
1 --> 8 0.00000 0.00000
|
|
Total T_j, R_j = 1.00000 0.00000
|
|
|
|
2 --> 1 0.00000 0.00000
|
|
2 --> 2 1.00000 0.00000
|
|
2 --> 3 0.00000 0.00000
|
|
2 --> 4 0.00000 0.00000
|
|
2 --> 5 0.00000 0.00000
|
|
2 --> 6 0.00000 0.00000
|
|
2 --> 7 0.00000 0.00000
|
|
2 --> 8 0.00000 0.00000
|
|
Total T_j, R_j = 1.00000 0.00000
|
|
|
|
3 --> 1 0.00000 0.00000
|
|
3 --> 2 0.00000 0.00000
|
|
3 --> 3 1.00000 0.00000
|
|
3 --> 4 0.00000 0.00000
|
|
3 --> 5 0.00000 0.00000
|
|
3 --> 6 0.00000 0.00000
|
|
3 --> 7 0.00000 0.00000
|
|
3 --> 8 0.00000 0.00000
|
|
Total T_j, R_j = 1.00000 0.00000
|
|
|
|
4 --> 1 0.00000 0.00000
|
|
4 --> 2 0.00000 0.00000
|
|
4 --> 3 0.00000 0.00000
|
|
4 --> 4 1.00000 0.00000
|
|
4 --> 5 0.00000 0.00000
|
|
4 --> 6 0.00000 0.00000
|
|
4 --> 7 0.00000 0.00000
|
|
4 --> 8 0.00000 0.00000
|
|
Total T_j, R_j = 1.00000 0.00000
|
|
|
|
5 --> 1 0.00000 0.00000
|
|
5 --> 2 0.00000 0.00000
|
|
5 --> 3 0.00000 0.00000
|
|
5 --> 4 0.00000 0.00000
|
|
5 --> 5 1.00000 0.00000
|
|
5 --> 6 0.00000 0.00000
|
|
5 --> 7 0.00000 0.00000
|
|
5 --> 8 0.00000 0.00000
|
|
Total T_j, R_j = 1.00000 0.00000
|
|
|
|
6 --> 1 0.00000 0.00000
|
|
6 --> 2 0.00000 0.00000
|
|
6 --> 3 0.00000 0.00000
|
|
6 --> 4 0.00000 0.00000
|
|
6 --> 5 0.00000 0.00000
|
|
6 --> 6 1.00000 0.00000
|
|
6 --> 7 0.00000 0.00000
|
|
6 --> 8 0.00000 0.00000
|
|
Total T_j, R_j = 1.00000 0.00000
|
|
|
|
7 --> 1 0.00000 0.00000
|
|
7 --> 2 0.00000 0.00000
|
|
7 --> 3 0.00000 0.00000
|
|
7 --> 4 0.00000 0.00000
|
|
7 --> 5 0.00000 0.00000
|
|
7 --> 6 0.00000 0.00000
|
|
7 --> 7 1.00000 0.00000
|
|
7 --> 8 0.00000 0.00000
|
|
Total T_j, R_j = 1.00000 0.00000
|
|
|
|
8 --> 1 0.00000 0.00000
|
|
8 --> 2 0.00000 0.00000
|
|
8 --> 3 0.00000 0.00000
|
|
8 --> 4 0.00000 0.00000
|
|
8 --> 5 0.00000 0.00000
|
|
8 --> 6 0.00000 0.00000
|
|
8 --> 7 0.00000 0.00000
|
|
8 --> 8 1.00000 0.00000
|
|
Total T_j, R_j = 1.00000 0.00000
|
|
|
|
E-Ef(ev), T = 0.0000000 7.9999966
|
|
T_tot 0.00000 0.80000E+01
|
|
|
|
PWCOND : 11.60s CPU 11.67s WALL
|
|
|
|
init : 0.61s CPU 0.66s WALL ( 1 calls)
|
|
poten : 0.00s CPU 0.01s WALL ( 1 calls)
|
|
local : 0.26s CPU 0.27s WALL ( 1 calls)
|
|
|
|
scatter_forw : 10.20s CPU 10.20s WALL ( 2 calls)
|
|
|
|
compbs : 0.47s CPU 0.48s WALL ( 1 calls)
|
|
compbs_2 : 0.34s CPU 0.34s WALL ( 1 calls)
|
|
|