quantum-espresso/PWCOND/examples/example01/reference/AlwireH.cond.out

876 lines
32 KiB
Plaintext

Program PWCOND v.6.0 (svn rev. 13317) starts on 18Feb2017 at 20:16:12
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 1 processors
Reading data from directory:
/scratch/scitas/nvarini/espresso_trunk_svn/tempdir/alw.save
Info: using nr1, nr2, nr3 values from input
Info: using nr1, nr2, nr3 values from input
IMPORTANT: XC functional enforced from input :
Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 1725 1137 373 20077 10919 2021
===== INPUT FILE containing the left lead =====
GEOMETRY:
lattice parameter (alat) = 12.0000 a.u.
the volume = 648.0000 (a.u.)^3
the cross section = 144.0000 (a.u.)^2
l of the unit cell = 0.3750 (alat)
number of atoms/cell = 1
number of atomic types = 1
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.0000 0.0000 0.0000 )
a(2) = ( 0.0000 1.0000 0.0000 )
a(3) = ( 0.0000 0.0000 0.3750 )
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1)=( 0.0000 0.0000 0.3750 )
nr1s = 40
nr2s = 40
nr3s = 15
nr1sx = 40
nr2sx = 40
nr3sx = 15
nr1 = 48
nr2 = 48
nr3 = 18
nr1x = 48
nr2x = 48
nr3x = 18
_______________________________
Radii of nonlocal spheres:
type ibeta ang. mom. radius (alat units)
Al 1 0 0.2260
Al 2 1 0.2561
Reading data from directory:
/scratch/scitas/nvarini/espresso_trunk_svn/tempdir/alh.save
Info: using nr1, nr2, nr3 values from input
Info: using nr1, nr2, nr3 values from input
IMPORTANT: XC functional enforced from input :
Exchange-correlation = SLA PZ NOGX NOGC ( 1 1 0 0 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
file H.pz-vbc.UPF: wavefunction(s) 1S renormalized
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 1725 1137 305 100451 54695 7637
===== INPUT FILE containing the scat. region =====
GEOMETRY:
lattice parameter (alat) = 12.0000 a.u.
the volume = 3240.0000 (a.u.)^3
the cross section = 144.0000 (a.u.)^2
l of the unit cell = 1.8750 (alat)
number of atoms/cell = 6
number of atomic types = 2
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.0000 0.0000 0.0000 )
a(2) = ( 0.0000 1.0000 0.0000 )
a(3) = ( 0.0000 0.0000 1.8750 )
Cartesian axes
site n. atom positions (alat units)
1 Al tau( 1)=( 0.0000 0.0000 1.8750 )
2 Al tau( 2)=( 0.0000 0.0000 0.3750 )
3 Al tau( 3)=( -0.0278 0.0000 0.7554 )
4 H tau( 4)=( 0.1927 0.0000 0.9375 )
5 Al tau( 5)=( -0.0278 0.0000 1.1196 )
6 Al tau( 6)=( 0.0000 0.0000 1.5000 )
nr1s = 40
nr2s = 40
nr3s = 72
nr1sx = 40
nr2sx = 40
nr3sx = 72
nr1 = 48
nr2 = 48
nr3 = 90
nr1x = 48
nr2x = 48
nr3x = 90
_______________________________
Radii of nonlocal spheres:
type ibeta ang. mom. radius (alat units)
Al 1 0 0.2260
Al 2 1 0.2561
----- General information -----
--- T calc. with identical leads (ikind=1) ---
nrx = 40
nry = 40
nz1 = 1
energy0 = 3.0E+00
denergy = 0.0E+00
nenergy = 18
ecut2d = 2.5E+01
ewind = 1.0E+00
epsproj = 1.0E-03
number of k_|| points= 1
cryst. coord.
k( 1) = ( 0.0000000 0.0000000), wk = 1.0000000
----- Information about left/right lead -----
nocros = 4
noins = 0
norb = 8
norbf = 24
nrz = 15
iorb type ibeta ang. mom. m position (alat)
1 1 1 0 1 taunew( 1)=( 0.0000 0.0000 0.0000)
2 1 2 1 1 taunew( 2)=( 0.0000 0.0000 0.0000)
3 1 2 1 2 taunew( 3)=( 0.0000 0.0000 0.0000)
4 1 2 1 3 taunew( 4)=( 0.0000 0.0000 0.0000)
5 1 1 0 1 taunew( 5)=( 0.0000 0.0000 0.3750)
6 1 2 1 1 taunew( 6)=( 0.0000 0.0000 0.3750)
7 1 2 1 2 taunew( 7)=( 0.0000 0.0000 0.3750)
8 1 2 1 3 taunew( 8)=( 0.0000 0.0000 0.3750)
k slab z(k) z(k+1) crossing(iorb=1,norb)
1 0.0000 0.0250 0.0250 11110000
2 0.0250 0.0500 0.0250 11110000
3 0.0500 0.0750 0.0250 11110000
4 0.0750 0.1000 0.0250 11110000
5 0.1000 0.1250 0.0250 11110111
6 0.1250 0.1500 0.0250 11111111
7 0.1500 0.1750 0.0250 11111111
8 0.1750 0.2000 0.0250 11111111
9 0.2000 0.2250 0.0250 11111111
10 0.2250 0.2500 0.0250 11111111
11 0.2500 0.2750 0.0250 01111111
12 0.2750 0.3000 0.0250 00001111
13 0.3000 0.3250 0.0250 00001111
14 0.3250 0.3500 0.0250 00001111
15 0.3500 0.3750 0.0250 00001111
----- Information about scattering region -----
noins = 16
norb = 24
norbf = 24
nrz = 72
iorb type ibeta ang. mom. m position (alat)
1 1 1 0 1 taunew( 1)=( 0.0000 0.0000 0.0000)
2 1 2 1 1 taunew( 2)=( 0.0000 0.0000 0.0000)
3 1 2 1 2 taunew( 3)=( 0.0000 0.0000 0.0000)
4 1 2 1 3 taunew( 4)=( 0.0000 0.0000 0.0000)
5 1 1 0 1 taunew( 5)=( 0.0000 0.0000 0.3750)
6 1 2 1 1 taunew( 6)=( 0.0000 0.0000 0.3750)
7 1 2 1 2 taunew( 7)=( 0.0000 0.0000 0.3750)
8 1 2 1 3 taunew( 8)=( 0.0000 0.0000 0.3750)
9 1 1 0 1 taunew( 9)=( -0.0278 0.0000 0.7554)
10 1 2 1 1 taunew( 10)=( -0.0278 0.0000 0.7554)
11 1 2 1 2 taunew( 11)=( -0.0278 0.0000 0.7554)
12 1 2 1 3 taunew( 12)=( -0.0278 0.0000 0.7554)
13 1 1 0 1 taunew( 13)=( -0.0278 0.0000 1.1196)
14 1 2 1 1 taunew( 14)=( -0.0278 0.0000 1.1196)
15 1 2 1 2 taunew( 15)=( -0.0278 0.0000 1.1196)
16 1 2 1 3 taunew( 16)=( -0.0278 0.0000 1.1196)
17 1 1 0 1 taunew( 17)=( 0.0000 0.0000 1.5000)
18 1 2 1 1 taunew( 18)=( 0.0000 0.0000 1.5000)
19 1 2 1 2 taunew( 19)=( 0.0000 0.0000 1.5000)
20 1 2 1 3 taunew( 20)=( 0.0000 0.0000 1.5000)
21 1 1 0 1 taunew( 21)=( 0.0000 0.0000 1.8750)
22 1 2 1 1 taunew( 22)=( 0.0000 0.0000 1.8750)
23 1 2 1 2 taunew( 23)=( 0.0000 0.0000 1.8750)
24 1 2 1 3 taunew( 24)=( 0.0000 0.0000 1.8750)
k slab z(k) z(k+1) crossing(iorb=1,norb)
1 0.0000 0.0260 0.0260 111100000000000000000000
2 0.0260 0.0521 0.0260 111100000000000000000000
3 0.0521 0.0781 0.0260 111100000000000000000000
4 0.0781 0.1042 0.0260 111100000000000000000000
5 0.1042 0.1302 0.0260 111101110000000000000000
6 0.1302 0.1562 0.0260 111111110000000000000000
7 0.1562 0.1823 0.0260 111111110000000000000000
8 0.1823 0.2083 0.0260 111111110000000000000000
9 0.2083 0.2344 0.0260 111111110000000000000000
10 0.2344 0.2604 0.0260 011111110000000000000000
11 0.2604 0.2865 0.0260 000011110000000000000000
12 0.2865 0.3125 0.0260 000011110000000000000000
13 0.3125 0.3385 0.0260 000011110000000000000000
14 0.3385 0.3646 0.0260 000011110000000000000000
15 0.3646 0.3906 0.0260 000011110000000000000000
16 0.3906 0.4167 0.0260 000011110000000000000000
17 0.4167 0.4427 0.0260 000011110000000000000000
18 0.4427 0.4688 0.0260 000011110000000000000000
19 0.4688 0.4948 0.0260 000011110000000000000000
20 0.4948 0.5208 0.0260 000011110111000000000000
21 0.5208 0.5469 0.0260 000011111111000000000000
22 0.5469 0.5729 0.0260 000011111111000000000000
23 0.5729 0.5990 0.0260 000011111111000000000000
24 0.5990 0.6250 0.0260 000011111111000000000000
25 0.6250 0.6510 0.0260 000001111111000000000000
26 0.6510 0.6771 0.0260 000000001111000000000000
27 0.6771 0.7031 0.0260 000000001111000000000000
28 0.7031 0.7292 0.0260 000000001111000000000000
29 0.7292 0.7552 0.0260 000000001111000000000000
30 0.7552 0.7812 0.0260 000000001111000000000000
31 0.7812 0.8073 0.0260 000000001111000000000000
32 0.8073 0.8333 0.0260 000000001111000000000000
33 0.8333 0.8594 0.0260 000000001111000000000000
34 0.8594 0.8854 0.0260 000000001111011100000000
35 0.8854 0.9115 0.0260 000000001111111100000000
36 0.9115 0.9375 0.0260 000000001111111100000000
37 0.9375 0.9635 0.0260 000000001111111100000000
38 0.9635 0.9896 0.0260 000000001111111100000000
39 0.9896 1.0156 0.0260 000000000111111100000000
40 1.0156 1.0417 0.0260 000000000000111100000000
41 1.0417 1.0677 0.0260 000000000000111100000000
42 1.0677 1.0938 0.0260 000000000000111100000000
43 1.0938 1.1198 0.0260 000000000000111100000000
44 1.1198 1.1458 0.0260 000000000000111100000000
45 1.1458 1.1719 0.0260 000000000000111100000000
46 1.1719 1.1979 0.0260 000000000000111100000000
47 1.1979 1.2240 0.0260 000000000000111100000000
48 1.2240 1.2500 0.0260 000000000000111101110000
49 1.2500 1.2760 0.0260 000000000000111111110000
50 1.2760 1.3021 0.0260 000000000000111111110000
51 1.3021 1.3281 0.0260 000000000000111111110000
52 1.3281 1.3542 0.0260 000000000000111111110000
53 1.3542 1.3802 0.0260 000000000000011111110000
54 1.3802 1.4062 0.0260 000000000000000011110000
55 1.4062 1.4323 0.0260 000000000000000011110000
56 1.4323 1.4583 0.0260 000000000000000011110000
57 1.4583 1.4844 0.0260 000000000000000011110000
58 1.4844 1.5104 0.0260 000000000000000011110000
59 1.5104 1.5365 0.0260 000000000000000011110000
60 1.5365 1.5625 0.0260 000000000000000011110000
61 1.5625 1.5885 0.0260 000000000000000011110000
62 1.5885 1.6146 0.0260 000000000000000011110000
63 1.6146 1.6406 0.0260 000000000000000011110111
64 1.6406 1.6667 0.0260 000000000000000011111111
65 1.6667 1.6927 0.0260 000000000000000011111111
66 1.6927 1.7188 0.0260 000000000000000011111111
67 1.7188 1.7448 0.0260 000000000000000011111111
68 1.7448 1.7708 0.0260 000000000000000001111111
69 1.7708 1.7969 0.0260 000000000000000000001111
70 1.7969 1.8229 0.0260 000000000000000000001111
71 1.8229 1.8490 0.0260 000000000000000000001111
72 1.8490 1.8750 0.0260 000000000000000000001111
ngper, shell number = 293 41
ngper, n2d = 293 40
--- E-Ef = 3.0000000 k = 0.0000000 0.0000000
--- ie = 1 ik = 1
Nchannels of the left tip = 4
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.1203350 -0.0000000 3.0000000
0.3619106 0.0000000 3.0000000
0.3620427 0.0000000 3.0000000
-0.3813770 -0.0000000 3.0000000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.1203350 0.0000000 3.0000000
-0.3619106 0.0000000 3.0000000
-0.3620427 0.0000000 3.0000000
0.3813770 -0.0000000 3.0000000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.94099 0.01014
1 --> 2 0.00795 0.04023
1 --> 3 0.00000 0.00000
1 --> 4 0.00046 0.00024
Total T_j, R_j = 0.94940 0.05060
2 --> 1 0.00795 0.04024
2 --> 2 0.54483 0.39500
2 --> 3 0.00001 0.00000
2 --> 4 0.00735 0.00462
Total T_j, R_j = 0.56014 0.43986
3 --> 1 0.00000 0.00000
3 --> 2 0.00001 0.00001
3 --> 3 0.98618 0.01379
3 --> 4 0.00000 0.00000
Total T_j, R_j = 0.98619 0.01381
4 --> 1 0.00046 0.00024
4 --> 2 0.00735 0.00462
4 --> 3 0.00000 0.00000
4 --> 4 0.98250 0.00483
Total T_j, R_j = 0.99031 0.00969
E-Ef(ev), T(x2 spins) = 3.0000000 6.9720769
Eigenchannel decomposition:
# 1 3.00000 0.50522
0.10008
0.88877
0.00003
0.01112
# 2 3.00000 0.98620
0.00000
0.00003
0.99997
0.00000
# 3 3.00000 0.99562
0.05227
0.00233
0.00000
0.94540
# 4 3.00000 0.99899
0.84765
0.10888
0.00000
0.04347
--- E-Ef = 2.7000000 k = 0.0000000 0.0000000
--- ie = 2 ik = 1
Nchannels of the left tip = 4
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.0494603 -0.0000000 2.7000000
0.3443352 0.0000000 2.7000000
0.3444734 0.0000000 2.7000000
-0.3944490 -0.0000000 2.7000000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.0494603 -0.0000000 2.7000000
-0.3443352 0.0000000 2.7000000
-0.3444734 0.0000000 2.7000000
0.3944490 -0.0000000 2.7000000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.72603 0.23846
1 --> 2 0.01175 0.02293
1 --> 3 0.00000 0.00000
1 --> 4 0.00030 0.00052
Total T_j, R_j = 0.73809 0.26191
2 --> 1 0.01175 0.02293
2 --> 2 0.56193 0.39378
2 --> 3 0.00002 0.00001
2 --> 4 0.00620 0.00338
Total T_j, R_j = 0.57990 0.42010
3 --> 1 0.00000 0.00000
3 --> 2 0.00002 0.00003
3 --> 3 0.98114 0.01880
3 --> 4 0.00000 0.00000
Total T_j, R_j = 0.98117 0.01883
4 --> 1 0.00030 0.00052
4 --> 2 0.00620 0.00338
4 --> 3 0.00000 0.00000
4 --> 4 0.98721 0.00238
Total T_j, R_j = 0.99371 0.00629
E-Ef(ev), T(x2 spins) = 2.7000000 6.5857338
Eigenchannel decomposition:
# 1 2.70000 0.46823
0.28493
0.70736
0.00005
0.00765
# 2 2.70000 0.84548
0.71446
0.28432
0.00002
0.00120
# 3 2.70000 0.98120
0.00000
0.00007
0.99993
0.00000
# 4 2.70000 0.99795
0.00061
0.00825
0.00000
0.99114
--- E-Ef = 2.5000000 k = 0.0000000 0.0000000
--- ie = 3 ik = 1
Nchannels of the left tip = 3
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.3322518 0.0000000 2.5000000
0.3322518 0.0000000 2.5000000
-0.4032130 -0.0000000 2.5000000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.3321090 0.0000000 2.5000000
-0.3322518 0.0000000 2.5000000
0.4032130 -0.0000000 2.5000000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.52525 0.46467
1 --> 2 0.00007 0.00002
1 --> 3 0.00609 0.00390
Total T_j, R_j = 0.53141 0.46859
2 --> 1 0.00007 0.00010
2 --> 2 0.97755 0.02227
2 --> 3 0.00000 0.00000
Total T_j, R_j = 0.97763 0.02237
3 --> 1 0.00609 0.00390
3 --> 2 0.00000 0.00000
3 --> 3 0.98880 0.00121
Total T_j, R_j = 0.99489 0.00511
E-Ef(ev), T(x2 spins) = 2.5000000 5.0078621
Eigenchannel decomposition:
# 1 2.50000 0.52719
0.99103
0.00021
0.00876
# 2 2.50000 0.97772
0.00021
0.99979
0.00000
# 3 2.50000 0.99903
0.00876
0.00000
0.99124
--- E-Ef = 1.6000000 k = 0.0000000 0.0000000
--- ie = 4 ik = 1
Nchannels of the left tip = 3
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.2703759 0.0000000 1.6000000
0.2705500 0.0000000 1.6000000
-0.4454518 -0.0000000 1.6000000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.2703759 0.0000000 1.6000000
-0.2705500 0.0000000 1.6000000
0.4454518 -0.0000000 1.6000000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.45359 0.53836
1 --> 2 0.00000 0.00000
1 --> 3 0.00313 0.00491
Total T_j, R_j = 0.45673 0.54327
2 --> 1 0.00000 0.00000
2 --> 2 0.97084 0.02915
2 --> 3 0.00000 0.00000
Total T_j, R_j = 0.97085 0.02915
3 --> 1 0.00313 0.00491
3 --> 2 0.00000 0.00000
3 --> 3 0.98668 0.00528
Total T_j, R_j = 0.98981 0.01019
E-Ef(ev), T(x2 spins) = 1.6000000 4.8347794
Eigenchannel decomposition:
# 1 1.60000 0.45255
0.99228
0.00001
0.00771
# 2 1.60000 0.97085
0.00001
0.99999
0.00000
# 3 1.60000 0.99399
0.00771
0.00000
0.99229
--- E-Ef = 1.0000000 k = 0.0000000 0.0000000
--- ie = 5 ik = 1
Nchannels of the left tip = 3
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.2198056 0.0000000 1.0000000
0.2200193 0.0000000 1.0000000
-0.4901348 -0.0000000 1.0000000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.2198056 0.0000000 1.0000000
-0.2200193 0.0000000 1.0000000
0.4901348 0.0000000 1.0000000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.40506 0.58627
1 --> 2 0.00000 0.00000
1 --> 3 0.00046 0.00820
Total T_j, R_j = 0.40552 0.59448
2 --> 1 0.00000 0.00000
2 --> 2 0.98770 0.01230
2 --> 3 0.00000 0.00000
Total T_j, R_j = 0.98770 0.01230
3 --> 1 0.00046 0.00820
3 --> 2 0.00000 0.00000
3 --> 3 0.61494 0.37640
Total T_j, R_j = 0.61540 0.38460
E-Ef(ev), T(x2 spins) = 1.0000000 4.0172484
Eigenchannel decomposition:
# 1 1.00000 0.40458
0.99556
0.00000
0.00444
# 2 1.00000 0.61634
0.00444
0.00000
0.99556
# 3 1.00000 0.98770
0.00000
1.00000
0.00000
--- E-Ef = 0.9000000 k = 0.0000000 0.0000000
--- ie = 6 ik = 1
Nchannels of the left tip = 2
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.2101974 0.0000000 0.9000000
0.2104208 0.0000000 0.9000000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.2101974 0.0000000 0.9000000
-0.2104208 0.0000000 0.9000000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.41356 0.58644
1 --> 2 0.00000 0.00000
Total T_j, R_j = 0.41356 0.58644
2 --> 1 0.00000 0.00000
2 --> 2 0.99161 0.00839
Total T_j, R_j = 0.99161 0.00839
E-Ef(ev), T(x2 spins) = 0.9000000 2.8103457
Eigenchannel decomposition:
# 1 0.90000 0.41356
1.00000
0.00000
# 2 0.90000 0.99161
0.00000
1.00000
--- E-Ef = 0.1000000 k = 0.0000000 0.0000000
--- ie = 7 ik = 1
Nchannels of the left tip = 2
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.1054799 0.0000000 0.1000000
0.1059237 0.0000000 0.1000000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.1054799 0.0000000 0.1000000
-0.1059237 0.0000000 0.1000000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.23537 0.76463
1 --> 2 0.00000 0.00000
Total T_j, R_j = 0.23537 0.76463
2 --> 1 0.00000 0.00000
2 --> 2 0.99981 0.00019
Total T_j, R_j = 0.99981 0.00019
E-Ef(ev), T(x2 spins) = 0.1000000 2.4703616
Eigenchannel decomposition:
# 1 0.10000 0.23537
1.00000
0.00000
# 2 0.10000 0.99981
0.00000
1.00000
--- E-Ef = -0.1000000 k = 0.0000000 0.0000000
--- ie = 8 ik = 1
Nchannels of the left tip = 2
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.0534797 0.0000000 -0.1000000
0.0543494 0.0000000 -0.1000000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.0534797 0.0000000 -0.1000000
-0.0543494 0.0000000 -0.1000000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.07339 0.92660
1 --> 2 0.00000 0.00000
Total T_j, R_j = 0.07340 0.92660
2 --> 1 0.00000 0.00000
2 --> 2 0.87505 0.12495
Total T_j, R_j = 0.87505 0.12495
E-Ef(ev), T(x2 spins) = -0.1000000 1.8968976
Eigenchannel decomposition:
# 1 -0.10000 0.07339
1.00000
0.00000
# 2 -0.10000 0.87505
0.00000
1.00000
--- E-Ef = -0.2500000 k = 0.0000000 0.0000000
--- ie = 9 ik = 1
Nchannels of the left tip = 0
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
to transmit
E-Ef(ev), T = -0.2500000 0.0000000
--- E-Ef = -1.1500000 k = 0.0000000 0.0000000
--- ie = 10 ik = 1
Nchannels of the left tip = 0
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
to transmit
E-Ef(ev), T = -1.1500000 0.0000000
--- E-Ef = -1.4500000 k = 0.0000000 0.0000000
--- ie = 11 ik = 1
Nchannels of the left tip = 1
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.4647354 0.0000000 -1.4500000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.4647354 0.0000000 -1.4500000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.15808 0.84192
Total T_j, R_j = 0.15808 0.84192
E-Ef(ev), T(x2 spins) = -1.4500000 0.3161512
Eigenchannel decomposition:
# 1 -1.45000 0.15808
1.00000
--- E-Ef = -1.9000000 k = 0.0000000 0.0000000
--- ie = 12 ik = 1
Nchannels of the left tip = 1
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.4349126 0.0000000 -1.9000000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.4349126 0.0000000 -1.9000000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.00016 0.99984
Total T_j, R_j = 0.00016 0.99984
E-Ef(ev), T(x2 spins) = -1.9000000 0.0003204
Eigenchannel decomposition:
# 1 -1.90000 0.00016
1.00000
--- E-Ef = -3.0000000 k = 0.0000000 0.0000000
--- ie = 13 ik = 1
Nchannels of the left tip = 1
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.3708942 0.0000000 -3.0000000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.3708942 0.0000000 -3.0000000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.42193 0.57807
Total T_j, R_j = 0.42193 0.57807
E-Ef(ev), T(x2 spins) = -3.0000000 0.8438522
Eigenchannel decomposition:
# 1 -3.00000 0.42193
1.00000
--- E-Ef = -4.0000000 k = 0.0000000 0.0000000
--- ie = 14 ik = 1
Nchannels of the left tip = 1
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.3084308 0.0000000 -4.0000000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.3084308 0.0000000 -4.0000000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.52427 0.47573
Total T_j, R_j = 0.52427 0.47573
E-Ef(ev), T(x2 spins) = -4.0000000 1.0485360
Eigenchannel decomposition:
# 1 -4.00000 0.52427
1.00000
--- E-Ef = -5.0000000 k = 0.0000000 0.0000000
--- ie = 15 ik = 1
Nchannels of the left tip = 1
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.2334330 0.0000000 -5.0000000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.2334330 0.0000000 -5.0000000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.49550 0.50450
Total T_j, R_j = 0.49550 0.50450
E-Ef(ev), T(x2 spins) = -5.0000000 0.9910099
Eigenchannel decomposition:
# 1 -5.00000 0.49550
1.00000
--- E-Ef = -6.0000000 k = 0.0000000 0.0000000
--- ie = 16 ik = 1
Nchannels of the left tip = 1
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.1226841 0.0000000 -6.0000000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.1226841 0.0000000 -6.0000000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.39223 0.60777
Total T_j, R_j = 0.39223 0.60777
E-Ef(ev), T(x2 spins) = -6.0000000 0.7844537
Eigenchannel decomposition:
# 1 -6.00000 0.39223
1.00000
--- E-Ef = -6.2000000 k = 0.0000000 0.0000000
--- ie = 17 ik = 1
Nchannels of the left tip = 1
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
0.0853460 0.0000000 -6.2000000
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
-0.0853460 0.0000000 -6.2000000
to transmit
Band j to band i transmissions and reflections:
j i |T_ij|^2 |R_ij|^2
1 --> 1 0.27456 0.72544
Total T_j, R_j = 0.27456 0.72544
E-Ef(ev), T(x2 spins) = -6.2000000 0.5491256
Eigenchannel decomposition:
# 1 -6.20000 0.27456
1.00000
--- E-Ef = -6.4500000 k = 0.0000000 0.0000000
--- ie = 18 ik = 1
Nchannels of the left tip = 0
Right moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
Left moving states:
k1(2pi/a) k2(2pi/a) E-Ef (eV)
to transmit
E-Ef(ev), T = -6.4500000 0.0000000
T_tot 3.00000 0.69721E+01
T_tot 2.70000 0.65857E+01
T_tot 2.50000 0.50079E+01
T_tot 1.60000 0.48348E+01
T_tot 1.00000 0.40172E+01
T_tot 0.90000 0.28103E+01
T_tot 0.10000 0.24704E+01
T_tot -0.10000 0.18969E+01
T_tot -0.25000 0.00000E+00
T_tot -1.15000 0.00000E+00
T_tot -1.45000 0.31615E+00
T_tot -1.90000 0.32040E-03
T_tot -3.00000 0.84385E+00
T_tot -4.00000 0.10485E+01
T_tot -5.00000 0.99101E+00
T_tot -6.00000 0.78445E+00
T_tot -6.20000 0.54913E+00
T_tot -6.45000 0.00000E+00
PWCOND : 4.39s CPU 4.45s WALL
init : 0.47s CPU 0.51s WALL ( 1 calls)
poten : 0.01s CPU 0.01s WALL ( 2 calls)
local : 1.44s CPU 1.45s WALL ( 1 calls)
scatter_forw : 2.28s CPU 2.30s WALL ( 36 calls)
compbs : 0.15s CPU 0.15s WALL ( 18 calls)
compbs_2 : 0.12s CPU 0.12s WALL ( 18 calls)