mirror of https://gitlab.com/QEF/q-e.git
94 lines
2.5 KiB
Fortran
94 lines
2.5 KiB
Fortran
!
|
|
! Copyright (C) 2001-2012 PWSCF group
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine symdyn_munu_new( dyn, u, xq, s, invs, rtau, irt, at, &
|
|
bg, nsymq, nat, irotmq, minus_q )
|
|
!-----------------------------------------------------------------------
|
|
!! This routine symmetrize the dynamical matrix written in the basis
|
|
!! of the modes.
|
|
|
|
USE kinds, only : DP
|
|
|
|
implicit none
|
|
|
|
integer :: nat
|
|
!1 input: the number of atoms
|
|
integer :: s(3,3,48)
|
|
!! input: the symmetry matrices
|
|
integer :: irt(48,nat)
|
|
!! input: the rotated of each atom
|
|
integer :: invs(48)
|
|
!! input: the inverse of each matrix
|
|
integer :: nsymq
|
|
!! input: the order of the small group
|
|
integer :: irotmq
|
|
!! input: the small group of q.
|
|
!! input: the symmetry q -> -q+G
|
|
real(DP) :: xq(3)
|
|
!! input: the coordinates of q
|
|
real(DP) :: rtau(3,48,nat)
|
|
!! input: the R associated at each r
|
|
real(DP) :: at(3,3)
|
|
!! input: direct lattice vectors
|
|
real(DP) :: bg(3,3)
|
|
!! input: reciprocal lattice vectors
|
|
logical :: minus_q
|
|
!! input: if true symmetry sends q-> -q+G
|
|
complex(DP) :: dyn(3*nat,3*nat)
|
|
!! inp/out: matrix to symmetrize
|
|
complex(DP) :: u(3*nat,3*nat)
|
|
!! input: the patterns
|
|
!
|
|
! ... local variables
|
|
!
|
|
integer :: i, j, icart, jcart, na, nb, mu, nu
|
|
! counter on modes
|
|
! counter on modes
|
|
! counter on cartesian coordinates
|
|
! counter on cartesian coordinates
|
|
! counter on atoms
|
|
! counter on atoms
|
|
! counter on modes
|
|
! counter on modes
|
|
|
|
complex(DP) :: work, phi (3, 3, nat, nat)
|
|
! auxiliary variable
|
|
! the dynamical matrix
|
|
!
|
|
! First we transform in the cartesian coordinates
|
|
!
|
|
CALL dyn_pattern_to_cart(nat, u, dyn, phi)
|
|
!
|
|
! Then we transform to the crystal axis
|
|
!
|
|
do na = 1, nat
|
|
do nb = 1, nat
|
|
call trntnsc (phi (1, 1, na, nb), at, bg, - 1)
|
|
enddo
|
|
enddo
|
|
!
|
|
! And we symmetrize in this basis
|
|
!
|
|
call symdynph_gq_new (xq, phi, s, invs, rtau, irt, nsymq, nat, &
|
|
irotmq, minus_q)
|
|
!
|
|
! Back to cartesian coordinates
|
|
!
|
|
do na = 1, nat
|
|
do nb = 1, nat
|
|
call trntnsc (phi (1, 1, na, nb), at, bg, + 1)
|
|
enddo
|
|
enddo
|
|
!
|
|
! rewrite the dynamical matrix on the array dyn with dimension 3nat x 3nat
|
|
!
|
|
CALL compact_dyn(nat, dyn, phi)
|
|
|
|
return
|
|
end subroutine symdyn_munu_new
|