quantum-espresso/PHonon/PH/sym_def.f90

84 lines
2.3 KiB
Fortran

!
! Copyright (C) 2001 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!---------------------------------------------------------------------
MODULE sym_def_module
CONTAINS
subroutine sym_def (def, irr)
!---------------------------------------------------------------------
!! Symmetrizes the first order changes of the Fermi energies of an
!! irreducible representation. These objects are defined complex because
!! perturbations may be complex.
!
!! Used in the q=0 metallic case only.
!
USE kinds, only : DP
USE modes, ONLY : npert, t, tmq
USE control_ph, ONLY : lgamma_gamma
USE lr_symm_base, ONLY : minus_q, nsymq
implicit none
integer :: irr
!! input: the representation under consideration
complex(DP) :: def(3)
!! inp/out: the fermi energy changes.
!! NB: def(3) should be def(npertx), but it is used only at Gamma
!! where the dimension of irreps never exceeds 3.
!
! ... local variables
!
integer :: ipert, jpert, isym, irot
! counter on perturbations
! counter on perturbations
! counter on symmetries
! the rotation
complex(DP) :: w_def(3)
! the fermi energy changes (work array)
IF (lgamma_gamma) RETURN
if (nsymq == 1 .and. (.not.minus_q) ) return
if (npert(irr) > 3) CALL errore("sym_def", "npert(irr) exceeds 3", 1)
!
! first the symmetrization S(irotmq)*q = -q + Gi if necessary
!
if (minus_q) then
w_def = (0.d0, 0.d0)
do ipert = 1, npert (irr)
do jpert = 1, npert (irr)
w_def (ipert) = w_def (ipert) + tmq (jpert, ipert, irr) &
* def (jpert)
enddo
enddo
do ipert = 1, npert (irr)
def (ipert) = 0.5d0 * (def (ipert) + CONJG(w_def (ipert) ) )
enddo
endif
!
! Here we symmetrize with respect to the small group of q
!
w_def = (0.d0, 0.d0)
do ipert = 1, npert (irr)
do isym = 1, nsymq
irot = isym
do jpert = 1, npert (irr)
w_def (ipert) = w_def (ipert) + t (jpert, ipert, irot, irr) &
* def (jpert)
enddo
enddo
enddo
!
! normalize and exit
!
def = w_def / DBLE(nsymq)
return
end subroutine sym_def
END MODULE sym_def_module