quantum-espresso/PHonon/PH/solve_e.f90

336 lines
12 KiB
Fortran

!
! Copyright (C) 2001-2018 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
subroutine solve_e
!-----------------------------------------------------------------------
!! This routine is a driver for the solution of the linear system which
!! defines the change of the wavefunction due to an electric field.
!! It performs the following tasks:
!! a) computes the bare potential term times \(|\psi\rangle \);
!! b) adds to it the screening term \(\Delta V_\text{SCF}|psi\rangle\).
!! If \(\text{lda_plus_u}=\text{TRUE}\) compute also the SCF part
!! of the response Hubbard potential;
!! c) applies \(P_c^+\) (orthogonalization to valence states);
!! d) calls \(\texttt{cgsolve_all}\) to solve the linear system;
!! e) computes \(\Delta \rho\), \(\Delta V_\text{SCF}|psi\rangle\) and
!! symmetrizes them;
!! f) if \(\text{lda_plus_u}=\text{TRUE}\) compute also the response
!! occupation matrices dnsscf.
!! Step b, c, d are done in \(\text{sternheimer_kernel}\).
!
USE kinds, ONLY : DP
USE ions_base, ONLY : nat
USE io_global, ONLY : stdout, ionode
USE io_files, ONLY : diropn
USE mp, ONLY : mp_sum
USE mp_pools, ONLY : inter_pool_comm
USE mp_bands, ONLY : intra_bgrp_comm, inter_bgrp_comm
USE klist, ONLY : ltetra, lgauss, xk, ngk, igk_k
USE gvecs, ONLY : doublegrid
USE fft_base, ONLY : dfftp, dffts
USE lsda_mod, ONLY : nspin, lsda, current_spin, isk
USE wvfct, ONLY : nbnd, npwx
USE check_stop, ONLY : check_stop_now
USE buffers, ONLY : get_buffer
USE wavefunctions, ONLY : evc
USE uspp, ONLY : okvan, vkb
USE uspp_param, ONLY : nhm
USE noncollin_module, ONLY : noncolin, npol, nspin_mag, domag
USE scf, ONLY : rho
USE paw_variables, ONLY : okpaw
USE paw_onecenter, ONLY : paw_dpotential
USE paw_symmetry, ONLY : paw_desymmetrize
USE units_ph, ONLY : lrdrho, iudrho, lrebar, iuebar
USE units_lr, ONLY : iuwfc, lrwfc
USE output, ONLY : fildrho
USE control_ph, ONLY : ext_recover, rec_code, &
lnoloc, convt, tr2_ph, nmix_ph, &
alpha_mix, lgamma_gamma, niter_ph, &
flmixdpot, rec_code_read
USE recover_mod, ONLY : read_rec, write_rec
USE lrus, ONLY : int3_paw
USE qpoint, ONLY : nksq, ikks
USE control_lr, ONLY : lgamma
USE dv_of_drho_lr, ONLY : dv_of_drho
USE fft_interfaces, ONLY : fft_interpolate
USE ldaU, ONLY : lda_plus_u
USE apply_dpot_mod, ONLY : apply_dpot_allocate, apply_dpot_deallocate
USE response_kernels, ONLY : sternheimer_kernel
USE uspp_init, ONLY : init_us_2
!
IMPLICIT NONE
!
LOGICAL :: exst
!!
LOGICAL :: all_conv
!! True if sternheimer_kernel is converged at all k points and perturbations
INTEGER :: ikk, npw, kter, iter0, ipol, iter, ik, is, ndim
!! counters
REAL(DP) :: thresh
!! convergence threshold
REAL(DP) :: averlt
!! average number of iterations
REAL(DP) :: dr2
!! self-consistency error
REAL(DP) :: tcpu, get_clock
!! timing variables
COMPLEX(DP), ALLOCATABLE, TARGET :: dvscfin (:,:,:)
!! change of the scf potential (input)
COMPLEX(DP), POINTER :: dvscfins (:,:,:)
!! change of the scf potential (smooth)
COMPLEX(DP), ALLOCATABLE :: dvscfout (:,:,:)
!! change of the scf potential (output)
COMPLEX(DP), ALLOCATABLE :: dbecsum(:,:,:,:)
!! the becsum with dpsi
COMPLEX(DP), ALLOCATABLE :: dbecsum_nc(:,:,:,:,:)
!! the becsum with dpsi
COMPLEX(DP), ALLOCATABLE :: mixin(:), mixout(:)
!! auxiliary for paw mixing
INTEGER :: nnr
!
call start_clock ('solve_e')
!
! This routine is task group aware
!
allocate (dvscfin( dfftp%nnr, nspin_mag, 3))
nnr = dfftp%nnr
dvscfin=(0.0_DP,0.0_DP)
if (doublegrid) then
allocate (dvscfins(dffts%nnr, nspin_mag, 3))
nnr = dffts%nnr
else
dvscfins => dvscfin
endif
!$acc enter data create(dvscfins(1:nnr, 1:nspin_mag, 1:3))
allocate (dvscfout(dfftp%nnr, nspin_mag, 3))
IF (okpaw) THEN
ALLOCATE (mixin(dfftp%nnr*nspin_mag*3+(nhm*(nhm+1)*nat*nspin_mag*3)/2) )
ALLOCATE (mixout(dfftp%nnr*nspin_mag*3+(nhm*(nhm+1)*nat*nspin_mag*3)/2) )
mixin=(0.0_DP,0.0_DP)
ENDIF
allocate (dbecsum( nhm*(nhm+1)/2, nat, nspin_mag, 3))
IF (noncolin) allocate (dbecsum_nc (nhm, nhm, nat, nspin, 3))
CALL apply_dpot_allocate()
if (rec_code_read == -20.AND.ext_recover) then
! restarting in Electric field calculation
IF (okpaw) THEN
CALL read_rec(dr2, iter0, 3, dvscfin, dvscfins, dvscfout, dbecsum)
CALL setmixout(3*dfftp%nnr*nspin_mag,(nhm*(nhm+1)*nat*nspin_mag*3)/2, &
mixin, dvscfin, dbecsum, ndim, -1 )
ELSE
CALL read_rec(dr2, iter0, 3, dvscfin, dvscfins)
ENDIF
else if (rec_code_read > -20 .AND. rec_code_read <= -10) then
! restarting in Raman: proceed
convt = .true.
else
convt = .false.
iter0 = 0
endif
!
IF ( ionode .AND. fildrho /= ' ') THEN
INQUIRE (UNIT = iudrho, OPENED = exst)
IF (exst) CLOSE (UNIT = iudrho, STATUS='keep')
CALL diropn (iudrho, TRIM(fildrho)//'.E', lrdrho, exst)
end if
IF (rec_code_read > -20) convt=.TRUE.
!
if (convt) go to 155
!
! if q=0 for a metal: allocate and compute local DOS at Ef
!
if ( (lgauss .or. ltetra) .or..not.lgamma) call errore ('solve_e', &
'called in the wrong case', 1)
!
! Compute P_c^+ x psi for all polarization and k points and store in buffer
!
DO ik = 1, nksq
DO ipol = 1, 3
ikk = ikks(ik)
npw = ngk(ikk)
IF (lsda) current_spin = isk(ikk)
!
! reads unperturbed wavefunctions psi_k in G_space, for all bands
!
IF (nksq > 1) THEN
CALL get_buffer(evc, lrwfc, iuwfc, ikk)
!$acc update device(evc)
ENDIF
!
CALL init_us_2(npw, igk_k(1, ikk), xk(1, ikk), vkb, .true.)
!$acc update host(vkb)
!
! computes P_c^+ x psi_kpoint, written to buffer iuebar.
!
CALL dvpsi_e(ik, ipol)
!
ENDDO ! ipol
ENDDO ! ik
!
! The outside loop is over the iterations
!
do kter = 1, niter_ph
!
FLUSH( stdout )
iter = kter + iter0
!
dvscfout = (0.d0,0.d0)
dbecsum = (0.d0,0.d0)
IF (noncolin) dbecsum_nc = (0.d0,0.d0)
!
! DFPT+U: at each iteration calculate dnsscf,
! i.e. the scf variation of the occupation matrix ns.
!
IF (lda_plus_u .AND. (iter /= 1)) CALL dnsq_scf(3, .false., 0, 1, .false.)
!
! set threshold for the iterative solution of the linear system
!
IF (iter == 1) THEN
thresh = 1.d-2
IF (lnoloc) thresh = 1.d-5
ELSE
thresh = MIN(0.1d0 * SQRT(dr2), 1.0d-2)
ENDIF
!
! Compute dvscfout, the charge density response to the total potential
!
CALL sternheimer_kernel(iter==1, .FALSE., 3, lrebar, iuebar, thresh, dvscfins, &
all_conv, averlt, dvscfout, dbecsum, dbecsum_nc)
!
! The calculation of dbecsum is distributed across processors
! (see addusdbec) - we sum over processors the contributions
! coming from each slice of bands
!
IF (noncolin) THEN
call mp_sum ( dbecsum_nc, intra_bgrp_comm )
ELSE
call mp_sum ( dbecsum, intra_bgrp_comm )
END IF
if (doublegrid) then
do is=1,nspin_mag
do ipol=1,3
call fft_interpolate (dffts, dvscfout(:,is,ipol), dfftp, dvscfout(:,is,ipol))
enddo
enddo
endif
!
IF (noncolin.and.okvan) CALL set_dbecsum_nc(dbecsum_nc, dbecsum, 3)
!
call addusddense (dvscfout, dbecsum)
!
! dvscfout contains the (unsymmetrized) linear charge response
! for the three polarizations - symmetrize it
!
call mp_sum ( dvscfout, inter_pool_comm )
IF (okpaw) call mp_sum ( dbecsum, inter_pool_comm )
if (.not.lgamma_gamma) then
call psyme (dvscfout)
IF ( noncolin.and.domag ) CALL psym_dmage(dvscfout)
endif
!
! save the symmetrized linear charge response to file
! calculate the corresponding linear potential response
!
do ipol=1,3
if (fildrho.ne.' ') call davcio_drho(dvscfout(1,1,ipol),lrdrho, &
iudrho,ipol,+1)
IF (lnoloc) then
dvscfout(:,:,ipol)=(0.d0,0.d0)
ELSE
call dv_of_drho (dvscfout (1, 1, ipol), .false.)
ENDIF
enddo
!
! mix the new potential with the old
!
IF (okpaw) THEN
!
! In this case we mix also dbecsum
!
call setmixout(3*dfftp%nnr*nspin_mag,(nhm*(nhm+1)*nat*nspin_mag*3)/2, &
mixout, dvscfout, dbecsum, ndim, -1 )
call mix_potential (2*3*dfftp%nnr*nspin_mag+2*ndim, mixout, mixin, &
alpha_mix(kter), dr2, 3*tr2_ph/npol, iter, &
nmix_ph, flmixdpot, convt)
call setmixout(3*dfftp%nnr*nspin_mag,(nhm*(nhm+1)*nat*nspin_mag*3)/2, &
mixin, dvscfin, dbecsum, ndim, 1 )
ELSE
call mix_potential (2*3*dfftp%nnr*nspin_mag, dvscfout, dvscfin, alpha_mix ( &
kter), dr2, 3 * tr2_ph / npol, iter, nmix_ph, flmixdpot, convt)
ENDIF
if (doublegrid) then
do is=1,nspin_mag
do ipol = 1, 3
call fft_interpolate (dfftp, dvscfin(:,is,ipol), dffts, dvscfins(:,is,ipol))
enddo
enddo
endif
IF (okpaw) THEN
IF (noncolin) THEN
! call PAW_dpotential(dbecsum_nc,becsum_nc,int3_paw,3)
ELSE
!
! The presence of c.c. in the formula gives a factor 2.0
!
dbecsum=2.0_DP * dbecsum
IF (.NOT. lgamma_gamma) CALL PAW_desymmetrize(dbecsum)
call PAW_dpotential(dbecsum,rho%bec,int3_paw,3)
ENDIF
ENDIF
call newdq(dvscfin,3)
tcpu = get_clock ('PHONON')
WRITE( stdout, '(/,5x," iter # ",i3," total cpu time :",f8.1, &
& " secs av.it.: ",f5.1)') iter, tcpu, averlt
dr2 = dr2 / 3
WRITE( stdout, "(5x,' thresh=',es10.3, ' alpha_mix = ',f6.3, &
& ' |ddv_scf|^2 = ',es10.3 )") thresh, alpha_mix (kter), dr2
!
FLUSH( stdout )
!
! rec_code: state of the calculation
! rec_code=-20 Electric Field
!
rec_code=-20
IF (okpaw) THEN
CALL write_rec('solve_e...', 0, dr2, iter, convt, 3, dvscfin, &
dvscfout, dbecsum)
ELSE
CALL write_rec('solve_e...', 0, dr2, iter, convt, 3, dvscfin)
ENDIF
if (check_stop_now()) call stop_smoothly_ph (.false.)
if (convt) goto 155
enddo
155 continue
!
CALL apply_dpot_deallocate()
deallocate (dbecsum)
deallocate (dvscfout)
IF (okpaw) THEN
DEALLOCATE(mixin)
DEALLOCATE(mixout)
ENDIF
!$acc exit data delete(dvscfins)
if (doublegrid) deallocate (dvscfins)
deallocate (dvscfin)
if (noncolin) deallocate(dbecsum_nc)
call stop_clock ('solve_e')
return
end subroutine solve_e