quantum-espresso/Modules/gradutils.f90

855 lines
24 KiB
Fortran

!
! Copyright (C) 2018 Quantum ESPRESSO Foundation
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!--------------------------------------------------------------------
! Various routines computing gradient and similar quantities via FFT
!--------------------------------------------------------------------
! FIXME: there is a dependency upon "cell_base" via variable tpiba
! (2\pi/a) that maybe should be taken out from here?
!--------------------------------------------------------------------
SUBROUTINE external_gradient( a, grada )
!--------------------------------------------------------------------
!! Interface for computing gradients of a real function in real space,
!! to be called by an external module.
!
USE kinds, ONLY : DP
USE fft_base, ONLY : dfftp
USE gvect, ONLY : g
!
IMPLICIT NONE
!
REAL( DP ), INTENT(IN) :: a( dfftp%nnr )
!! a real function on the real-space
REAL( DP ), INTENT(OUT) :: grada( 3, dfftp%nnr )
!! grad(A) in real space
!
! A in real space, grad(A) in real space
CALL fft_gradient_r2r( dfftp, a, g, grada )
!
RETURN
!
END SUBROUTINE external_gradient
!
!----------------------------------------------------------------------------
SUBROUTINE fft_gradient_r2r( dfft, a, g, ga )
!----------------------------------------------------------------------------
!! Calculates \({\bf ga}\), the gradient of \({\bf a}\).
!
USE kinds, ONLY : DP
USE cell_base, ONLY : tpiba
USE fft_interfaces, ONLY : fwfft, invfft
USE fft_types, ONLY : fft_type_descriptor
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
!! FFT descriptor
REAL(DP), INTENT(IN) :: a(dfft%nnr)
!! a real function on the real-space FFT grid
REAL(DP), INTENT(IN) :: g(3,dfft%ngm)
!! G-vectors, in 2\pi/a units
REAL(DP), INTENT(OUT) :: ga(3,dfft%nnr)
!! gradient of a, real, on the real-space FFT grid
!
! ... local variables
!
INTEGER :: ipol
COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:)
!
ALLOCATE( aux( dfft%nnr ) )
ALLOCATE( gaux( dfft%nnr ) )
!
aux = CMPLX( a(:), 0.0_dp, kind=DP)
!
! ... bring a(r) to G-space, a(G) ...
!
CALL fwfft ('Rho', aux, dfft)
!
! ... multiply by (iG) to get (\grad_ipol a)(G) ...
!
DO ipol = 1, 3
!
gaux(:) = (0.0_dp, 0.0_dp)
!
gaux(dfft%nl(:)) = g(ipol,:) * CMPLX( -AIMAG( aux(dfft%nl(:)) ), &
REAL( aux(dfft%nl(:)) ), kind=DP)
!
IF ( dfft%lgamma ) THEN
!
gaux(dfft%nlm(:)) = CMPLX( REAL( gaux(dfft%nl(:)) ), &
-AIMAG( gaux(dfft%nl(:)) ), kind=DP)
!
END IF
!
! ... bring back to R-space, (\grad_ipol a)(r) ...
!
CALL invfft ('Rho', gaux, dfft)
!
! ...and add the factor 2\pi/a missing in the definition of G
!
ga(ipol,:) = tpiba * DBLE( gaux(:) )
!
END DO
!
DEALLOCATE( gaux )
DEALLOCATE( aux )
!
RETURN
!
END SUBROUTINE fft_gradient_r2r
!
!--------------------------------------------------------------------
SUBROUTINE fft_qgradient( dfft, a, xq, g, ga )
!--------------------------------------------------------------------
!! Like \texttt{fft\_gradient\_r2r}, for complex arrays having a
!! \(e^{iqr}\) behavior.
!
USE kinds, ONLY: dp
USE cell_base, ONLY: tpiba
USE fft_types, ONLY : fft_type_descriptor
USE fft_interfaces, ONLY: fwfft, invfft
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
!! FFT descriptor
COMPLEX(DP), INTENT(IN) :: a(dfft%nnr)
!! A complex function on the real-space FFT grid
REAL(DP), INTENT(IN):: xq(3)
!! q-vector, in 2\pi/a units
REAL(DP), INTENT(IN) :: g(3,dfft%ngm)
!! G-vectors, in 2\pi/a units
COMPLEX(DP), INTENT(OUT) :: ga(3,dfft%nnr)
!! The gradient of \({\bf a}\), complex, on the real-space FFT grid
!
! ... local variables
!
INTEGER :: n, ipol
COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:)
ALLOCATE (gaux(dfft%nnr))
ALLOCATE (aux (dfft%nnr))
! bring a(r) to G-space, a(G) ...
aux (:) = a(:)
CALL fwfft ('Rho', aux, dfft)
! multiply by i(q+G) to get (\grad_ipol a)(q+G) ...
DO ipol = 1, 3
gaux (:) = (0.0_dp, 0.0_dp)
DO n = 1, dfft%ngm
gaux(dfft%nl(n)) = CMPLX( 0.0_dp, xq (ipol) + g(ipol,n), kind=DP ) * &
aux (dfft%nl(n))
IF ( dfft%lgamma ) gaux(dfft%nlm(n)) = CONJG( gaux (dfft%nl(n)) )
END DO
! bring back to R-space, (\grad_ipol a)(r) ...
CALL invfft ('Rho', gaux, dfft)
! ...and add the factor 2\pi/a missing in the definition of q+G
DO n = 1, dfft%nnr
ga (ipol,n) = gaux (n) * tpiba
END DO
END DO
DEALLOCATE (aux)
DEALLOCATE (gaux)
RETURN
END SUBROUTINE fft_qgradient
!
!
!----------------------------------------------------------------------------
SUBROUTINE fft_gradient_g2r( dfft, a, g, ga )
!----------------------------------------------------------------------------
!! Calculates \({\bf ga}\), the gradient of \({\bf a}\) - like
!! \(\textrm{fft_gradient}\), but with \({\bf a(G)}\) instead of \({\bf a(r)}\).
!
USE kinds, ONLY : DP
USE cell_base, ONLY : tpiba
USE fft_types, ONLY : fft_type_descriptor
USE fft_interfaces, ONLY : invfft
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
!! FFT descriptor
COMPLEX(DP), INTENT(IN) :: a(dfft%ngm)
!! a(G), a complex function in G-space
REAL(DP), INTENT(IN) :: g(3,dfft%ngm)
!! G-vectors, in \( 2\pi/a \) units
REAL(DP), INTENT(OUT) :: ga(3,dfft%nnr)
!! The gradient of \({\bf a}\), real, on the real-space FFT grid
!
! ... local variables
!
INTEGER :: ipol, n, ip
COMPLEX(DP), ALLOCATABLE :: gaux(:)
!
#if defined(__CUDA) && defined(_OPENACC)
INTEGER, POINTER, DEVICE :: nl_d(:), nlm_d(:)
!
nl_d => dfft%nl_d
nlm_d => dfft%nlm_d
#else
INTEGER, ALLOCATABLE :: nl_d(:), nlm_d(:)
!
ALLOCATE( nl_d(dfft%ngm) )
nl_d = dfft%nl
IF ( dfft%lgamma ) THEN
ALLOCATE( nlm_d(dfft%ngm) )
nlm_d = dfft%nlm
ENDIF
!$acc data copyin( nl_d, nlm_d )
#endif
!
!$acc data present_or_copyin( a, g ) present_or_copyout( ga )
!
ALLOCATE( gaux(dfft%nnr) )
!$acc data create( gaux )
!
IF ( dfft%lgamma ) THEN
!
! ... Gamma tricks: perform 2 FFT's in a single shot
! x and y
ipol = 1
!$acc parallel loop
DO n = 1, dfft%nnr
DO ip = 1, 3
ga(ip,n) = 0.D0
ENDDO
gaux(n) = (0.0_dp,0.0_dp)
ENDDO
!
! ... multiply a(G) by iG to get the gradient in real space
!
!$acc parallel loop
DO n = 1, dfft%ngm
gaux(nl_d(n) ) = CMPLX( 0.0_dp, g(ipol,n),kind=DP)* a(n) - &
CMPLX(g(ipol+1,n),kind=DP) * a(n)
gaux(nlm_d(n)) = CMPLX( 0.0_dp,-g(ipol,n),kind=DP)*CONJG(a(n)) + &
CMPLX(g(ipol+1,n),kind=DP) * CONJG(a(n))
ENDDO
!
! ... bring back to R-space, (\grad_ipol a)(r) ...
!
!$acc host_data use_device( gaux )
CALL invfft( 'Rho', gaux, dfft )
!$acc end host_data
!
! ... bring back to R-space, (\grad_ipol a)(r)
! ... add the factor 2\pi/a missing in the definition of q+G
!
!$acc parallel loop
DO n = 1, dfft%nnr
ga(ipol,n) = REAL( gaux(n), kind=DP ) * tpiba
ga(ipol+1,n) = AIMAG( gaux(n) ) * tpiba
ENDDO
! ... for z
ipol = 3
!$acc parallel loop
DO n = 1, dfft%nnr
gaux(n) = (0.0_dp,0.0_dp)
ENDDO
!
! ... multiply a(G) by iG to get the gradient in real space
!
!$acc parallel loop
DO n = 1, dfft%ngm
gaux(nl_d(n)) = CMPLX(g(ipol,n),kind=DP) * &
CMPLX( -AIMAG(a(n)), REAL(a(n)),kind=DP)
gaux(nlm_d(n)) = CONJG( gaux(nl_d(n)) )
ENDDO
!
! ... bring back to R-space, (\grad_ipol a)(r) ...
!
!$acc host_data use_device( gaux )
CALL invfft( 'Rho', gaux, dfft )
!$acc end host_data
!
! ...and add the factor 2\pi/a missing in the definition of G
!
!$acc parallel loop
DO n = 1, dfft%nnr
ga(ipol,n) = tpiba * REAL( gaux(n), kind=DP )
ENDDO
!
ELSE
!
DO ipol = 1, 3
!
!$acc parallel loop
DO n = 1, dfft%nnr
ga(ipol,n) = 0.D0
gaux(n) = (0.0_dp,0.0_dp)
ENDDO
!
! ... multiply a(G) by iG to get the gradient in real space
!
!$acc parallel loop
DO n = 1, dfft%ngm
gaux(nl_d(n)) = CMPLX(g(ipol,n), kind=DP) * &
CMPLX( -AIMAG(a(n)), REAL(a(n)), kind=DP)
ENDDO
!
! ... bring back to R-space, (\grad_ipol a)(r) ...
!
!$acc host_data use_device( gaux )
CALL invfft( 'Rho', gaux, dfft )
!$acc end host_data
!
! ...and add the factor 2\pi/a missing in the definition of G
!
!$acc parallel loop
DO n = 1, dfft%nnr
ga(ipol,n) = tpiba * REAL( gaux(n), kind=DP )
ENDDO
!
ENDDO
!
ENDIF
!
!$acc end data
DEALLOCATE( gaux )
!
!$acc end data
!
#if !defined(__CUDA) || !defined(_OPENACC)
!$acc end data
DEALLOCATE( nl_d )
IF ( dfft%lgamma ) DEALLOCATE( nlm_d )
#endif
!
RETURN
!
END SUBROUTINE fft_gradient_g2r
!
!
!----------------------------------------------------------------------------
SUBROUTINE fft_graddot( dfft, a, g, da )
!---------------------------------------------------------------------------
!! Calculates \( da = \sum_i \nabla_i a_i \) in R-space.
!
USE kinds, ONLY : DP
USE cell_base, ONLY : tpiba
USE fft_types, ONLY : fft_type_descriptor
USE fft_interfaces, ONLY : fwfft, invfft
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor), INTENT(IN) :: dfft
!! FFT descriptor
REAL(DP), INTENT(IN) :: a(3,dfft%nnr)
!! A real function on the real-space FFT grid
REAL(DP), INTENT(IN) :: g(3,dfft%ngm)
!! G-vectors, in \( 2\pi/a \) units
REAL(DP), INTENT(OUT) :: da(dfft%nnr)
!! \( \sum_i \nabla_i a_i \), real, on the real-space FFT grid
!
! ... local variables
!
INTEGER :: n, ipol
COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:)
COMPLEX(DP) :: fp, fm, aux1, aux2
!
#if defined(__CUDA) && defined(_OPENACC)
INTEGER, POINTER, DEVICE :: nl_d(:), nlm_d(:)
!
nl_d => dfft%nl_d
nlm_d => dfft%nlm_d
#else
INTEGER, ALLOCATABLE :: nl_d(:), nlm_d(:)
!
ALLOCATE( nl_d(dfft%ngm) )
nl_d = dfft%nl
IF ( dfft%lgamma ) THEN
ALLOCATE( nlm_d(dfft%ngm) )
nlm_d = dfft%nlm
ENDIF
!$acc data copyin( nl_d, nlm_d )
#endif
!
!$acc data present_or_copyin( a, g ) present_or_copyout( da )
!
ALLOCATE( aux(dfft%nnr), gaux(dfft%nnr) )
!$acc data create( aux, gaux )
!
!$acc parallel loop
DO n = 1, dfft%nnr
gaux(n) = (0.0_dp,0.0_dp)
ENDDO
!
IF ( dfft%lgamma ) THEN
!
! Gamma tricks: perform 2 FFT's in a single shot
! x and y
ipol = 1
!
!$acc parallel loop
DO n = 1, dfft%nnr
aux(n) = CMPLX( a(ipol,n), a(ipol+1,n), kind=DP)
ENDDO
!
! ... bring a(ipol,r) to G-space, a(G) ...
!
!$acc host_data use_device( aux )
CALL fwfft( 'Rho', aux, dfft )
!$acc end host_data
!
! ... multiply by iG to get the gradient in G-space
!
!$acc parallel loop
DO n = 1, dfft%ngm
fp = (aux(nl_d(n)) + aux(nlm_d(n)))*0.5_dp
fm = (aux(nl_d(n)) - aux(nlm_d(n)))*0.5_dp
aux1 = CMPLX( REAL(fp), AIMAG(fm), kind=DP)
aux2 = CMPLX(AIMAG(fp), -REAL(fm), kind=DP)
gaux(nl_d(n)) = &
CMPLX(0.0_dp, g(ipol ,n),kind=DP) * aux1 + &
CMPLX(0.0_dp, g(ipol+1,n),kind=DP) * aux2
ENDDO
! ... for z
ipol = 3
!$acc parallel loop
DO n = 1, dfft%nnr
aux(n) = CMPLX( a(ipol,n), 0.0_dp, kind=DP)
ENDDO
!
! ... bring a(ipol,r) to G-space, a(G) ...
!
!$acc host_data use_device( aux )
CALL fwfft( 'Rho', aux, dfft )
!$acc end host_data
!
! ... multiply by iG to get the gradient in G-space
! ... fill both gaux(G) and gaux(-G) = gaux*(G)
!
!$acc parallel loop
DO n = 1, dfft%ngm
gaux(nl_d(n)) = gaux(nl_d(n)) + CMPLX(g(ipol,n),kind=DP) * &
CMPLX( -AIMAG( aux(nl_d(n)) ), &
REAL( aux(nl_d(n)) ), kind=DP)
gaux(nlm_d(n)) = CONJG( gaux(nl_d(n)) )
ENDDO
!
ELSE
!
DO ipol = 1, 3
!
!$acc parallel loop
DO n = 1, dfft%nnr
aux(n) = CMPLX( a(ipol,n), 0.0_dp, kind=DP)
ENDDO
!
! ... bring a(ipol,r) to G-space, a(G) ...
!
!$acc host_data use_device( aux )
CALL fwfft( 'Rho', aux, dfft )
!$acc end host_data
!
! ... multiply by iG to get the gradient in G-space
!
!$acc parallel loop
DO n = 1, dfft%ngm
gaux(nl_d(n)) = gaux(nl_d(n)) + CMPLX(g(ipol,n),kind=DP) * &
CMPLX( -AIMAG( aux(nl_d(n)) ), &
REAL( aux(nl_d(n)),kind=DP ), kind=DP)
ENDDO
!
ENDDO
!
ENDIF
!
! ... bring back to R-space, (\grad_ipol a)(r) ...
!
!$acc host_data use_device( gaux )
CALL invfft( 'Rho', gaux, dfft )
!$acc end host_data
!
! ... add the factor 2\pi/a missing in the definition of G and sum
!
!$acc parallel loop
DO n = 1, dfft%nnr
da(n) = tpiba * REAL( gaux(n), kind=DP )
ENDDO
!
!$acc end data
DEALLOCATE( aux, gaux )
!
!$acc end data
!
#if !defined(__CUDA) || !defined(_OPENACC)
!$acc end data
DEALLOCATE( nl_d )
IF ( dfft%lgamma ) DEALLOCATE( nlm_d )
#endif
!
RETURN
!
END SUBROUTINE fft_graddot
!
!
!--------------------------------------------------------------------
SUBROUTINE fft_qgraddot ( dfft, a, xq, g, da)
!--------------------------------------------------------------------
!! Like \(\textrm{fft_graddot}\), for complex arrays having a \(e^{iqr}\)
!! dependency.
!
USE kinds, ONLY : DP
USE cell_base, ONLY : tpiba
USE fft_interfaces, ONLY : fwfft, invfft
USE fft_types, ONLY : fft_type_descriptor
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor), INTENT(IN) :: dfft
!! FFT descriptor
COMPLEX(DP), INTENT(IN) :: a(3,dfft%nnr)
!! a complex function on the real-space FFT grid
REAL(DP), INTENT(IN) :: xq(3)
!! q-vector, in \( 2\pi/a \) units
REAL(DP), INTENT(IN) :: g(3,dfft%ngm)
!! G-vectors, in \( 2\pi/a \) units
COMPLEX(DP), INTENT(OUT) :: da(dfft%nnr)
!! \( \sum_i \nabla_i a_i \), complex, on the real-space FFT grid
!
! ... local variables
!
INTEGER :: n, ipol
COMPLEX(DP), allocatable :: aux (:)
ALLOCATE (aux (dfft%nnr))
da(:) = (0.0_dp, 0.0_dp)
DO ipol = 1, 3
! copy a(ipol,r) to a complex array...
DO n = 1, dfft%nnr
aux (n) = a (ipol, n)
END DO
! bring a(ipol,r) to G-space, a(G) ...
CALL fwfft ('Rho', aux, dfft)
! multiply by i(q+G) to get (\grad_ipol a)(q+G) ...
DO n = 1, dfft%ngm
da (dfft%nl(n)) = da (dfft%nl(n)) + &
CMPLX(0.0_dp, xq (ipol) + g (ipol, n),kind=DP) * aux(dfft%nl(n))
END DO
END DO
IF ( dfft%lgamma ) THEN
DO n = 1, dfft%ngm
da (dfft%nlm(n)) = CONJG( da (dfft%nl(n)) )
END DO
END IF
! bring back to R-space, (\grad_ipol a)(r) ...
CALL invfft ('Rho', da, dfft)
! ...add the factor 2\pi/a missing in the definition of q+G
da (:) = da (:) * tpiba
DEALLOCATE(aux)
RETURN
END SUBROUTINE fft_qgraddot
!--------------------------------------------------------------------
! Routines computing laplacian via FFT
!--------------------------------------------------------------------
!--------------------------------------------------------------------
SUBROUTINE external_laplacian( a, lapla )
!--------------------------------------------------------------------
!! Interface for computing laplacian in real space, to be called by
!! an external module.
!
USE kinds, ONLY : DP
USE fft_base, ONLY : dfftp
USE gvect, ONLY : gg
!
IMPLICIT NONE
!
REAL(DP), INTENT(IN) :: a( dfftp%nnr )
!! A real function on the real-space FFT grid
REAL(DP), INTENT(OUT) :: lapla( dfftp%nnr )
!! Laplacian of \( {\bf a} \) in real space.
!
! A in real space, lapl(A) in real space
CALL fft_laplacian( dfftp, a, gg, lapla )
RETURN
END SUBROUTINE external_laplacian
!--------------------------------------------------------------------
SUBROUTINE fft_laplacian( dfft, a, gg, lapla )
!--------------------------------------------------------------------
!! Calculates \(\text{lapla} = \nabla^2(a)\).
!
USE kinds, ONLY : DP
USE cell_base, ONLY : tpiba2
USE fft_types, ONLY : fft_type_descriptor
USE fft_interfaces, ONLY : fwfft, invfft
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
!! FFT descriptor
REAL(DP), INTENT(IN) :: a(dfft%nnr)
!! A real function on the real-space FFT grid
REAL(DP), INTENT(IN) :: gg(dfft%ngm)
!! Square modules of G-vectors, in \( (2\pi/a)^2 \) units
REAL(DP), INTENT(OUT) :: lapla(dfft%nnr)
!! \(\text{lapla}(:)=\nabla^2(a)\), real, on the real-space FFT grid
!
! ... local variables
!
INTEGER :: ig
COMPLEX(DP), ALLOCATABLE :: aux(:), laux(:)
!
!
ALLOCATE( aux( dfft%nnr ) )
ALLOCATE( laux( dfft%nnr ) )
!
aux = CMPLX( a(:), 0.0_dp, kind=DP)
!
! ... bring a(r) to G-space, a(G) ...
!
CALL fwfft ('Rho', aux, dfft)
!
! ... Compute the laplacian
!
laux(:) = (0.0_dp, 0.0_dp)
!
DO ig = 1, dfft%ngm
!
laux(dfft%nl(ig)) = -gg(ig)*aux(dfft%nl(ig))
!
END DO
!
IF ( dfft%lgamma ) THEN
!
laux(dfft%nlm(:)) = CMPLX( REAL(laux(dfft%nl(:)) ), &
-AIMAG(laux(dfft%nl(:)) ), kind=DP)
!
ENDIF
!
! ... bring back to R-space, (\lapl a)(r) ...
!
CALL invfft ('Rho', laux, dfft)
!
! ... add the missing factor (2\pi/a)^2 in G
!
lapla = tpiba2 * REAL( laux )
!
DEALLOCATE( laux )
DEALLOCATE( aux )
!
RETURN
!
END SUBROUTINE fft_laplacian
!
!--------------------------------------------------------------------
! Routines computing hessian via FFT
!--------------------------------------------------------------------
!
!----------------------------------------------------------------------
SUBROUTINE fft_hessian_g2r ( dfft, a, g, ha )
!----------------------------------------------------------------------
!! Calculates \( \text{ha} = \text{hessian}(a) \)
!
USE kinds, ONLY : DP
USE cell_base, ONLY : tpiba
USE fft_types, ONLY : fft_type_descriptor
USE fft_interfaces, ONLY : fwfft, invfft
USE fft_helper_subroutines, ONLY : fftx_oned2threed
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
!! FFT descriptor
REAL(DP), INTENT(IN) :: g(3,dfft%ngm)
!! G-vectors, in \( (2\pi/a)^2 \) units.
COMPLEX(DP), INTENT(IN) :: a(dfft%ngm)
!! A real function on the real-space FFT grid.
REAL(DP), INTENT(OUT) :: ha( 6, dfft%nnr )
!! \( \text{Hessian}(a) \), real, on the real-space FFT grid.
!! Lower-packed matrix indeces 1-6 correspond to:
!! \(1=xx\), \(2=yx\), \(3=yy\), \(4=zx\), \(5=zy\), \(6=zz\).
!
! ... local variables
!
INTEGER :: ig, ir
COMPLEX(DP), ALLOCATABLE :: aux(:), haux(:,:)
!
IF ( .NOT. dfft%lgamma ) CALL errore ('fft_hessian_g2r',&
'only gamma case is implemented',1)
ALLOCATE ( aux(dfft%nnr))
ALLOCATE (haux(dfft%ngm,2))
! xx, yx
DO ig=1,dfft%ngm
haux(ig,1) = -tpiba**2*g(1,ig)**2 *a(ig)
haux(ig,2) = -tpiba**2*g(1,ig)*g(2,ig)*a(ig)
END DO
CALL fftx_oned2threed( dfft, aux, haux(:,1), haux(:,2) )
CALL invfft('Rho', aux, dfft)
DO ir=1,dfft%nnr
ha(1,ir) = DBLE(aux(ir))
ha(2,ir) =AIMAG(aux(ir))
END DO
! yy, zx
DO ig=1,dfft%ngm
haux(ig,1) = -tpiba**2*g(2,ig)**2 *a(ig)
haux(ig,2) = -tpiba**2*g(1,ig)*g(3,ig)*a(ig)
END DO
CALL fftx_oned2threed( dfft, aux, haux(:,1), haux(:,2) )
CALL invfft('Rho', aux, dfft)
DO ir=1,dfft%nnr
ha(3,ir) = DBLE(aux(ir))
ha(4,ir) =AIMAG(aux(ir))
END DO
! zy, zz
DO ig=1,dfft%ngm
haux(ig,1) = -tpiba**2*g(2,ig)*g(3,ig)*a(ig)
haux(ig,2) = -tpiba**2*g(3,ig)**2 *a(ig)
END DO
CALL fftx_oned2threed( dfft, aux, haux(:,1), haux(:,2) )
CALL invfft('Rho', aux, dfft)
DO ir=1,dfft%nnr
ha(5,ir) = DBLE(aux(ir))
ha(6,ir) =AIMAG(aux(ir))
END DO
!
DEALLOCATE(aux)
DEALLOCATE(haux)
END SUBROUTINE fft_hessian_g2r
!--------------------------------------------------------------------
SUBROUTINE fft_hessian( dfft, a, g, ga, ha )
!--------------------------------------------------------------------
!! Calculates \( \text{ga} = \nabla a\) and \(\text{ha} = \text{hessian}(a)\)
!
USE kinds, ONLY : DP
USE cell_base, ONLY : tpiba
USE fft_types, ONLY : fft_type_descriptor
USE fft_interfaces, ONLY : fwfft, invfft
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
!! FFT descriptor
REAL(DP), INTENT(IN) :: a(dfft%nnr)
!! A real function on the real-space FFT grid
REAL(DP), INTENT(IN) :: g(3,dfft%ngm)
!! G-vectors, in \( (2\pi/a)^2 \) units
REAL(DP), INTENT(OUT) :: ga(3,dfft%nnr)
!! \(\nabla a\), real, on the real-space FFT grid
REAL(DP), INTENT(OUT) :: ha(3,3,dfft%nnr)
!! \(text{hessian}(a)\), real, on the real-space FFT grid
!
! ... local variables
!
INTEGER :: ipol, jpol
COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:), haux(:)
!
!
ALLOCATE( aux( dfft%nnr ) )
ALLOCATE( gaux( dfft%nnr ) )
ALLOCATE( haux( dfft%nnr ) )
!
aux = CMPLX( a(:), 0.0_dp, kind=DP)
!
! ... bring a(r) to G-space, a(G) ...
!
CALL fwfft ('Rho', aux, dfft)
!
! ... multiply by (iG) to get (\grad_ipol a)(G) ...
!
DO ipol = 1, 3
!
gaux(:) = (0.0_dp,0.0_dp)
!
gaux(dfft%nl(:)) = g(ipol,:) * CMPLX( -AIMAG( aux(dfft%nl(:)) ), &
REAL( aux(dfft%nl(:)) ), kind=DP )
!
IF ( dfft%lgamma ) THEN
!
gaux(dfft%nlm(:)) = CMPLX( REAL( gaux(dfft%nl(:)) ), &
-AIMAG( gaux(dfft%nl(:)) ), kind=DP)
!
END IF
!
! ... bring back to R-space, (\grad_ipol a)(r) ...
!
CALL invfft ('Rho', gaux, dfft)
!
! ...and add the factor 2\pi/a missing in the definition of G
!
ga(ipol,:) = tpiba * REAL( gaux(:) )
!
! ... compute the second derivatives
!
DO jpol = 1, ipol
!
haux(:) = (0.0_dp,0.0_dp)
!
haux(dfft%nl(:)) = - g(ipol,:) * g(jpol,:) * &
CMPLX( REAL( aux(dfft%nl(:)) ), &
AIMAG( aux(dfft%nl(:)) ), kind=DP)
!
IF ( dfft%lgamma ) THEN
!
haux(dfft%nlm(:)) = CMPLX( REAL( haux(dfft%nl(:)) ), &
-AIMAG( haux(dfft%nl(:)) ), kind=DP)
!
END IF
!
! ... bring back to R-space, (\grad_ipol a)(r) ...
!
CALL invfft ('Rho', haux, dfft)
!
! ...and add the factor 2\pi/a missing in the definition of G
!
ha(ipol, jpol, :) = tpiba * tpiba * REAL( haux(:) )
!
ha(jpol, ipol, :) = ha(ipol, jpol, :)
!
END DO
!
END DO
!
DEALLOCATE( haux )
DEALLOCATE( gaux )
DEALLOCATE( aux )
!
RETURN
!
END SUBROUTINE fft_hessian
!--------------------------------------------------------------------
SUBROUTINE external_hessian( a, grada, hessa )
!--------------------------------------------------------------------
!! Interface for computing hessian in real space, to be called by
!! an external module.
!
USE kinds, ONLY : DP
USE fft_base, ONLY : dfftp
USE gvect, ONLY : g
!
IMPLICIT NONE
!
REAL(DP), INTENT(IN) :: a( dfftp%nnr )
!! A real function on the real-space FFT grid.
REAL(DP), INTENT(OUT) :: grada( 3, dfftp%nnr )
!! gradient in real space.
REAL(DP), INTENT(OUT) :: hessa( 3, 3, dfftp%nnr )
!! Hessian in real space.
!
! A in real space, grad(A) and hess(A) in real space
CALL fft_hessian( dfftp, a, g, grada, hessa )
RETURN
END SUBROUTINE external_hessian
!--------------------------------------------------------------------