quantum-espresso/GWW/minpack/lmder.f90

453 lines
15 KiB
Fortran

subroutine lmder(fcn,m,n,x,fvec,fjac,ldfjac,ftol,xtol,gtol, &
& maxfev,diag,mode,factor,nprint,info,nfev,njev, &
& ipvt,qtf,wa1,wa2,wa3,wa4)
integer m,n,ldfjac,maxfev,mode,nprint,info,nfev,njev
integer ipvt(n)
double precision ftol,xtol,gtol,factor
double precision x(n),fvec(m),fjac(ldfjac,n),diag(n),qtf(n), &
& wa1(n),wa2(n),wa3(n),wa4(m)
! **********
!
! subroutine lmder
!
! the purpose of lmder is to minimize the sum of the squares of
! m nonlinear functions in n variables by a modification of
! the levenberg-marquardt algorithm. the user must provide a
! subroutine which calculates the functions and the jacobian.
!
! the subroutine statement is
!
! subroutine lmder(fcn,m,n,x,fvec,fjac,ldfjac,ftol,xtol,gtol,
! maxfev,diag,mode,factor,nprint,info,nfev,
! njev,ipvt,qtf,wa1,wa2,wa3,wa4)
!
! where
!
! fcn is the name of the user-supplied subroutine which
! calculates the functions and the jacobian. fcn must
! be declared in an external statement in the user
! calling program, and should be written as follows.
!
! subroutine fcn(m,n,x,fvec,fjac,ldfjac,iflag)
! integer m,n,ldfjac,iflag
! double precision x(n),fvec(m),fjac(ldfjac,n)
! ----------
! if iflag = 1 calculate the functions at x and
! return this vector in fvec. do not alter fjac.
! if iflag = 2 calculate the jacobian at x and
! return this matrix in fjac. do not alter fvec.
! ----------
! return
! end
!
! the value of iflag should not be changed by fcn unless
! the user wants to terminate execution of lmder.
! in this case set iflag to a negative integer.
!
! m is a positive integer input variable set to the number
! of functions.
!
! n is a positive integer input variable set to the number
! of variables. n must not exceed m.
!
! x is an array of length n. on input x must contain
! an initial estimate of the solution vector. on output x
! contains the final estimate of the solution vector.
!
! fvec is an output array of length m which contains
! the functions evaluated at the output x.
!
! fjac is an output m by n array. the upper n by n submatrix
! of fjac contains an upper triangular matrix r with
! diagonal elements of nonincreasing magnitude such that
!
! t t t
! p *(jac *jac)*p = r *r,
!
! where p is a permutation matrix and jac is the final
! calculated jacobian. column j of p is column ipvt(j)
! (see below) of the identity matrix. the lower trapezoidal
! part of fjac contains information generated during
! the computation of r.
!
! ldfjac is a positive integer input variable not less than m
! which specifies the leading dimension of the array fjac.
!
! ftol is a nonnegative input variable. termination
! occurs when both the actual and predicted relative
! reductions in the sum of squares are at most ftol.
! therefore, ftol measures the relative error desired
! in the sum of squares.
!
! xtol is a nonnegative input variable. termination
! occurs when the relative error between two consecutive
! iterates is at most xtol. therefore, xtol measures the
! relative error desired in the approximate solution.
!
! gtol is a nonnegative input variable. termination
! occurs when the cosine of the angle between fvec and
! any column of the jacobian is at most gtol in absolute
! value. therefore, gtol measures the orthogonality
! desired between the function vector and the columns
! of the jacobian.
!
! maxfev is a positive integer input variable. termination
! occurs when the number of calls to fcn with iflag = 1
! has reached maxfev.
!
! diag is an array of length n. if mode = 1 (see
! below), diag is internally set. if mode = 2, diag
! must contain positive entries that serve as
! multiplicative scale factors for the variables.
!
! mode is an integer input variable. if mode = 1, the
! variables will be scaled internally. if mode = 2,
! the scaling is specified by the input diag. other
! values of mode are equivalent to mode = 1.
!
! factor is a positive input variable used in determining the
! initial step bound. this bound is set to the product of
! factor and the euclidean norm of diag*x if nonzero, or else
! to factor itself. in most cases factor should lie in the
! interval (.1,100.).100. is a generally recommended value.
!
! nprint is an integer input variable that enables controlled
! printing of iterates if it is positive. in this case,
! fcn is called with iflag = 0 at the beginning of the first
! iteration and every nprint iterations thereafter and
! immediately prior to return, with x, fvec, and fjac
! available for printing. fvec and fjac should not be
! altered. if nprint is not positive, no special calls
! of fcn with iflag = 0 are made.
!
! info is an integer output variable. if the user has
! terminated execution, info is set to the (negative)
! value of iflag. see description of fcn. otherwise,
! info is set as follows.
!
! info = 0 improper input parameters.
!
! info = 1 both actual and predicted relative reductions
! in the sum of squares are at most ftol.
!
! info = 2 relative error between two consecutive iterates
! is at most xtol.
!
! info = 3 conditions for info = 1 and info = 2 both hold.
!
! info = 4 the cosine of the angle between fvec and any
! column of the jacobian is at most gtol in
! absolute value.
!
! info = 5 number of calls to fcn with iflag = 1 has
! reached maxfev.
!
! info = 6 ftol is too small. no further reduction in
! the sum of squares is possible.
!
! info = 7 xtol is too small. no further improvement in
! the approximate solution x is possible.
!
! info = 8 gtol is too small. fvec is orthogonal to the
! columns of the jacobian to machine precision.
!
! nfev is an integer output variable set to the number of
! calls to fcn with iflag = 1.
!
! njev is an integer output variable set to the number of
! calls to fcn with iflag = 2.
!
! ipvt is an integer output array of length n. ipvt
! defines a permutation matrix p such that jac*p = q*r,
! where jac is the final calculated jacobian, q is
! orthogonal (not stored), and r is upper triangular
! with diagonal elements of nonincreasing magnitude.
! column j of p is column ipvt(j) of the identity matrix.
!
! qtf is an output array of length n which contains
! the first n elements of the vector (q transpose)*fvec.
!
! wa1, wa2, and wa3 are work arrays of length n.
!
! wa4 is a work array of length m.
!
! subprograms called
!
! user-supplied ...... fcn
!
! minpack-supplied ... dpmpar,enorm,lmpar,qrfac
!
! fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod
!
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
!
! **********
integer i,iflag,iter,j,l
double precision actred,delta,dirder,epsmch,fnorm,fnorm1,gnorm, &
& one,par,pnorm,prered,p1,p5,p25,p75,p0001,ratio, &
& sum,temp,temp1,temp2,xnorm,zero
double precision dpmpar,enorm
data one,p1,p5,p25,p75,p0001,zero &
& /1.0d0,1.0d-1,5.0d-1,2.5d-1,7.5d-1,1.0d-4,0.0d0/
!
! epsmch is the machine precision.
!
epsmch = dpmpar(1)
!
info = 0
iflag = 0
nfev = 0
njev = 0
!
! check the input parameters for errors.
!
if (n .le. 0 .or. m .lt. n .or. ldfjac .lt. m &
& .or. ftol .lt. zero .or. xtol .lt. zero .or. gtol .lt. zero &
& .or. maxfev .le. 0 .or. factor .le. zero) go to 300
if (mode .ne. 2) go to 20
do 10 j = 1, n
if (diag(j) .le. zero) go to 300
10 continue
20 continue
!
! evaluate the function at the starting point
! and calculate its norm.
!
iflag = 1
call fcn(m,n,x,fvec,fjac,ldfjac,iflag)
nfev = 1
if (iflag .lt. 0) go to 300
fnorm = enorm(m,fvec)
!
! initialize levenberg-marquardt parameter and iteration counter.
!
par = zero
iter = 1
!
! beginning of the outer loop.
!
30 continue
!
! calculate the jacobian matrix.
!
iflag = 2
call fcn(m,n,x,fvec,fjac,ldfjac,iflag)
njev = njev + 1
if (iflag .lt. 0) go to 300
!
! if requested, call fcn to enable printing of iterates.
!
if (nprint .le. 0) go to 40
iflag = 0
if (mod(iter-1,nprint) .eq. 0) &
& call fcn(m,n,x,fvec,fjac,ldfjac,iflag)
if (iflag .lt. 0) go to 300
40 continue
!
! compute the qr factorization of the jacobian.
!
call qrfac(m,n,fjac,ldfjac,.true.,ipvt,n,wa1,wa2,wa3)
!
! on the first iteration and if mode is 1, scale according
! to the norms of the columns of the initial jacobian.
!
if (iter .ne. 1) go to 80
if (mode .eq. 2) go to 60
do 50 j = 1, n
diag(j) = wa2(j)
if (wa2(j) .eq. zero) diag(j) = one
50 continue
60 continue
!
! on the first iteration, calculate the norm of the scaled x
! and initialize the step bound delta.
!
do 70 j = 1, n
wa3(j) = diag(j)*x(j)
70 continue
xnorm = enorm(n,wa3)
delta = factor*xnorm
if (delta .eq. zero) delta = factor
80 continue
!
! form (q transpose)*fvec and store the first n components in
! qtf.
!
do 90 i = 1, m
wa4(i) = fvec(i)
90 continue
do 130 j = 1, n
if (fjac(j,j) .eq. zero) go to 120
sum = zero
do 100 i = j, m
sum = sum + fjac(i,j)*wa4(i)
100 continue
temp = -sum/fjac(j,j)
do 110 i = j, m
wa4(i) = wa4(i) + fjac(i,j)*temp
110 continue
120 continue
fjac(j,j) = wa1(j)
qtf(j) = wa4(j)
130 continue
!
! compute the norm of the scaled gradient.
!
gnorm = zero
if (fnorm .eq. zero) go to 170
do 160 j = 1, n
l = ipvt(j)
if (wa2(l) .eq. zero) go to 150
sum = zero
do 140 i = 1, j
sum = sum + fjac(i,j)*(qtf(i)/fnorm)
140 continue
gnorm = dmax1(gnorm,dabs(sum/wa2(l)))
150 continue
160 continue
170 continue
!
! test for convergence of the gradient norm.
!
if (gnorm .le. gtol) info = 4
if (info .ne. 0) go to 300
!
! rescale if necessary.
!
if (mode .eq. 2) go to 190
do 180 j = 1, n
diag(j) = dmax1(diag(j),wa2(j))
180 continue
190 continue
!
! beginning of the inner loop.
!
200 continue
!
! determine the levenberg-marquardt parameter.
!
call lmpar(n,fjac,ldfjac,ipvt,diag,qtf,delta,par,wa1,wa2, &
& wa3,wa4)
!
! store the direction p and x + p. calculate the norm of p.
!
do 210 j = 1, n
wa1(j) = -wa1(j)
wa2(j) = x(j) + wa1(j)
wa3(j) = diag(j)*wa1(j)
210 continue
pnorm = enorm(n,wa3)
!
! on the first iteration, adjust the initial step bound.
!
if (iter .eq. 1) delta = dmin1(delta,pnorm)
!
! evaluate the function at x + p and calculate its norm.
!
iflag = 1
call fcn(m,n,wa2,wa4,fjac,ldfjac,iflag)
nfev = nfev + 1
if (iflag .lt. 0) go to 300
fnorm1 = enorm(m,wa4)
!
! compute the scaled actual reduction.
!
actred = -one
if (p1*fnorm1 .lt. fnorm) actred = one - (fnorm1/fnorm)**2
!
! compute the scaled predicted reduction and
! the scaled directional derivative.
!
do 230 j = 1, n
wa3(j) = zero
l = ipvt(j)
temp = wa1(l)
do 220 i = 1, j
wa3(i) = wa3(i) + fjac(i,j)*temp
220 continue
230 continue
temp1 = enorm(n,wa3)/fnorm
temp2 = (dsqrt(par)*pnorm)/fnorm
prered = temp1**2 + temp2**2/p5
dirder = -(temp1**2 + temp2**2)
!
! compute the ratio of the actual to the predicted
! reduction.
!
ratio = zero
if (prered .ne. zero) ratio = actred/prered
!
! update the step bound.
!
if (ratio .gt. p25) go to 240
if (actred .ge. zero) temp = p5
if (actred .lt. zero) &
& temp = p5*dirder/(dirder + p5*actred)
if (p1*fnorm1 .ge. fnorm .or. temp .lt. p1) temp = p1
delta = temp*dmin1(delta,pnorm/p1)
par = par/temp
go to 260
240 continue
if (par .ne. zero .and. ratio .lt. p75) go to 250
delta = pnorm/p5
par = p5*par
250 continue
260 continue
!
! test for successful iteration.
!
if (ratio .lt. p0001) go to 290
!
! successful iteration. update x, fvec, and their norms.
!
do 270 j = 1, n
x(j) = wa2(j)
wa2(j) = diag(j)*x(j)
270 continue
do 280 i = 1, m
fvec(i) = wa4(i)
280 continue
xnorm = enorm(n,wa2)
fnorm = fnorm1
iter = iter + 1
290 continue
!
! tests for convergence.
!
if (dabs(actred) .le. ftol .and. prered .le. ftol &
& .and. p5*ratio .le. one) info = 1
if (delta .le. xtol*xnorm) info = 2
if (dabs(actred) .le. ftol .and. prered .le. ftol &
& .and. p5*ratio .le. one .and. info .eq. 2) info = 3
if (info .ne. 0) go to 300
!
! tests for termination and stringent tolerances.
!
if (nfev .ge. maxfev) info = 5
if (dabs(actred) .le. epsmch .and. prered .le. epsmch &
& .and. p5*ratio .le. one) info = 6
if (delta .le. epsmch*xnorm) info = 7
if (gnorm .le. epsmch) info = 8
if (info .ne. 0) go to 300
!
! end of the inner loop. repeat if iteration unsuccessful.
!
if (ratio .lt. p0001) go to 200
!
! end of the outer loop.
!
go to 30
300 continue
!
! termination, either normal or user imposed.
!
if (iflag .lt. 0) info = iflag
iflag = 0
if (nprint .gt. 0) call fcn(m,n,x,fvec,fjac,ldfjac,iflag)
return
!
! last card of subroutine lmder.
!
end