quantum-espresso/CPV/examples/example06/reference/h2o.wannier.out

353 lines
13 KiB
Plaintext

=------------------------------------------------------------------------------=
CP: variable-cell Car-Parrinello molecular dynamics
using norm-conserving and ultrasoft Vanderbilt pseudopotentials
Version: 4.1CVS - Wed Mar 11 17:41:02 CET 2009
Authors: Alfredo Pasquarello, Kari Laasonen, Andrea Trave, Roberto Car,
Paolo Giannozzi, Nicola Marzari, Carlo Cavazzoni, Guido Chiarotti,
Sandro Scandolo, Paolo Focher, Gerardo Ballabio, and others
=------------------------------------------------------------------------------=
This run was started on: 11:22:23 17Mar2009
Serial Build
Job Title: MD Simulation
Atomic Pseudopotentials Parameters
----------------------------------
Reading pseudopotential for specie # 1 from file :
/home/giannozz/espresso/espresso/pseudo/O.blyp-mt.UPF
file type is 20: UPF
Reading pseudopotential for specie # 2 from file :
/home/giannozz/espresso/espresso/pseudo/H.blyp-vbc.UPF
file type is 20: UPF
Main Simulation Parameters (from input)
---------------------------------------
Restart Mode = 1 restart
Number of MD Steps = 1000
Print out every 1 MD Steps
Reads from unit = 50
Writes to unit = 51
MD Simulation time step = 1.00
Electronic fictitious mass (emass) = 400.00
emass cut-off = 3.00
Simulation Cell Parameters (from input)
external pressure = 0.00 [GPa]
wmass (calculated) = 1385.23 [AU]
ibrav = 1
alat = 16.00000000
a1 = 16.00000000 0.00000000 0.00000000
a2 = 0.00000000 16.00000000 0.00000000
a3 = 0.00000000 0.00000000 16.00000000
b1 = 0.06250000 0.00000000 0.00000000
b2 = 0.00000000 0.06250000 0.00000000
b3 = 0.00000000 0.00000000 0.06250000
omega = 4096.00000000
========================================
| CONJUGATE GRADIENT |
========================================
| iterations = 250 |
| conv_thr = 0.00000001000 a.u. |
| passop = 0.30000 a.u. |
| niter_cg_restart = 20 |
========================================
Energy Cut-offs
---------------
Ecutwfc = 70.0 Ry, Ecutrho = 280.0 Ry, Ecuts = 280.0 Ry
Gcutwfc = 21.3 , Gcutrho = 42.6 Gcuts = 42.6
NOTA BENE: refg, mmx = 0.050000 11200
Orthog. with Gram-Schmidt
verlet algorithm for electron dynamics
with friction frice = 0.1000 , grease = 1.0000
Electron dynamics : the temperature is not controlled
Electronic states
-----------------
Number of Electron = 8, of States = 4
Occupation numbers :
2.00 2.00 2.00 2.00
Exchange and correlations functionals
-------------------------------------
Using Local Density Approximation with
Exchange functional: SLATER
Correlation functional: LEE, YANG, AND PARR
Using Generalized Gradient Corrections with
Exchange functional: BECKE
Correlation functional: PERDEW AND WANG
Exchange-correlation = SLA LYP B88 BLYP (1313)
Ions Simulation Parameters
--------------------------
Ions are not allowed to move
Ionic position (from input)
sorted by specie, and converted to real a.u. coordinates
Species 1 atoms = 1 mass = 14583.11 (a.u.), 8.00 (amu) rcmax = 0.50 (a.u.)
5.093750 5.093750 5.093750
Species 2 atoms = 2 mass = 1822.89 (a.u.), 1.00 (amu) rcmax = 0.50 (a.u.)
3.648509 5.093750 3.967985
6.538991 5.093750 3.967985
Ionic position will be re-read from restart file
Cell Dynamics Parameters (from STDIN)
-------------------------------------
Starting cell generated from CELLDM
Cell parameters will be re-read from restart file
Constant VOLUME Molecular dynamics
cell parameters are not allowed to move
Verbosity: iprsta = 1
Simulation dimensions initialization
------------------------------------
unit vectors of full simulation cell
in real space: in reciprocal space (units 2pi/alat):
1 16.0000 0.0000 0.0000 1.0000 0.0000 0.0000
2 0.0000 16.0000 0.0000 0.0000 1.0000 0.0000
3 0.0000 0.0000 16.0000 0.0000 0.0000 1.0000
Stick Mesh
----------
nst = 2857, nstw = 717, nsts = 2857
PEs n.st n.stw n.sts n.g n.gw n.gs
1 5713 1433 5713 324157 40483 324157
0 5713 1433 5713 324157 40483 324157
Real Mesh
---------
Global Dimensions Local Dimensions Processor Grid
.X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z.
90 90 90 90 90 90 1 1 1
Array leading dimensions ( nr1x, nr2x, nr3x ) = 90 90 90
Local number of cell to store the grid ( nnrx ) = 729000
Number of x-y planes for each processors:
nr3l = 90
Smooth Real Mesh
----------------
Global Dimensions Local Dimensions Processor Grid
.X. .Y. .Z. .X. .Y. .Z. .X. .Y. .Z.
90 90 90 90 90 90 1 1 1
Array leading dimensions ( nr1x, nr2x, nr3x ) = 90 90 90
Local number of cell to store the grid ( nnrx ) = 729000
Number of x-y planes for each processors:
nr3sl = 90
Reciprocal Space Mesh
---------------------
Large Mesh
PE Global(ngmt) Local(ngm) MaxLocal(ngmx)
1 162079 162079 162079
Smooth Mesh
PE Global(ngst) Local(ngs) MaxLocal(ngsx)
1 162079 162079 162079
Wave function Mesh
PE Global(ngwt) Local(ngw) MaxLocal(ngwx)
1 20242 20242 20242
System geometry initialization
------------------------------
Scaled positions from standard input
O 0.318359E+00 0.318359E+00 0.318359E+00
H 0.228032E+00 0.318359E+00 0.247999E+00
H 0.408687E+00 0.318359E+00 0.247999E+00
ibrav = 1 cell parameters
16.00000 0.00000 0.00000
0.00000 16.00000 0.00000
0.00000 0.00000 16.00000
Pseudopotentials initialization
-------------------------------
Common initialization
Specie: 1
1 indv= 1 ang. mom= 0
dion
0.2253
Specie: 2
dion
IBRAV SELECTED: 1
WANNIER SETUP : check G vectors and weights
inw = 1: 1 0 0 1.000000
inw = 2: 0 1 0 1.000000
inw = 3: 0 0 1 1.000000
Translations to be done 3
ibrav selected: 1
Translation 1 for 20242 G vectors
Translation 2 for 20242 G vectors
Translation 3 for 20242 G vectors
Short Legend and Physical Units in the Output
---------------------------------------------
NFI [int] - step index
EKINC [HARTREE A.U.] - kinetic energy of the fictitious electronic dynamics
TEMPH [K] - Temperature of the fictitious cell dynamics
TEMP [K] - Ionic temperature
ETOT [HARTREE A.U.] - Scf total energy (Kohn-Sham hamiltonian)
ENTHAL [HARTREE A.U.] - Enthalpy ( ETOT + P * V )
ECONS [HARTREE A.U.] - Enthalpy + kinetic energy of ions and cell
ECONT [HARTREE A.U.] - Constant of motion for the CP lagrangian
reading restart file: /home/giannozz/tmp//h2o_mol_50.save
restart file read in 0.023 sec.
nprint_nfi= -2
nprint_nfi= 3
formf: eself= 30.31961
formf: vps(g=0)= -0.0008731 rhops(g=0)= -0.0014648
formf: sum_g vps(g)= -1.7560905 sum_g rhops(g)= -4.3108228
formf: vps(g=0)= -0.0002027 rhops(g=0)= -0.0002441
formf: sum_g vps(g)= -2.0909708 sum_g rhops(g)= -0.7184705
Delta V(G=0): 0.001534Ry, 0.041742eV
PERFORMING CONJUGATE GRADIENT MINIMIZATION OF EL. STATES
cg_sub: missed minimum, case 3, iteration 1
cg_sub: missed minimum, case 2, iteration 5
nfi ekinc temph tempp etot enthal econs econt vnhh xnhh0 vnhp xnhp0
nfi tempp E -T.S-mu.nbsp +K_p #Iter
Step 4 0 -17.17481 -17.17481 -17.17481 6
1.00000000000000 0.000000000000000E+000 0.000000000000000E+000
0.000000000000000E+000
0.000000000000000E+000 1.00000000000000 0.000000000000000E+000
0.000000000000000E+000
0.000000000000000E+000 0.000000000000000E+000 1.00000000000000
0.000000000000000E+000
0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000
1.00000000000000
Initial spread : 0.123934984832669
Tournus numero : 1
1 7.976273044040344E-002
Tournus numero : 2
2 7.460151488884242E-002
Tournus numero : 3
3 7.391425025211217E-002
Tournus numero : 4
4 7.376183634401831E-002
Tournus numero : 5
5 7.373517685661003E-002
Tournus numero : 6
6 7.373085280779126E-002
Tournus numero : 7
7 7.373021316495980E-002
Tournus numero : 8
8 7.373012054807992E-002
Tournus numero : 9
9 7.373010726983334E-002
Tournus numero : 10
10 7.373010536629893E-002
Tournus numero : 11
11 7.373010509313195E-002
Tournus numero : 12
12 7.373010505388439E-002
Tournus numero : 13
13 7.373010504824155E-002
Tournus numero : 14
14 7.373010504742997E-002
Tournus numero : 15
15 7.373010504731324E-002
Tournus numero : 16
16 7.373010504729642E-002
Tournus numero : 17
17 7.373010504729402E-002
Arret : 17 7.373010504729402E-002
1.00000000000000 0.000000000000000E+000 0.000000000000000E+000
0.000000000000000E+000
0.000000000000000E+000 1.00000000000000 0.000000000000000E+000
0.000000000000000E+000
0.000000000000000E+000 0.000000000000000E+000 1.00000000000000
0.000000000000000E+000
0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000
1.00000000000000
Initial spread : 0.123935088953706
Tournus numero : 1
1 7.976285415533411E-002
Tournus numero : 2
2 7.460152989771232E-002
Tournus numero : 3
3 7.391425385505250E-002
Tournus numero : 4
4 7.376183636946218E-002
Tournus numero : 5
5 7.373517603603531E-002
Tournus numero : 6
6 7.373085178352386E-002
Tournus numero : 7
7 7.373021209789221E-002
Tournus numero : 8
8 7.373011947276124E-002
Tournus numero : 9
9 7.373010619302313E-002
Tournus numero : 10
10 7.373010428923031E-002
Tournus numero : 11
11 7.373010401601987E-002
Tournus numero : 12
12 7.373010397676515E-002
Tournus numero : 13
13 7.373010397112116E-002
Tournus numero : 14
14 7.373010397030938E-002
Tournus numero : 15
15 7.373010397019258E-002
Tournus numero : 16
16 7.373010397017578E-002
Tournus numero : 17
17 7.373010397017335E-002
Arret : 17 7.373010397017335E-002
writing restart file: /home/giannozz/tmp//h2o_mol_51.save
restart file written in 0.098 sec.
CP : 11.31s CPU time, 11.63s wall time
This run was terminated on: 11:22:35 17Mar2009
=------------------------------------------------------------------------------=
JOB DONE.
=------------------------------------------------------------------------------=
Wannier functions centers:
4.32980992237975 5.09375384407030 4.46145702628894
5.09376804313364 5.60291753775800 5.35351891613608
5.09373744359639 4.58456794425987 5.35354172609476
5.85768369794555 5.09373238952404 4.46145457705008
Spread of the 1 -th wannier function is 1.29482146061484
Spread of the 2 -th wannier function is 1.37631742505141
Spread of the 3 -th wannier function is 1.37633126163902
Spread of the 4 -th wannier function is 1.29482392602192