quantum-espresso/upflib/simpsn.f90

143 lines
4.5 KiB
Fortran

!
! Copyright (C) 2001-2012 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!-----------------------------------------------------------------------
SUBROUTINE simpson(mesh, func, rab, asum)
!$acc routine vector
!-----------------------------------------------------------------------
!
! simpson's rule integration. On input:
! mesh = the number of grid points (should be odd)
! func(i)= function to be integrated
! rab(i) = r(i) * dr(i)/di * di
! For the logarithmic grid not including r=0 :
! r(i) = r_0*exp((i-1)*dx) ==> rab(i)=r(i)*dx
! For the logarithmic grid including r=0 :
! r(i) = a(exp((i-1)*dx)-1) ==> rab(i)=(r(i)+a)*dx
! Output in asum = \sum_i c_i f(i)*rab(i) = \int_0^\infty f(r) dr
! where c_i are alternativaly 2/3, 4/3 except c_1 = c_mesh = 1/3
!
USE upf_kinds, ONLY: DP
IMPLICIT NONE
INTEGER, INTENT(in) :: mesh
real(DP), INTENT(in) :: rab(mesh), func(mesh)
real(DP), INTENT(out):: asum
!
real(DP) :: f1, f2, f3, r12, fct
INTEGER :: i
!
asum = 0.0d0
r12 = 1.0d0 / 3.0d0
!
!$acc loop vector reduction(+:asum)
DO i = 2, mesh-1
fct = DBLE(ABS(MOD(i,2)-2)*2)
asum = asum + fct * func(i) * rab(i)
ENDDO
IF (MOD(mesh,2)==1) THEN
asum = (asum + func(1)*rab(1) + func(mesh)*rab(mesh)) * r12
ELSE
asum = (asum + func(1)*rab(1) - func(mesh-1)*rab(mesh-1)) * r12
ENDIF
!
! if mesh is not odd, use open formula instead:
! ... 2/3*f(n-5) + 4/3*f(n-4) + 13/12*f(n-3) + 0*f(n-2) + 27/12*f(n-1)
!** Under testing
!
!IF ( MOD(mesh,2) == 0 ) THEN
! print *, 'mesh even: correction:', f1*5.d0/4.d0-4.d0*f2+23.d0*f3/4.d0, &
! func(mesh)*rab(mesh), asum
! asum = asum + f1*5.d0/4.d0 - 4.d0*f2 + 23.d0*f3/4.d0
!END IF
RETURN
END SUBROUTINE simpson
!=-----------------------------------------------------------------------
SUBROUTINE simpson_cp90( mesh, func, rab, asum )
!-----------------------------------------------------------------------
!
! This routine computes the integral of a function defined on a
! logaritmic mesh, by using the open simpson formula given on
! pag. 109 of Numerical Recipes. In principle it is used to
! perform integrals from zero to infinity. The first point of
! the function should be the closest to zero but not the value
! in zero. The formula used here automatically includes the
! contribution from the zero point and no correction is required.
!
! Input as "simpson". At least 8 integrating points are required.
!
! last revised 12 May 1995 by Andrea Dal Corso
!
USE upf_kinds, ONLY: DP
IMPLICIT NONE
INTEGER, INTENT(in) :: mesh
real(DP), INTENT(in) :: rab (mesh), func (mesh)
real(DP), INTENT(out):: asum
!
real(DP) :: c(4)
INTEGER ::i
!
IF ( mesh < 8 ) CALL upf_error('simpson_cp90','few mesh points',8)
c(1) = 109.0d0 / 48.d0
c(2) = -5.d0 / 48.d0
c(3) = 63.d0 / 48.d0
c(4) = 49.d0 / 48.d0
asum = ( func(1)*rab(1) + func(mesh )*rab(mesh ) )*c(1) &
+ ( func(2)*rab(2) + func(mesh-1)*rab(mesh-1) )*c(2) &
+ ( func(3)*rab(3) + func(mesh-2)*rab(mesh-2) )*c(3) &
+ ( func(4)*rab(4) + func(mesh-3)*rab(mesh-3) )*c(4)
DO i=5,mesh-4
asum = asum + func(i)*rab(i)
ENDDO
RETURN
END SUBROUTINE simpson_cp90
!
!-----------------------------------------------------------------------
SUBROUTINE herman_skillman_int(mesh,func,rab,asum)
!-----------------------------------------------------------------------
! simpson rule integration for herman skillman mesh (obsolescent)
! Input as in "simpson". BEWARE: "func" is overwritten!!!
!
USE upf_kinds, ONLY: DP
IMPLICIT NONE
INTEGER, INTENT(in) :: mesh
real(DP), INTENT(in) :: rab (mesh)
real(DP), INTENT(inout) :: func (mesh)
real(DP), INTENT(out):: asum
!
INTEGER :: i, j, k, i1, nblock
REAL(DP) :: a1, a2e, a2o, a2es
!
a1=0.0d0
a2e=0.0d0
asum=0.0d0
nblock=mesh/40
i=1
func(1)=0.0d0
DO j=1,nblock
DO k=1,20
i=i+2
i1=i-1
a2es=a2e
a2o=func(i1)/12.0d0
a2e=func(i)/12.0d0
a1=a1+5.0d0*a2es+8.0d0*a2o-a2e
func(i1)=asum+a1*rab(i1)
a1=a1-a2es+8.0d0*a2o+5.0d0*a2e
func(i)=asum+a1*rab(i)
ENDDO
asum=func(i)
a1=0.0d0
ENDDO
!
RETURN
END SUBROUTINE herman_skillman_int