mirror of https://gitlab.com/QEF/q-e.git
304 lines
13 KiB
Plaintext
304 lines
13 KiB
Plaintext
|
|
``:oss/
|
|
`.+s+. .+ys--yh+ `./ss+.
|
|
-sh//yy+` +yy +yy -+h+-oyy
|
|
-yh- .oyy/.-sh. .syo-.:sy- /yh
|
|
`.-.` `yh+ -oyyyo. `/syys: oys `.`
|
|
`/+ssys+-` `sh+ ` oys` .:osyo`
|
|
-yh- ./syyooyo` .sys+/oyo--yh/
|
|
`yy+ .-:-. `-/+/:` -sh-
|
|
/yh. oys
|
|
``..---hho---------` .---------..` `.-----.` -hd+---.
|
|
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
|
|
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
|
|
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
|
|
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
|
|
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
|
|
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
|
|
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
|
|
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
|
|
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
|
|
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
|
|
-yh- ```````````````` ````````` `` `` oys
|
|
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
|
|
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
|
|
|
|
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
|
|
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
|
|
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
|
|
npj Comput Mater 9, 156 (2023)
|
|
|
|
|
|
Program EPW v.5.8 starts on 9Jan2024 at 13:53:51
|
|
|
|
This program is part of the open-source Quantum ESPRESSO suite
|
|
for quantum simulation of materials; please cite
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
|
|
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
|
|
URL http://www.quantum-espresso.org",
|
|
in publications or presentations arising from this work. More details at
|
|
http://www.quantum-espresso.org/quote
|
|
|
|
Parallel version (MPI), running on 4 processors
|
|
|
|
MPI processes distributed on 1 nodes
|
|
K-points division: npool = 4
|
|
33652 MiB available memory on the printing compute node when the environment starts
|
|
|
|
Reading input from epw3.in
|
|
|
|
Reading supplied temperature list.
|
|
|
|
------------------------------------------------------------------------
|
|
RESTART - RESTART - RESTART - RESTART
|
|
Restart is done without reading PWSCF save file.
|
|
Be aware that some consistency checks are therefore not done.
|
|
------------------------------------------------------------------------
|
|
|
|
|
|
--
|
|
|
|
bravais-lattice index = 0
|
|
lattice parameter (a_0) = 0.0000 a.u.
|
|
unit-cell volume = 0.0000 (a.u.)^3
|
|
number of atoms/cell = 0
|
|
number of atomic types = 0
|
|
kinetic-energy cut-off = 0.0000 Ry
|
|
charge density cut-off = 0.0000 Ry
|
|
Exchange-correlation= not set
|
|
( -1 -1 -1 -1 -1 -1 -1)
|
|
|
|
|
|
celldm(1)= 0.00000 celldm(2)= 0.00000 celldm(3)= 0.00000
|
|
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
|
|
|
|
crystal axes: (cart. coord. in units of a_0)
|
|
a(1) = ( 0.0000 0.0000 0.0000 )
|
|
a(2) = ( 0.0000 0.0000 0.0000 )
|
|
a(3) = ( 0.0000 0.0000 0.0000 )
|
|
|
|
reciprocal axes: (cart. coord. in units 2 pi/a_0)
|
|
b(1) = ( 0.0000 0.0000 0.0000 )
|
|
b(2) = ( 0.0000 0.0000 0.0000 )
|
|
b(3) = ( 0.0000 0.0000 0.0000 )
|
|
|
|
|
|
Atoms inside the unit cell:
|
|
|
|
Cartesian axes
|
|
|
|
site n. atom mass positions (a_0 units)
|
|
|
|
|
|
No symmetry!
|
|
|
|
G cutoff = 0.0000 ( 0 G-vectors) FFT grid: ( 0, 0, 0)
|
|
number of k points= 0
|
|
cart. coord. in units 2pi/a_0
|
|
EPW : 0.00s CPU 0.00s WALL
|
|
|
|
EPW : 0.00s CPU 0.00s WALL
|
|
|
|
|
|
-------------------------------------------------------------------
|
|
Using MgB2.ukk from disk
|
|
-------------------------------------------------------------------
|
|
|
|
Symmetries of Bravais lattice: 24
|
|
Symmetries of crystal: 24
|
|
|
|
Do not need to read .epb files; read .fmt files
|
|
|
|
|
|
Band disentanglement is used: nbndsub = 5
|
|
Use zone-centred Wigner-Seitz cells
|
|
Number of WS vectors for electrons 39
|
|
Number of WS vectors for phonons 39
|
|
Number of WS vectors for electron-phonon 39
|
|
Maximum number of cores for efficient parallelization 351
|
|
Results may improve by using use_ws == .TRUE.
|
|
|
|
Reading Hamiltonian, Dynamical matrix and EP vertex in Wann rep from file
|
|
|
|
|
|
Finished reading Wann rep data from file
|
|
|
|
===================================================================
|
|
Memory usage: VmHWM = 51Mb
|
|
VmPeak = 3739Mb
|
|
===================================================================
|
|
|
|
Using uniform q-mesh: 6 6 6
|
|
Size of q point mesh for interpolation: 216
|
|
Using uniform MP k-mesh: 6 6 6
|
|
Size of k point mesh for interpolation: 56
|
|
Max number of k points per pool: 14
|
|
|
|
Fermi energy coarse grid = 8.175337 eV
|
|
|
|
Fermi energy is calculated from the fine k-mesh: Ef = 7.664475 eV
|
|
|
|
Warning: check if difference with Fermi level fine grid makes sense
|
|
|
|
===================================================================
|
|
|
|
ibndmin = 1 ebndmin = -4.862 eV
|
|
ibndmax = 5 ebndmax = 15.672 eV
|
|
|
|
|
|
Number of ep-matrix elements per pool : 1575 ~= 12.30 Kb (@ 8 bytes/ DP)
|
|
|
|
A selecq.fmt file was found but re-created because selecqread == .FALSE.
|
|
Number selected, total 100 100
|
|
Number selected, total 200 200
|
|
We only need to compute 216 q-points
|
|
|
|
All q-points are done, no need to restart !!
|
|
===================================================================
|
|
Memory usage: VmHWM = 53Mb
|
|
VmPeak = 3757Mb
|
|
===================================================================
|
|
|
|
|
|
Finish writing dos file MgB2.dos
|
|
|
|
|
|
Finish writing phdos files MgB2.phdos and MgB2.phdos_proj
|
|
|
|
|
|
===================================================================
|
|
Solve anisotropic Eliashberg equations
|
|
===================================================================
|
|
|
|
|
|
Finish reading freq file
|
|
|
|
Fermi level (eV) = 7.6644747168E+00
|
|
DOS(states/spin/eV/Unit Cell) = 9.1308568651E-01
|
|
Electron smearing (eV) = 1.0000000000E-01
|
|
Fermi window (eV) = 2.0000000000E+01
|
|
Nr irreducible k-points within the Fermi shell = 28 out of 28
|
|
|
|
5 bands within the Fermi window
|
|
|
|
|
|
Finish reading egnv file
|
|
|
|
|
|
Max nr of q-points = 216
|
|
|
|
|
|
Finish reading ikmap files
|
|
|
|
|
|
Start reading .ephmat files
|
|
|
|
|
|
Finish reading .ephmat files
|
|
|
|
a2f file is found and will be used to estimate initial gap
|
|
|
|
|
|
Finish reading a2f file
|
|
|
|
Electron-phonon coupling strength = 0.8714948
|
|
|
|
Estimated Allen-Dynes Tc = 26.408172 K for muc = 0.16000
|
|
|
|
Estimated w_log in Allen-Dynes Tc = 61.470420 meV
|
|
|
|
Estimated BCS superconducting gap = 4.005197 meV
|
|
|
|
Estimated Tc from machine learning model = 31.501506 K
|
|
|
|
|
|
temp( 1) = 16.00000 K
|
|
|
|
Solve anisotropic Eliashberg equations on imaginary-axis
|
|
|
|
Total number of frequency points nsiw( 1) = 58
|
|
Cutoff frequency wscut = 0.5068
|
|
broyden mixing factor = 0.70000
|
|
|
|
Actual number of frequency points ( 1) = 58 for uniform sampling
|
|
|
|
Size of allocated memory per pool: ~= 0.0356 Gb
|
|
iter ethr znormi deltai [meV]
|
|
1 2.728502E+00 1.843017E+00 4.824677E+00
|
|
2 1.220476E-01 1.839527E+00 5.482060E+00
|
|
3 1.461604E-01 1.833965E+00 6.380024E+00
|
|
4 2.074541E-01 1.822694E+00 7.889006E+00
|
|
5 1.284397E-02 1.822378E+00 7.917523E+00
|
|
6 3.908284E-01 1.836706E+00 5.879560E+00
|
|
7 2.826109E-01 1.820993E+00 7.803932E+00
|
|
8 7.576384E-02 1.826424E+00 7.398757E+00
|
|
9 5.891144E-02 1.823228E+00 7.830479E+00
|
|
10 3.685461E-02 1.821150E+00 8.086240E+00
|
|
11 2.299020E-02 1.822541E+00 7.920122E+00
|
|
12 7.441892E-03 1.822127E+00 7.974819E+00
|
|
Convergence was reached in nsiter = 12
|
|
|
|
Chemical potential (itemp = 1) = 7.6644747168E+00 eV
|
|
|
|
Temp (itemp = 1) = 16.000 K Free energy = -0.022731 meV
|
|
|
|
Min. / Max. values of superconducting gap = 2.461121 14.139494 meV
|
|
iaxis_imag : 21.51s CPU 21.55s WALL ( 1 calls)
|
|
|
|
|
|
Pade approximant of anisotropic Eliashberg equations from imaginary-axis to real-axis
|
|
Cutoff frequency wscut = 0.5000
|
|
|
|
pade Re[znorm] Re[delta] [meV]
|
|
52 1.678173E+00 7.378233E+00
|
|
|
|
Convergence was reached for N = 52 Pade approximants
|
|
|
|
Min. / Max. values of superconducting gap = 2.478052 14.741282 meV
|
|
raxis_pade : 0.05s CPU 0.05s WALL ( 1 calls)
|
|
|
|
itemp = 1 total cpu time : 21.60 secs
|
|
|
|
|
|
Unfolding on the coarse grid
|
|
elphon_wrap : 0.01s CPU 0.01s WALL ( 1 calls)
|
|
|
|
INITIALIZATION:
|
|
|
|
|
|
|
|
|
|
Electron-Phonon interpolation
|
|
ephwann : 0.55s CPU 0.57s WALL ( 1 calls)
|
|
|
|
DynW2B : 0.00s CPU 0.01s WALL ( 216 calls)
|
|
HamW2B : 0.00s CPU 0.00s WALL ( 21 calls)
|
|
|
|
ELIASHBERG : 21.63s CPU 21.68s WALL ( 1 calls)
|
|
|
|
Total program execution
|
|
EPW : 22.19s CPU 22.26s WALL
|
|
|
|
% Copyright (C) 2016-2023 EPW-Collaboration
|
|
|
|
===============================================================================
|
|
Please consider citing the following papers.
|
|
|
|
% Paper describing the method on which EPW relies
|
|
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
|
|
|
|
% Papers describing the EPW software
|
|
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
|
|
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
|
|
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
|
|
|
|
|
|
% Since you used the [eliashberg] input, please consider also citing
|
|
E. R. Margine and F. Giustino, Phys. Rev. B 87, 024505 (2013)
|
|
|
|
For your convenience, this information is also reported in the
|
|
functionality-dependent EPW.bib file.
|
|
===============================================================================
|
|
|