quantum-espresso/test-suite/epw_super/benchmark.out.git.inp=epw3....

304 lines
13 KiB
Plaintext

``:oss/
`.+s+. .+ys--yh+ `./ss+.
-sh//yy+` +yy +yy -+h+-oyy
-yh- .oyy/.-sh. .syo-.:sy- /yh
`.-.` `yh+ -oyyyo. `/syys: oys `.`
`/+ssys+-` `sh+ ` oys` .:osyo`
-yh- ./syyooyo` .sys+/oyo--yh/
`yy+ .-:-. `-/+/:` -sh-
/yh. oys
``..---hho---------` .---------..` `.-----.` -hd+---.
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
-yh- ```````````````` ````````` `` `` oys
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
npj Comput Mater 9, 156 (2023)
Program EPW v.5.8 starts on 9Jan2024 at 13:53:51
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 4 processors
MPI processes distributed on 1 nodes
K-points division: npool = 4
33652 MiB available memory on the printing compute node when the environment starts
Reading input from epw3.in
Reading supplied temperature list.
------------------------------------------------------------------------
RESTART - RESTART - RESTART - RESTART
Restart is done without reading PWSCF save file.
Be aware that some consistency checks are therefore not done.
------------------------------------------------------------------------
--
bravais-lattice index = 0
lattice parameter (a_0) = 0.0000 a.u.
unit-cell volume = 0.0000 (a.u.)^3
number of atoms/cell = 0
number of atomic types = 0
kinetic-energy cut-off = 0.0000 Ry
charge density cut-off = 0.0000 Ry
Exchange-correlation= not set
( -1 -1 -1 -1 -1 -1 -1)
celldm(1)= 0.00000 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( 0.0000 0.0000 0.0000 )
a(2) = ( 0.0000 0.0000 0.0000 )
a(3) = ( 0.0000 0.0000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( 0.0000 0.0000 0.0000 )
b(2) = ( 0.0000 0.0000 0.0000 )
b(3) = ( 0.0000 0.0000 0.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (a_0 units)
No symmetry!
G cutoff = 0.0000 ( 0 G-vectors) FFT grid: ( 0, 0, 0)
number of k points= 0
cart. coord. in units 2pi/a_0
EPW : 0.00s CPU 0.00s WALL
EPW : 0.00s CPU 0.00s WALL
-------------------------------------------------------------------
Using MgB2.ukk from disk
-------------------------------------------------------------------
Symmetries of Bravais lattice: 24
Symmetries of crystal: 24
Do not need to read .epb files; read .fmt files
Band disentanglement is used: nbndsub = 5
Use zone-centred Wigner-Seitz cells
Number of WS vectors for electrons 39
Number of WS vectors for phonons 39
Number of WS vectors for electron-phonon 39
Maximum number of cores for efficient parallelization 351
Results may improve by using use_ws == .TRUE.
Reading Hamiltonian, Dynamical matrix and EP vertex in Wann rep from file
Finished reading Wann rep data from file
===================================================================
Memory usage: VmHWM = 51Mb
VmPeak = 3739Mb
===================================================================
Using uniform q-mesh: 6 6 6
Size of q point mesh for interpolation: 216
Using uniform MP k-mesh: 6 6 6
Size of k point mesh for interpolation: 56
Max number of k points per pool: 14
Fermi energy coarse grid = 8.175337 eV
Fermi energy is calculated from the fine k-mesh: Ef = 7.664475 eV
Warning: check if difference with Fermi level fine grid makes sense
===================================================================
ibndmin = 1 ebndmin = -4.862 eV
ibndmax = 5 ebndmax = 15.672 eV
Number of ep-matrix elements per pool : 1575 ~= 12.30 Kb (@ 8 bytes/ DP)
A selecq.fmt file was found but re-created because selecqread == .FALSE.
Number selected, total 100 100
Number selected, total 200 200
We only need to compute 216 q-points
All q-points are done, no need to restart !!
===================================================================
Memory usage: VmHWM = 53Mb
VmPeak = 3757Mb
===================================================================
Finish writing dos file MgB2.dos
Finish writing phdos files MgB2.phdos and MgB2.phdos_proj
===================================================================
Solve anisotropic Eliashberg equations
===================================================================
Finish reading freq file
Fermi level (eV) = 7.6644747168E+00
DOS(states/spin/eV/Unit Cell) = 9.1308568651E-01
Electron smearing (eV) = 1.0000000000E-01
Fermi window (eV) = 2.0000000000E+01
Nr irreducible k-points within the Fermi shell = 28 out of 28
5 bands within the Fermi window
Finish reading egnv file
Max nr of q-points = 216
Finish reading ikmap files
Start reading .ephmat files
Finish reading .ephmat files
a2f file is found and will be used to estimate initial gap
Finish reading a2f file
Electron-phonon coupling strength = 0.8714948
Estimated Allen-Dynes Tc = 26.408172 K for muc = 0.16000
Estimated w_log in Allen-Dynes Tc = 61.470420 meV
Estimated BCS superconducting gap = 4.005197 meV
Estimated Tc from machine learning model = 31.501506 K
temp( 1) = 16.00000 K
Solve anisotropic Eliashberg equations on imaginary-axis
Total number of frequency points nsiw( 1) = 58
Cutoff frequency wscut = 0.5068
broyden mixing factor = 0.70000
Actual number of frequency points ( 1) = 58 for uniform sampling
Size of allocated memory per pool: ~= 0.0356 Gb
iter ethr znormi deltai [meV]
1 2.728502E+00 1.843017E+00 4.824677E+00
2 1.220476E-01 1.839527E+00 5.482060E+00
3 1.461604E-01 1.833965E+00 6.380024E+00
4 2.074541E-01 1.822694E+00 7.889006E+00
5 1.284397E-02 1.822378E+00 7.917523E+00
6 3.908284E-01 1.836706E+00 5.879560E+00
7 2.826109E-01 1.820993E+00 7.803932E+00
8 7.576384E-02 1.826424E+00 7.398757E+00
9 5.891144E-02 1.823228E+00 7.830479E+00
10 3.685461E-02 1.821150E+00 8.086240E+00
11 2.299020E-02 1.822541E+00 7.920122E+00
12 7.441892E-03 1.822127E+00 7.974819E+00
Convergence was reached in nsiter = 12
Chemical potential (itemp = 1) = 7.6644747168E+00 eV
Temp (itemp = 1) = 16.000 K Free energy = -0.022731 meV
Min. / Max. values of superconducting gap = 2.461121 14.139494 meV
iaxis_imag : 21.51s CPU 21.55s WALL ( 1 calls)
Pade approximant of anisotropic Eliashberg equations from imaginary-axis to real-axis
Cutoff frequency wscut = 0.5000
pade Re[znorm] Re[delta] [meV]
52 1.678173E+00 7.378233E+00
Convergence was reached for N = 52 Pade approximants
Min. / Max. values of superconducting gap = 2.478052 14.741282 meV
raxis_pade : 0.05s CPU 0.05s WALL ( 1 calls)
itemp = 1 total cpu time : 21.60 secs
Unfolding on the coarse grid
elphon_wrap : 0.01s CPU 0.01s WALL ( 1 calls)
INITIALIZATION:
Electron-Phonon interpolation
ephwann : 0.55s CPU 0.57s WALL ( 1 calls)
DynW2B : 0.00s CPU 0.01s WALL ( 216 calls)
HamW2B : 0.00s CPU 0.00s WALL ( 21 calls)
ELIASHBERG : 21.63s CPU 21.68s WALL ( 1 calls)
Total program execution
EPW : 22.19s CPU 22.26s WALL
% Copyright (C) 2016-2023 EPW-Collaboration
===============================================================================
Please consider citing the following papers.
% Paper describing the method on which EPW relies
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
% Papers describing the EPW software
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
% Since you used the [eliashberg] input, please consider also citing
E. R. Margine and F. Giustino, Phys. Rev. B 87, 024505 (2013)
For your convenience, this information is also reported in the
functionality-dependent EPW.bib file.
===============================================================================