mirror of https://gitlab.com/QEF/q-e.git
713 lines
32 KiB
Plaintext
713 lines
32 KiB
Plaintext
|
|
``:oss/
|
|
`.+s+. .+ys--yh+ `./ss+.
|
|
-sh//yy+` +yy +yy -+h+-oyy
|
|
-yh- .oyy/.-sh. .syo-.:sy- /yh
|
|
`.-.` `yh+ -oyyyo. `/syys: oys `.`
|
|
`/+ssys+-` `sh+ ` oys` .:osyo`
|
|
-yh- ./syyooyo` .sys+/oyo--yh/
|
|
`yy+ .-:-. `-/+/:` -sh-
|
|
/yh. oys
|
|
``..---hho---------` .---------..` `.-----.` -hd+---.
|
|
`./osmNMMMMMMMMMMMMMMMs. +NNMMMMMMMMNNmh+. yNMMMMMNm- oNMMMMMNmo++:`
|
|
+sy--/sdMMMhyyyyyyyNMMh- .oyNMMmyyyyyhNMMm+` -yMMMdyyo:` .oyyNMMNhs+syy`
|
|
-yy/ /MMM+.`-+/``mMMy- `mMMh:`````.dMMN:` `MMMy-`-dhhy```mMMy:``+hs
|
|
-yy+` /MMMo:-mMM+`-oo/. mMMh: `dMMN/` dMMm:`dMMMMy..MMMo-.+yo`
|
|
.sys`/MMMMNNMMMs- mMMmyooooymMMNo: oMMM/sMMMMMM++MMN//oh:
|
|
`sh+/MMMhyyMMMs- `-` mMMMMMMMMMNmy+-` -MMMhMMMsmMMmdMMd/yy+
|
|
`-/+++oyy-/MMM+.`/hh/.`mNm:` mMMd+/////:-.` NMMMMMd/:NMMMMMy:/yyo/:.`
|
|
+os+//:-..-oMMMo:--:::-/MMMo. .-mMMd+---` hMMMMN+. oMMMMMo. `-+osyso:`
|
|
syo `mNMMMMMNNNNNNNNMMMo.oNNMMMMMNNNN:` +MMMMs:` dMMMN/` ``:syo
|
|
/yh` :syyyyyyyyyyyyyyyy+.`+syyyyyyyyo:` .oyys:` .oyys:` +yh
|
|
-yh- ```````````````` ````````` `` `` oys
|
|
-+h/------------------------::::::::://////++++++++++++++++++++++///////::::/yd:
|
|
shdddddddddddddddddddddddddddddhhhhhhhhyyyyyssssssssssssssssyyyyyyyhhhhhhhddddh`
|
|
|
|
Lee, H., Poncé, S., Bushick, K., Hajinazar, S., Lafuente-Bartolome, J.,Leveillee, J.,
|
|
Lian, C., Lihm, J., Macheda, F., Mori, H., Paudyal, H., Sio, W., Tiwari, S.,
|
|
Zacharias, M., Zhang, X., Bonini, N., Kioupakis, E., Margine, E.R., and Giustino F.,
|
|
npj Comput Mater 9, 156 (2023)
|
|
|
|
|
|
Program EPW v.5.8 starts on 9Jan2024 at 13:46:18
|
|
|
|
This program is part of the open-source Quantum ESPRESSO suite
|
|
for quantum simulation of materials; please cite
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
|
|
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
|
|
URL http://www.quantum-espresso.org",
|
|
in publications or presentations arising from this work. More details at
|
|
http://www.quantum-espresso.org/quote
|
|
|
|
Parallel version (MPI), running on 4 processors
|
|
|
|
MPI processes distributed on 1 nodes
|
|
K-points division: npool = 4
|
|
34567 MiB available memory on the printing compute node when the environment starts
|
|
|
|
Reading input from epw1.in
|
|
|
|
No temperature supplied. Setting temps(:) to 300 K.
|
|
|
|
Reading xml data from directory:
|
|
|
|
./lif.save/
|
|
file Li.pbe-mt_fhi.UPF: wavefunction(s) 2p 4f renormalized
|
|
file F.pbe-mt_fhi.UPF: wavefunction(s) 4f renormalized
|
|
|
|
IMPORTANT: XC functional enforced from input :
|
|
Exchange-correlation= PBE
|
|
( 1 4 3 4 0 0 0)
|
|
Any further DFT definition will be discarded
|
|
Please, verify this is what you really want
|
|
|
|
|
|
G-vector sticks info
|
|
--------------------
|
|
sticks: dense smooth PW G-vecs: dense smooth PW
|
|
Sum 475 475 163 6855 6855 1363
|
|
|
|
Using Slab Decomposition
|
|
|
|
Reading collected, re-writing distributed wavefunctions
|
|
|
|
--------
|
|
|
|
bravais-lattice index = 2
|
|
lattice parameter (a_0) = 7.5609 a.u.
|
|
unit-cell volume = 108.0579 (a.u.)^3
|
|
number of atoms/cell = 2
|
|
number of atomic types = 2
|
|
kinetic-energy cut-off = 60.0000 Ry
|
|
charge density cut-off = 240.0000 Ry
|
|
Exchange-correlation= PBE
|
|
( 1 4 3 4 0 0 0)
|
|
|
|
|
|
celldm(1)= 7.56088 celldm(2)= 0.00000 celldm(3)= 0.00000
|
|
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
|
|
|
|
crystal axes: (cart. coord. in units of a_0)
|
|
a(1) = ( -0.5000 0.0000 0.5000 )
|
|
a(2) = ( 0.0000 0.5000 0.5000 )
|
|
a(3) = ( -0.5000 0.5000 0.0000 )
|
|
|
|
reciprocal axes: (cart. coord. in units 2 pi/a_0)
|
|
b(1) = ( -1.0000 -1.0000 1.0000 )
|
|
b(2) = ( 1.0000 1.0000 1.0000 )
|
|
b(3) = ( -1.0000 1.0000 -1.0000 )
|
|
|
|
|
|
Atoms inside the unit cell:
|
|
|
|
Cartesian axes
|
|
|
|
site n. atom mass positions (a_0 units)
|
|
1 Li 6.9410 tau( 1) = ( 0.00000 0.00000 0.00000 )
|
|
2 F 18.9984 tau( 2) = ( -0.50000 0.50000 0.50000 )
|
|
|
|
49 Sym.Ops. (with q -> -q+G )
|
|
|
|
|
|
G cutoff = 347.5328 ( 6855 G-vectors) FFT grid: ( 27, 27, 27)
|
|
number of k points= 64
|
|
cart. coord. in units 2pi/a_0
|
|
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500
|
|
k( 2) = ( -0.2500000 0.2500000 -0.2500000), wk = 0.0312500
|
|
k( 3) = ( -0.5000000 0.5000000 -0.5000000), wk = 0.0312500
|
|
k( 4) = ( -0.7500000 0.7500000 -0.7500000), wk = 0.0312500
|
|
k( 5) = ( 0.2500000 0.2500000 0.2500000), wk = 0.0312500
|
|
k( 6) = ( 0.0000000 0.5000000 0.0000000), wk = 0.0312500
|
|
k( 7) = ( -0.2500000 0.7500000 -0.2500000), wk = 0.0312500
|
|
k( 8) = ( -0.5000000 1.0000000 -0.5000000), wk = 0.0312500
|
|
k( 9) = ( 0.5000000 0.5000000 0.5000000), wk = 0.0312500
|
|
k( 10) = ( 0.2500000 0.7500000 0.2500000), wk = 0.0312500
|
|
k( 11) = ( 0.0000000 1.0000000 0.0000000), wk = 0.0312500
|
|
k( 12) = ( -0.2500000 1.2500000 -0.2500000), wk = 0.0312500
|
|
k( 13) = ( 0.7500000 0.7500000 0.7500000), wk = 0.0312500
|
|
k( 14) = ( 0.5000000 1.0000000 0.5000000), wk = 0.0312500
|
|
k( 15) = ( 0.2500000 1.2500000 0.2500000), wk = 0.0312500
|
|
k( 16) = ( 0.0000000 1.5000000 0.0000000), wk = 0.0312500
|
|
k( 17) = ( -0.2500000 -0.2500000 0.2500000), wk = 0.0312500
|
|
k( 18) = ( -0.5000000 0.0000000 0.0000000), wk = 0.0312500
|
|
k( 19) = ( -0.7500000 0.2500000 -0.2500000), wk = 0.0312500
|
|
k( 20) = ( -1.0000000 0.5000000 -0.5000000), wk = 0.0312500
|
|
k( 21) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0312500
|
|
k( 22) = ( -0.2500000 0.2500000 0.2500000), wk = 0.0312500
|
|
k( 23) = ( -0.5000000 0.5000000 0.0000000), wk = 0.0312500
|
|
k( 24) = ( -0.7500000 0.7500000 -0.2500000), wk = 0.0312500
|
|
k( 25) = ( 0.2500000 0.2500000 0.7500000), wk = 0.0312500
|
|
k( 26) = ( 0.0000000 0.5000000 0.5000000), wk = 0.0312500
|
|
k( 27) = ( -0.2500000 0.7500000 0.2500000), wk = 0.0312500
|
|
k( 28) = ( -0.5000000 1.0000000 0.0000000), wk = 0.0312500
|
|
k( 29) = ( 0.5000000 0.5000000 1.0000000), wk = 0.0312500
|
|
k( 30) = ( 0.2500000 0.7500000 0.7500000), wk = 0.0312500
|
|
k( 31) = ( 0.0000000 1.0000000 0.5000000), wk = 0.0312500
|
|
k( 32) = ( -0.2500000 1.2500000 0.2500000), wk = 0.0312500
|
|
k( 33) = ( -0.5000000 -0.5000000 0.5000000), wk = 0.0312500
|
|
k( 34) = ( -0.7500000 -0.2500000 0.2500000), wk = 0.0312500
|
|
k( 35) = ( -1.0000000 0.0000000 0.0000000), wk = 0.0312500
|
|
k( 36) = ( -1.2500000 0.2500000 -0.2500000), wk = 0.0312500
|
|
k( 37) = ( -0.2500000 -0.2500000 0.7500000), wk = 0.0312500
|
|
k( 38) = ( -0.5000000 0.0000000 0.5000000), wk = 0.0312500
|
|
k( 39) = ( -0.7500000 0.2500000 0.2500000), wk = 0.0312500
|
|
k( 40) = ( -1.0000000 0.5000000 0.0000000), wk = 0.0312500
|
|
k( 41) = ( 0.0000000 0.0000000 1.0000000), wk = 0.0312500
|
|
k( 42) = ( -0.2500000 0.2500000 0.7500000), wk = 0.0312500
|
|
k( 43) = ( -0.5000000 0.5000000 0.5000000), wk = 0.0312500
|
|
k( 44) = ( -0.7500000 0.7500000 0.2500000), wk = 0.0312500
|
|
k( 45) = ( 0.2500000 0.2500000 1.2500000), wk = 0.0312500
|
|
k( 46) = ( 0.0000000 0.5000000 1.0000000), wk = 0.0312500
|
|
k( 47) = ( -0.2500000 0.7500000 0.7500000), wk = 0.0312500
|
|
k( 48) = ( -0.5000000 1.0000000 0.5000000), wk = 0.0312500
|
|
k( 49) = ( -0.7500000 -0.7500000 0.7500000), wk = 0.0312500
|
|
k( 50) = ( -1.0000000 -0.5000000 0.5000000), wk = 0.0312500
|
|
k( 51) = ( -1.2500000 -0.2500000 0.2500000), wk = 0.0312500
|
|
k( 52) = ( -1.5000000 0.0000000 0.0000000), wk = 0.0312500
|
|
k( 53) = ( -0.5000000 -0.5000000 1.0000000), wk = 0.0312500
|
|
k( 54) = ( -0.7500000 -0.2500000 0.7500000), wk = 0.0312500
|
|
k( 55) = ( -1.0000000 0.0000000 0.5000000), wk = 0.0312500
|
|
k( 56) = ( -1.2500000 0.2500000 0.2500000), wk = 0.0312500
|
|
k( 57) = ( -0.2500000 -0.2500000 1.2500000), wk = 0.0312500
|
|
k( 58) = ( -0.5000000 0.0000000 1.0000000), wk = 0.0312500
|
|
k( 59) = ( -0.7500000 0.2500000 0.7500000), wk = 0.0312500
|
|
k( 60) = ( -1.0000000 0.5000000 0.5000000), wk = 0.0312500
|
|
k( 61) = ( 0.0000000 0.0000000 1.5000000), wk = 0.0312500
|
|
k( 62) = ( -0.2500000 0.2500000 1.2500000), wk = 0.0312500
|
|
k( 63) = ( -0.5000000 0.5000000 1.0000000), wk = 0.0312500
|
|
k( 64) = ( -0.7500000 0.7500000 0.7500000), wk = 0.0312500
|
|
|
|
PseudoPot. # 1 for Li read from file:
|
|
../../pseudo/Li.pbe-mt_fhi.UPF
|
|
MD5 check sum: 3419f5616d131090147e867976aae79b
|
|
Pseudo is Norm-conserving + core correction, Zval = 1.0
|
|
Generated using FHI98PP, converted with fhi2upf.x v.5.0.2
|
|
Using radial grid of 433 points, 3 beta functions with:
|
|
l(1) = 0
|
|
l(2) = 1
|
|
l(3) = 3
|
|
|
|
PseudoPot. # 2 for F read from file:
|
|
../../pseudo/F.pbe-mt_fhi.UPF
|
|
MD5 check sum: bd08d802e66d287190150b65155e2e95
|
|
Pseudo is Norm-conserving, Zval = 7.0
|
|
Generated using FHI98PP, converted with fhi2upf.x v.5.0.2
|
|
Using radial grid of 477 points, 3 beta functions with:
|
|
l(1) = 0
|
|
l(2) = 1
|
|
l(3) = 3
|
|
EPW : 0.26s CPU 0.30s WALL
|
|
|
|
EPW : 0.27s CPU 0.30s WALL
|
|
|
|
-------------------------------------------------------------------
|
|
Wannierization on 4 x 4 x 4 electronic grid
|
|
-------------------------------------------------------------------
|
|
|
|
Spin CASE ( default = unpolarized )
|
|
|
|
Initializing Wannier90
|
|
|
|
|
|
Initial Wannier projections
|
|
|
|
( 0.50000 0.50000 0.50000) : l = 1 mr = 1
|
|
( 0.50000 0.50000 0.50000) : l = 1 mr = 2
|
|
( 0.50000 0.50000 0.50000) : l = 1 mr = 3
|
|
|
|
- Number of bands is ( 3)
|
|
- Number of total bands is ( 30)
|
|
- Number of excluded bands is ( 27)
|
|
- Number of wannier functions is ( 3)
|
|
- All guiding functions are given
|
|
|
|
Reading data about k-point neighbours
|
|
|
|
- All neighbours are found
|
|
|
|
AMN
|
|
k points = 64 in 4 pools
|
|
1 of 16 on ionode
|
|
2 of 16 on ionode
|
|
3 of 16 on ionode
|
|
4 of 16 on ionode
|
|
5 of 16 on ionode
|
|
6 of 16 on ionode
|
|
7 of 16 on ionode
|
|
8 of 16 on ionode
|
|
9 of 16 on ionode
|
|
10 of 16 on ionode
|
|
11 of 16 on ionode
|
|
12 of 16 on ionode
|
|
13 of 16 on ionode
|
|
14 of 16 on ionode
|
|
15 of 16 on ionode
|
|
16 of 16 on ionode
|
|
|
|
AMN calculated
|
|
|
|
MMN
|
|
k points = 64 in 4 pools
|
|
1 of 16 on ionode
|
|
2 of 16 on ionode
|
|
3 of 16 on ionode
|
|
4 of 16 on ionode
|
|
5 of 16 on ionode
|
|
6 of 16 on ionode
|
|
7 of 16 on ionode
|
|
8 of 16 on ionode
|
|
9 of 16 on ionode
|
|
10 of 16 on ionode
|
|
11 of 16 on ionode
|
|
12 of 16 on ionode
|
|
13 of 16 on ionode
|
|
14 of 16 on ionode
|
|
15 of 16 on ionode
|
|
16 of 16 on ionode
|
|
MMN calculated
|
|
|
|
Running Wannier90
|
|
|
|
Wannier Function centers (cartesian, alat) and spreads (ang):
|
|
|
|
( -0.50000 0.50000 0.50000) : 0.54928
|
|
( -0.50000 0.50000 0.50000) : 0.54928
|
|
( -0.50000 0.50000 0.50000) : 0.54928
|
|
|
|
Writing out Wannier function cube files
|
|
|
|
nr1s = 27, nr2s = 27, nr3s = 27
|
|
write_plot: wannier_plot_supercell = 4 4 4
|
|
Wannier Function Num: 1 Maximum Im/Re Ratio = 0.000000
|
|
Wannier Function Num: 2 Maximum Im/Re Ratio = 0.000000
|
|
Wannier Function Num: 3 Maximum Im/Re Ratio = 0.000000
|
|
|
|
|
|
cube files written
|
|
-------------------------------------------------------------------
|
|
WANNIER : 2.45s CPU 2.67s WALL ( 1 calls)
|
|
-------------------------------------------------------------------
|
|
|
|
Calculating kgmap
|
|
|
|
Progress kgmap: ########################################
|
|
kmaps : 0.02s CPU 0.02s WALL ( 1 calls)
|
|
Symmetries of Bravais lattice: 48
|
|
Symmetries of crystal: 48
|
|
|
|
|
|
===================================================================
|
|
irreducible q point # 1
|
|
===================================================================
|
|
|
|
Symmetries of small group of q: 48
|
|
in addition sym. q -> -q+G:
|
|
|
|
Number of q in the star = 1
|
|
List of q in the star:
|
|
1 0.000000000 0.000000000 0.000000000
|
|
Imposing acoustic sum rule on the dynamical matrix
|
|
Read dielectric tensor and effective charges
|
|
|
|
q( 1 ) = ( 0.0000000 0.0000000 0.0000000 )
|
|
|
|
|
|
===================================================================
|
|
irreducible q point # 2
|
|
===================================================================
|
|
|
|
Symmetries of small group of q: 6
|
|
|
|
Number of q in the star = 8
|
|
List of q in the star:
|
|
1 -0.250000000 0.250000000 -0.250000000
|
|
2 0.250000000 -0.250000000 -0.250000000
|
|
3 0.250000000 -0.250000000 0.250000000
|
|
4 0.250000000 0.250000000 0.250000000
|
|
5 -0.250000000 -0.250000000 -0.250000000
|
|
6 -0.250000000 -0.250000000 0.250000000
|
|
7 -0.250000000 0.250000000 0.250000000
|
|
8 0.250000000 0.250000000 -0.250000000
|
|
Message from routine init_vloc:
|
|
Interpolation table for Vloc re-allocated
|
|
|
|
q( 2 ) = ( -0.2500000 0.2500000 -0.2500000 )
|
|
q( 3 ) = ( 0.2500000 -0.2500000 -0.2500000 )
|
|
q( 4 ) = ( 0.2500000 -0.2500000 0.2500000 )
|
|
q( 5 ) = ( 0.2500000 0.2500000 0.2500000 )
|
|
q( 6 ) = ( -0.2500000 -0.2500000 -0.2500000 )
|
|
q( 7 ) = ( -0.2500000 -0.2500000 0.2500000 )
|
|
q( 8 ) = ( -0.2500000 0.2500000 0.2500000 )
|
|
q( 9 ) = ( 0.2500000 0.2500000 -0.2500000 )
|
|
|
|
|
|
===================================================================
|
|
irreducible q point # 3
|
|
===================================================================
|
|
|
|
Symmetries of small group of q: 12
|
|
in addition sym. q -> -q+G:
|
|
|
|
Number of q in the star = 4
|
|
List of q in the star:
|
|
1 0.500000000 -0.500000000 0.500000000
|
|
2 0.500000000 0.500000000 0.500000000
|
|
3 -0.500000000 0.500000000 0.500000000
|
|
4 0.500000000 0.500000000 -0.500000000
|
|
|
|
q( 10 ) = ( 0.5000000 -0.5000000 0.5000000 )
|
|
q( 11 ) = ( 0.5000000 0.5000000 0.5000000 )
|
|
q( 12 ) = ( -0.5000000 0.5000000 0.5000000 )
|
|
q( 13 ) = ( 0.5000000 0.5000000 -0.5000000 )
|
|
|
|
|
|
===================================================================
|
|
irreducible q point # 4
|
|
===================================================================
|
|
|
|
Symmetries of small group of q: 8
|
|
|
|
Number of q in the star = 6
|
|
List of q in the star:
|
|
1 0.000000000 0.500000000 0.000000000
|
|
2 0.000000000 -0.500000000 0.000000000
|
|
3 0.500000000 0.000000000 0.000000000
|
|
4 0.000000000 0.000000000 0.500000000
|
|
5 0.000000000 0.000000000 -0.500000000
|
|
6 -0.500000000 0.000000000 0.000000000
|
|
|
|
q( 14 ) = ( 0.0000000 0.5000000 0.0000000 )
|
|
q( 15 ) = ( 0.0000000 -0.5000000 0.0000000 )
|
|
q( 16 ) = ( 0.5000000 0.0000000 0.0000000 )
|
|
q( 17 ) = ( 0.0000000 0.0000000 0.5000000 )
|
|
q( 18 ) = ( 0.0000000 0.0000000 -0.5000000 )
|
|
q( 19 ) = ( -0.5000000 0.0000000 0.0000000 )
|
|
|
|
|
|
===================================================================
|
|
irreducible q point # 5
|
|
===================================================================
|
|
|
|
Symmetries of small group of q: 2
|
|
|
|
Number of q in the star = 24
|
|
List of q in the star:
|
|
1 0.750000000 -0.250000000 0.750000000
|
|
2 0.750000000 -0.250000000 -0.750000000
|
|
3 -0.750000000 -0.250000000 -0.750000000
|
|
4 -0.750000000 -0.250000000 0.750000000
|
|
5 -0.750000000 0.250000000 -0.750000000
|
|
6 -0.250000000 0.750000000 -0.750000000
|
|
7 -0.750000000 0.750000000 -0.250000000
|
|
8 0.750000000 0.250000000 0.750000000
|
|
9 -0.750000000 0.250000000 0.750000000
|
|
10 0.750000000 0.250000000 -0.750000000
|
|
11 -0.750000000 0.750000000 0.250000000
|
|
12 -0.250000000 0.750000000 0.750000000
|
|
13 0.250000000 0.750000000 -0.750000000
|
|
14 -0.250000000 -0.750000000 -0.750000000
|
|
15 0.750000000 0.750000000 -0.250000000
|
|
16 0.750000000 -0.750000000 0.250000000
|
|
17 -0.750000000 -0.750000000 -0.250000000
|
|
18 0.250000000 -0.750000000 0.750000000
|
|
19 -0.750000000 -0.750000000 0.250000000
|
|
20 0.250000000 0.750000000 0.750000000
|
|
21 -0.250000000 -0.750000000 0.750000000
|
|
22 0.750000000 0.750000000 0.250000000
|
|
23 0.250000000 -0.750000000 -0.750000000
|
|
24 0.750000000 -0.750000000 -0.250000000
|
|
|
|
q( 20 ) = ( 0.7500000 -0.2500000 0.7500000 )
|
|
q( 21 ) = ( 0.7500000 -0.2500000 -0.7500000 )
|
|
q( 22 ) = ( -0.7500000 -0.2500000 -0.7500000 )
|
|
q( 23 ) = ( -0.7500000 -0.2500000 0.7500000 )
|
|
q( 24 ) = ( -0.7500000 0.2500000 -0.7500000 )
|
|
q( 25 ) = ( -0.2500000 0.7500000 -0.7500000 )
|
|
q( 26 ) = ( -0.7500000 0.7500000 -0.2500000 )
|
|
q( 27 ) = ( 0.7500000 0.2500000 0.7500000 )
|
|
q( 28 ) = ( -0.7500000 0.2500000 0.7500000 )
|
|
q( 29 ) = ( 0.7500000 0.2500000 -0.7500000 )
|
|
q( 30 ) = ( -0.7500000 0.7500000 0.2500000 )
|
|
q( 31 ) = ( -0.2500000 0.7500000 0.7500000 )
|
|
q( 32 ) = ( 0.2500000 0.7500000 -0.7500000 )
|
|
q( 33 ) = ( -0.2500000 -0.7500000 -0.7500000 )
|
|
q( 34 ) = ( 0.7500000 0.7500000 -0.2500000 )
|
|
q( 35 ) = ( 0.7500000 -0.7500000 0.2500000 )
|
|
q( 36 ) = ( -0.7500000 -0.7500000 -0.2500000 )
|
|
q( 37 ) = ( 0.2500000 -0.7500000 0.7500000 )
|
|
q( 38 ) = ( -0.7500000 -0.7500000 0.2500000 )
|
|
q( 39 ) = ( 0.2500000 0.7500000 0.7500000 )
|
|
q( 40 ) = ( -0.2500000 -0.7500000 0.7500000 )
|
|
q( 41 ) = ( 0.7500000 0.7500000 0.2500000 )
|
|
q( 42 ) = ( 0.2500000 -0.7500000 -0.7500000 )
|
|
q( 43 ) = ( 0.7500000 -0.7500000 -0.2500000 )
|
|
|
|
|
|
===================================================================
|
|
irreducible q point # 6
|
|
===================================================================
|
|
|
|
Symmetries of small group of q: 4
|
|
|
|
Number of q in the star = 12
|
|
List of q in the star:
|
|
1 0.500000000 0.000000000 0.500000000
|
|
2 -0.500000000 0.000000000 0.500000000
|
|
3 -0.500000000 0.000000000 -0.500000000
|
|
4 0.500000000 0.000000000 -0.500000000
|
|
5 0.000000000 0.500000000 -0.500000000
|
|
6 -0.500000000 0.500000000 0.000000000
|
|
7 0.000000000 0.500000000 0.500000000
|
|
8 0.000000000 -0.500000000 -0.500000000
|
|
9 0.500000000 0.500000000 0.000000000
|
|
10 0.500000000 -0.500000000 0.000000000
|
|
11 -0.500000000 -0.500000000 0.000000000
|
|
12 0.000000000 -0.500000000 0.500000000
|
|
|
|
q( 44 ) = ( 0.5000000 0.0000000 0.5000000 )
|
|
q( 45 ) = ( -0.5000000 0.0000000 0.5000000 )
|
|
q( 46 ) = ( -0.5000000 0.0000000 -0.5000000 )
|
|
q( 47 ) = ( 0.5000000 0.0000000 -0.5000000 )
|
|
q( 48 ) = ( 0.0000000 0.5000000 -0.5000000 )
|
|
q( 49 ) = ( -0.5000000 0.5000000 0.0000000 )
|
|
q( 50 ) = ( 0.0000000 0.5000000 0.5000000 )
|
|
q( 51 ) = ( 0.0000000 -0.5000000 -0.5000000 )
|
|
q( 52 ) = ( 0.5000000 0.5000000 0.0000000 )
|
|
q( 53 ) = ( 0.5000000 -0.5000000 0.0000000 )
|
|
q( 54 ) = ( -0.5000000 -0.5000000 0.0000000 )
|
|
q( 55 ) = ( 0.0000000 -0.5000000 0.5000000 )
|
|
|
|
|
|
===================================================================
|
|
irreducible q point # 7
|
|
===================================================================
|
|
|
|
Symmetries of small group of q: 16
|
|
in addition sym. q -> -q+G:
|
|
|
|
Number of q in the star = 3
|
|
List of q in the star:
|
|
1 0.000000000 -1.000000000 0.000000000
|
|
2 -1.000000000 0.000000000 0.000000000
|
|
3 0.000000000 0.000000000 -1.000000000
|
|
|
|
q( 56 ) = ( 0.0000000 -1.0000000 0.0000000 )
|
|
q( 57 ) = ( -1.0000000 0.0000000 0.0000000 )
|
|
q( 58 ) = ( 0.0000000 0.0000000 -1.0000000 )
|
|
|
|
|
|
===================================================================
|
|
irreducible q point # 8
|
|
===================================================================
|
|
|
|
Symmetries of small group of q: 8
|
|
|
|
Number of q in the star = 6
|
|
List of q in the star:
|
|
1 -0.500000000 -1.000000000 0.000000000
|
|
2 0.000000000 1.000000000 0.500000000
|
|
3 0.000000000 -1.000000000 -0.500000000
|
|
4 0.500000000 1.000000000 0.000000000
|
|
5 -1.000000000 -0.500000000 0.000000000
|
|
6 0.000000000 -0.500000000 -1.000000000
|
|
|
|
q( 59 ) = ( -0.5000000 -1.0000000 0.0000000 )
|
|
q( 60 ) = ( 0.0000000 1.0000000 0.5000000 )
|
|
q( 61 ) = ( 0.0000000 -1.0000000 -0.5000000 )
|
|
q( 62 ) = ( 0.5000000 1.0000000 0.0000000 )
|
|
q( 63 ) = ( -1.0000000 -0.5000000 0.0000000 )
|
|
q( 64 ) = ( 0.0000000 -0.5000000 -1.0000000 )
|
|
|
|
Computes the analytic long-range interaction for polar materials [lpolar]
|
|
|
|
Use zone-centred Wigner-Seitz cells
|
|
Number of WS vectors for electrons 93
|
|
Number of WS vectors for phonons 93
|
|
Number of WS vectors for electron-phonon 93
|
|
Maximum number of cores for efficient parallelization 558
|
|
Results may improve by using use_ws == .TRUE.
|
|
|
|
Inside velocity step 1
|
|
|
|
|
|
Velocity matrix elements calculated
|
|
|
|
|
|
Bloch2wane: 1 / 64
|
|
Bloch2wane: 2 / 64
|
|
Bloch2wane: 3 / 64
|
|
Bloch2wane: 4 / 64
|
|
Bloch2wane: 5 / 64
|
|
Bloch2wane: 6 / 64
|
|
Bloch2wane: 7 / 64
|
|
Bloch2wane: 8 / 64
|
|
Bloch2wane: 9 / 64
|
|
Bloch2wane: 10 / 64
|
|
Bloch2wane: 11 / 64
|
|
Bloch2wane: 12 / 64
|
|
Bloch2wane: 13 / 64
|
|
Bloch2wane: 14 / 64
|
|
Bloch2wane: 15 / 64
|
|
Bloch2wane: 16 / 64
|
|
Bloch2wane: 17 / 64
|
|
Bloch2wane: 18 / 64
|
|
Bloch2wane: 19 / 64
|
|
Bloch2wane: 20 / 64
|
|
Bloch2wane: 21 / 64
|
|
Bloch2wane: 22 / 64
|
|
Bloch2wane: 23 / 64
|
|
Bloch2wane: 24 / 64
|
|
Bloch2wane: 25 / 64
|
|
Bloch2wane: 26 / 64
|
|
Bloch2wane: 27 / 64
|
|
Bloch2wane: 28 / 64
|
|
Bloch2wane: 29 / 64
|
|
Bloch2wane: 30 / 64
|
|
Bloch2wane: 31 / 64
|
|
Bloch2wane: 32 / 64
|
|
Bloch2wane: 33 / 64
|
|
Bloch2wane: 34 / 64
|
|
Bloch2wane: 35 / 64
|
|
Bloch2wane: 36 / 64
|
|
Bloch2wane: 37 / 64
|
|
Bloch2wane: 38 / 64
|
|
Bloch2wane: 39 / 64
|
|
Bloch2wane: 40 / 64
|
|
Bloch2wane: 41 / 64
|
|
Bloch2wane: 42 / 64
|
|
Bloch2wane: 43 / 64
|
|
Bloch2wane: 44 / 64
|
|
Bloch2wane: 45 / 64
|
|
Bloch2wane: 46 / 64
|
|
Bloch2wane: 47 / 64
|
|
Bloch2wane: 48 / 64
|
|
Bloch2wane: 49 / 64
|
|
Bloch2wane: 50 / 64
|
|
Bloch2wane: 51 / 64
|
|
Bloch2wane: 52 / 64
|
|
Bloch2wane: 53 / 64
|
|
Bloch2wane: 54 / 64
|
|
Bloch2wane: 55 / 64
|
|
Bloch2wane: 56 / 64
|
|
Bloch2wane: 57 / 64
|
|
Bloch2wane: 58 / 64
|
|
Bloch2wane: 59 / 64
|
|
Bloch2wane: 60 / 64
|
|
Bloch2wane: 61 / 64
|
|
Bloch2wane: 62 / 64
|
|
Bloch2wane: 63 / 64
|
|
Bloch2wane: 64 / 64
|
|
Bloch2wanp: 1 / 24
|
|
Bloch2wanp: 2 / 24
|
|
Bloch2wanp: 3 / 24
|
|
Bloch2wanp: 4 / 24
|
|
Bloch2wanp: 5 / 24
|
|
Bloch2wanp: 6 / 24
|
|
Bloch2wanp: 7 / 24
|
|
Bloch2wanp: 8 / 24
|
|
Bloch2wanp: 9 / 24
|
|
Bloch2wanp: 10 / 24
|
|
Bloch2wanp: 11 / 24
|
|
Bloch2wanp: 12 / 24
|
|
Bloch2wanp: 13 / 24
|
|
Bloch2wanp: 14 / 24
|
|
Bloch2wanp: 15 / 24
|
|
Bloch2wanp: 16 / 24
|
|
Bloch2wanp: 17 / 24
|
|
Bloch2wanp: 18 / 24
|
|
Bloch2wanp: 19 / 24
|
|
Bloch2wanp: 20 / 24
|
|
Bloch2wanp: 21 / 24
|
|
Bloch2wanp: 22 / 24
|
|
Bloch2wanp: 23 / 24
|
|
Bloch2wanp: 24 / 24
|
|
|
|
Writing Hamiltonian, Dynamical matrix and EP vertex in Wann rep to file
|
|
|
|
===================================================================
|
|
Memory usage: VmHWM = 83Mb
|
|
VmPeak = 3810Mb
|
|
===================================================================
|
|
|
|
Using uniform q-mesh: 1 1 1
|
|
Size of q point mesh for interpolation: 1
|
|
Using uniform k-mesh: 1 1 1
|
|
Size of k point mesh for interpolation: 2
|
|
Max number of k points per pool: 2
|
|
|
|
Fermi energy coarse grid = 0.487315 eV
|
|
|
|
Skipping the first 1 bands:
|
|
|
|
The Fermi level will be determined with 6.00000 electrons
|
|
|
|
Fermi energy is calculated from the fine k-mesh: Ef = 0.612315 eV
|
|
|
|
===================================================================
|
|
|
|
ibndmin = 1 ebndmin = 0.487 eV
|
|
ibndmax = 3 ebndmax = 0.487 eV
|
|
|
|
|
|
Number of ep-matrix elements per pool : 54 ~= 0.42 Kb (@ 8 bytes/ DP)
|
|
We only need to compute 1 q-points
|
|
|
|
===================================================================
|
|
Memory usage: VmHWM = 83Mb
|
|
VmPeak = 3810Mb
|
|
===================================================================
|
|
|
|
|
|
Unfolding on the coarse grid
|
|
elphon_wrap : 25.59s CPU 26.74s WALL ( 1 calls)
|
|
|
|
INITIALIZATION:
|
|
|
|
set_drhoc : 0.01s CPU 0.02s WALL ( 65 calls)
|
|
init_vloc : 0.03s CPU 0.03s WALL ( 1 calls)
|
|
init_us_1 : 0.04s CPU 0.04s WALL ( 1 calls)
|
|
|
|
|
|
|
|
Electron-Phonon interpolation
|
|
ephwann : 0.41s CPU 0.43s WALL ( 1 calls)
|
|
ep-interp : 0.00s CPU 0.00s WALL ( 1 calls)
|
|
|
|
Ham: step 1 : 0.00s CPU 0.00s WALL ( 1 calls)
|
|
Ham: step 2 : 0.01s CPU 0.01s WALL ( 1 calls)
|
|
ep: step 1 : 0.00s CPU 0.01s WALL ( 64 calls)
|
|
ep: step 2 : 0.04s CPU 0.04s WALL ( 64 calls)
|
|
DynW2B : 0.00s CPU 0.00s WALL ( 1 calls)
|
|
HamW2B : 0.00s CPU 0.00s WALL ( 5 calls)
|
|
ephW2Bp : 0.00s CPU 0.00s WALL ( 1 calls)
|
|
ephW2B : 0.00s CPU 0.00s WALL ( 1 calls)
|
|
vmewan2bloch : 0.00s CPU 0.00s WALL ( 2 calls)
|
|
vmewan2bloch : 0.00s CPU 0.00s WALL ( 2 calls)
|
|
|
|
|
|
Total program execution
|
|
EPW : 28.71s CPU 30.13s WALL
|
|
|
|
% Copyright (C) 2016-2023 EPW-Collaboration
|
|
|
|
===============================================================================
|
|
Please consider citing the following papers.
|
|
|
|
% Paper describing the method on which EPW relies
|
|
F. Giustino and M. L. Cohen and S. G. Louie, Phys. Rev. B 76, 165108 (2007)
|
|
|
|
% Papers describing the EPW software
|
|
H. Lee et al., npj Comput. Mater. 9, 156 (2023)
|
|
S. Ponc\'e, E.R. Margine, C. Verdi and F. Giustino, Comput. Phys. Commun. 209, 116 (2016)
|
|
J. Noffsinger et al., Comput. Phys. Commun. 181, 2140 (2010)
|
|
|
|
|
|
% Since you used the [lpolar] input, please consider also citing
|
|
C. Verdi and F. Giustino, Phys. Rev. Lett. 115, 176401 (2015)
|
|
|
|
For your convenience, this information is also reported in the
|
|
functionality-dependent EPW.bib file.
|
|
===============================================================================
|
|
|