quantum-espresso/XSpectra/examples/reference/SiO2.xspectra_dip_restart_1...

461 lines
22 KiB
Plaintext

Program XSpectra v.5.2.0 (svn rev. 11610M) starts on 20Aug2015 at 16:21:49
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 1 processors
-------------------------------------------------------------------------
__ ____ _
\ \/ / _\_ __ ___ ___| |_ _ __ __ _
\ /\ \| '_ \ / _ \/ __| __| '__/ _` |
/ \_\ \ |_) | __/ (__| |_| | | (_| |
/_/\_\__/ .__/ \___|\___|\__|_| \__,_|
|_|
In publications arising from the use of XSpectra, please cite:
- O. Bunau and M. Calandra,
Phys. Rev. B 87, 205105 (2013)
- Ch. Gougoussis, M. Calandra, A. P. Seitsonen, F. Mauri,
Phys. Rev. B 80, 075102 (2009)
- M. Taillefumier, D. Cabaret, A. M. Flank, and F. Mauri,
Phys. Rev. B 66, 195107 (2002)
-------------------------------------------------------------------------
Reading input_file
-------------------------------------------------------------------------
calculation: xanes_dipole
xepsilon [crystallographic coordinates]: 0.000000 0.000000 1.000000
xonly_plot: FALSE
=> complete calculation: Lanczos + spectrum plot
filecore (core-wavefunction file): Si.wfc
main plot parameters:
cut_occ_states: TRUE
gamma_mode: constant
-> using xgamma [eV]: 0.80
xemin [eV]: -10.00
xemax [eV]: 100.00
xnepoint: 1000
energy zero automatically set to the Fermi level
Fermi level determined from SCF save directory (SiO2.save)
NB: For an insulator (SCF calculated with occupations="fixed")
the Fermi level will be placed at the position of HOMO.
WARNING: variable ef_r is obsolete
-------------------------------------------------------------------------
Reading SCF save directory: SiO2.save
-------------------------------------------------------------------------
Reading data from directory:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/SiO2.save
Info: using nr1, nr2, nr3 values from input
Info: using nr1, nr2, nr3 values from input
IMPORTANT: XC functional enforced from input :
Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
WARNING: atomic wfc # 2 for atom type 1 has zero norm
WARNING: atomic wfc # 2 for atom type 2 has zero norm
file O_PBE_USPP.UPF: wavefunction(s) 2S renormalized
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 889 475 151 23595 9203 1559
the Fermi energy is 6.4758 ev
-------------------------------------------------------------------------
Getting the Fermi energy
-------------------------------------------------------------------------
From SCF save directory:
ef [eV]: 6.4758
-> ef (in eV) will be written in x_save_file
-------------------------------------------------------------------------
Energy zero of the spectrum
-------------------------------------------------------------------------
-> ef will be used as energy zero of the spectrum
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 889 475 169 23595 9203 2057
bravais-lattice index = 4
lattice parameter (alat) = 9.2863 a.u.
unit-cell volume = 762.9417 (a.u.)^3
number of atoms/cell = 9
number of atomic types = 3
number of electrons = 48.00
number of Kohn-Sham states= 30
kinetic-energy cutoff = 20.0000 Ry
charge density cutoff = 150.0000 Ry
Exchange-correlation = SLA PW PBE PBE ( 1 4 3 4 0 0)
celldm(1)= 9.286303 celldm(2)= 0.000000 celldm(3)= 1.100100
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.000000 0.000000 0.000000 )
a(2) = ( -0.500000 0.866025 0.000000 )
a(3) = ( 0.000000 0.000000 1.100100 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.000000 0.577350 -0.000000 )
b(2) = ( 0.000000 1.154701 0.000000 )
b(3) = ( 0.000000 -0.000000 0.909008 )
PseudoPot. # 1 for Si read from file:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/Si_PBE_USPP.UPF
MD5 check sum: 2fb286e7979bc4fe35b54746d77eb429
Pseudo is Ultrasoft, Zval = 4.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1141 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
PseudoPot. # 2 for Si read from file:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/Si_PBE_USPP.UPF
MD5 check sum: 2fb286e7979bc4fe35b54746d77eb429
Pseudo is Ultrasoft, Zval = 4.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1141 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
PseudoPot. # 3 for O read from file:
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/O_PBE_USPP.UPF
MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9
Pseudo is Ultrasoft, Zval = 6.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1269 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
atomic species valence mass pseudopotential
Sih 4.00 28.08600 Si( 1.00)
Si 4.00 28.08600 Si( 1.00)
O 6.00 15.99940 O ( 1.00)
2 Sym. Ops. (no inversion) found
Cartesian axes
site n. atom positions (alat units)
1 Sih tau( 1) = ( 0.4700000 0.0000000 0.0000000 )
2 Si tau( 2) = ( -0.2350000 0.4070319 0.7334000 )
3 Si tau( 3) = ( -0.2350000 -0.4070319 0.3667000 )
4 O tau( 4) = ( 0.2792500 0.2318350 0.1308019 )
5 O tau( 5) = ( 0.0611500 0.3577551 0.6025981 )
6 O tau( 6) = ( -0.3404000 0.1259201 0.8642019 )
7 O tau( 7) = ( -0.3404000 -0.1259201 0.2358981 )
8 O tau( 8) = ( 0.0611500 -0.3577551 0.4975019 )
9 O tau( 9) = ( 0.2792500 -0.2318350 -0.1308019 )
number of k points= 27 Methfessel-Paxton smearing, width (Ry)= 0.0300
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0740741
k( 2) = ( 0.0000000 0.0000000 0.3030028), wk = 0.0740741
k( 3) = ( 0.0000000 0.0000000 0.6060055), wk = 0.0740741
k( 4) = ( 0.0000000 0.3849002 0.0000000), wk = 0.0740741
k( 5) = ( 0.0000000 0.3849002 0.3030028), wk = 0.0740741
k( 6) = ( 0.0000000 0.3849002 0.6060055), wk = 0.0740741
k( 7) = ( 0.0000000 0.7698004 0.0000000), wk = 0.0740741
k( 8) = ( 0.0000000 0.7698004 0.3030028), wk = 0.0740741
k( 9) = ( 0.0000000 0.7698004 0.6060055), wk = 0.0740741
k( 10) = ( 0.3333333 0.1924501 0.0000000), wk = 0.0740741
k( 11) = ( 0.3333333 0.1924501 0.3030028), wk = 0.0740741
k( 12) = ( 0.3333333 0.1924501 0.6060055), wk = 0.0740741
k( 13) = ( 0.3333333 0.5773503 0.0000000), wk = 0.0740741
k( 14) = ( 0.3333333 0.5773503 0.3030028), wk = 0.0740741
k( 15) = ( 0.3333333 0.5773503 0.6060055), wk = 0.0740741
k( 16) = ( 0.3333333 0.9622504 0.0000000), wk = 0.0740741
k( 17) = ( 0.3333333 0.9622504 0.3030028), wk = 0.0740741
k( 18) = ( 0.3333333 0.9622504 0.6060055), wk = 0.0740741
k( 19) = ( 0.6666667 0.3849002 0.0000000), wk = 0.0740741
k( 20) = ( 0.6666667 0.3849002 0.3030028), wk = 0.0740741
k( 21) = ( 0.6666667 0.3849002 0.6060055), wk = 0.0740741
k( 22) = ( 0.6666667 0.7698004 0.0000000), wk = 0.0740741
k( 23) = ( 0.6666667 0.7698004 0.3030028), wk = 0.0740741
k( 24) = ( 0.6666667 0.7698004 0.6060055), wk = 0.0740741
k( 25) = ( 0.6666667 1.1547005 0.0000000), wk = 0.0740741
k( 26) = ( 0.6666667 1.1547005 0.3030028), wk = 0.0740741
k( 27) = ( 0.6666667 1.1547005 0.6060055), wk = 0.0740741
Dense grid: 23595 G-vectors FFT dimensions: ( 40, 40, 40)
Smooth grid: 9203 G-vectors FFT dimensions: ( 27, 27, 30)
Largest allocated arrays est. size (Mb) dimensions
Kohn-Sham Wavefunctions 0.54 Mb ( 1184, 30)
NL pseudopotentials 1.30 Mb ( 1184, 72)
Each V/rho on FFT grid 0.98 Mb ( 64000)
Each G-vector array 0.18 Mb ( 23595)
G-vector shells 0.01 Mb ( 1138)
Largest temporary arrays est. size (Mb) dimensions
Auxiliary wavefunctions 0.54 Mb ( 1184, 30)
Each subspace H/S matrix 0.01 Mb ( 30, 30)
Each <psi_i|beta_j> matrix 0.03 Mb ( 72, 30)
The potential is recalculated from file :
/Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/SiO2.save/charge-density.dat
Starting wfc are 60 atomic wfcs
-------------------------------------------------------------------------
Reading core wavefunction file for the absorbing atom
-------------------------------------------------------------------------
Si.wfc successfully read
-------------------------------------------------------------------------
Attributing the PAW radii
for the absorbing atom [units: Bohr radius]
-------------------------------------------------------------------------
PAW proj 1: r_paw(l= 0)= 3.60 (1.5*r_cut)
PAW proj 2: r_paw(l= 0)= 3.60 (1.5*r_cut)
PAW proj 3: r_paw(l= 1)= 2.40 (from input file))
PAW proj 4: r_paw(l= 1)= 2.40 (from input file))
PAW proj 5: r_paw(l= 2)= 3.00 (1.5*r_cut)
NB: The calculation will not necessary use all these r_paw values.
- For a edge in the electric-dipole approximation,
only the r_paw(l=1) values are used.
- For a K edge in the electric-quadrupole approximation,
only the r_paw(l=2) values are used.
- For a L2 or L3 edge in the electric-quadrupole approximation,
all projectors (s, p and d) are used.
init_gipaw_1: projectors nearly linearly dependent:
ntyp = 1, l/n1/n2 = 1 2 1 0.99554741
-------------------------------------------------------------------------
Starting XANES calculation
in the electric dipole approximation
-------------------------------------------------------------------------
Method of calculation based on the Lanczos recursion algorithm
--------------------------------------------------------------
- STEP 1: Construction of a kpoint-dependent Lanczos basis,
in which the Hamiltonian is tridiagonal (each 'iter'
corresponds to the calculation of one more Lanczos vector)
- STEP 2: Calculation of the cross-section as a continued fraction
averaged over the k-points.
... Begin STEP 1 ...
Radial transition matrix element(s) used in the calculation of the
initial vector of the Lanczos basis (|tilde{phi}_abs> normalized)
| For PAW proj. (l=1) #1: radial matrix element = 0.026695735
| For PAW proj. (l=1) #2: radial matrix element = 0.024893931
|-------------------------------------------------------------
! k-point # 1: ( 0.0000, 0.0000, 0.0000), 0.0741, 1
|-------------------------------------------------------------
| Hilbert space is saturated
| xniter is set equal to 1155
| Increase kinetic-energy cutoff in your SCF calculation!
okvan= T
| Norm of the initial Lanczos vector: 0.14417308E-01
| Estimated error at iter 50: 1.00277730
| Estimated error at iter 100: 0.07651864
| Estimated error at iter 150: 0.01420994
| Estimated error at iter 200: 0.00556253
| Estimated error at iter 250: 0.00125413
! => CONVERGED at iter 300 with error= 0.00057385
|-------------------------------------------------------------
! k-point # 2: ( 0.0000, 0.0000, 0.3030), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14419098E-01
| Estimated error at iter 50: 1.00283537
| Estimated error at iter 100: 0.09044884
| Estimated error at iter 150: 0.02420809
| Estimated error at iter 200: 0.01220361
| Estimated error at iter 250: 0.00312395
| Estimated error at iter 300: 0.00112913
! => CONVERGED at iter 350 with error= 0.00023178
|-------------------------------------------------------------
! k-point # 3: ( 0.0000, 0.0000, 0.6060), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14419098E-01
| Estimated error at iter 50: 1.00283537
| Estimated error at iter 100: 0.09044884
| Estimated error at iter 150: 0.02421656
| Estimated error at iter 200: 0.01237198
| Estimated error at iter 250: 0.00357142
| Estimated error at iter 300: 0.00113671
! => CONVERGED at iter 350 with error= 0.00024485
|-------------------------------------------------------------
! k-point # 4: ( 0.0000, 0.3849, 0.0000), 0.0741, 1
|-------------------------------------------------------------
| Hilbert space is saturated
| xniter is set equal to 1150
| Increase kinetic-energy cutoff in your SCF calculation!
okvan= T
| Norm of the initial Lanczos vector: 0.14419678E-01
| Estimated error at iter 50: 1.00287354
| Estimated error at iter 100: 0.10922284
| Estimated error at iter 150: 0.02155831
| Estimated error at iter 200: 0.00899210
| Estimated error at iter 250: 0.00314158
| Estimated error at iter 300: 0.00122132
! => CONVERGED at iter 350 with error= 0.00056770
|-------------------------------------------------------------
! k-point # 5: ( 0.0000, 0.3849, 0.3030), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14417436E-01
| Estimated error at iter 50: 1.00285922
| Estimated error at iter 100: 0.10769202
| Estimated error at iter 150: 0.02801034
| Estimated error at iter 200: 0.00771331
| Estimated error at iter 250: 0.00300996
| Estimated error at iter 300: 0.00126374
! => CONVERGED at iter 350 with error= 0.00047347
|-------------------------------------------------------------
! k-point # 6: ( 0.0000, 0.3849, 0.6060), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14417348E-01
| Estimated error at iter 50: 1.00288690
| Estimated error at iter 100: 0.12309929
| Estimated error at iter 150: 0.02677024
| Estimated error at iter 200: 0.01060518
| Estimated error at iter 250: 0.00350476
! => CONVERGED at iter 300 with error= 0.00095008
|-------------------------------------------------------------
! k-point # 7: ( 0.0000, 0.7698, 0.0000), 0.0741, 1
|-------------------------------------------------------------
| Hilbert space is saturated
| xniter is set equal to 1150
| Increase kinetic-energy cutoff in your SCF calculation!
okvan= T
| Norm of the initial Lanczos vector: 0.14419678E-01
| Estimated error at iter 50: 1.00287354
| Estimated error at iter 100: 0.10922284
| Estimated error at iter 150: 0.02156013
| Estimated error at iter 200: 0.00872405
| Estimated error at iter 250: 0.00363369
| Estimated error at iter 300: 0.00116392
! => CONVERGED at iter 350 with error= 0.00044240
|-------------------------------------------------------------
! k-point # 8: ( 0.0000, 0.7698, 0.3030), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14417348E-01
| Estimated error at iter 50: 1.00288690
| Estimated error at iter 100: 0.12309929
| Estimated error at iter 150: 0.02659503
| Estimated error at iter 200: 0.00986091
| Estimated error at iter 250: 0.00345126
! => CONVERGED at iter 300 with error= 0.00087137
|-------------------------------------------------------------
! k-point # 9: ( 0.0000, 0.7698, 0.6060), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14417436E-01
| Estimated error at iter 50: 1.00285922
| Estimated error at iter 100: 0.10769202
| Estimated error at iter 150: 0.02799464
| Estimated error at iter 200: 0.00782435
| Estimated error at iter 250: 0.00291619
| Estimated error at iter 300: 0.00133196
! => CONVERGED at iter 350 with error= 0.00056027
|-------------------------------------------------------------
! k-point # 10: ( 0.3333, 0.1925, 0.0000), 0.0741, 1
|-------------------------------------------------------------
| Hilbert space is saturated
| xniter is set equal to 1150
| Increase kinetic-energy cutoff in your SCF calculation!
okvan= T
| Norm of the initial Lanczos vector: 0.14419907E-01
| Estimated error at iter 50: 1.00282646
| Estimated error at iter 100: 0.07749673
| Estimated error at iter 150: 0.02524323
| Estimated error at iter 200: 0.01215333
| Estimated error at iter 250: 0.00355567
| Estimated error at iter 300: 0.00130152
! => CONVERGED at iter 350 with error= 0.00035648
|-------------------------------------------------------------
! k-point # 11: ( 0.3333, 0.1925, 0.3030), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14417335E-01
| Estimated error at iter 50: 1.00283190
| Estimated error at iter 100: 0.10635822
| Estimated error at iter 150: 0.02091974
| Estimated error at iter 200: 0.00921490
| Estimated error at iter 250: 0.00325435
| Estimated error at iter 300: 0.00130754
! => CONVERGED at iter 350 with error= 0.00043617
|-------------------------------------------------------------
! k-point # 12: ( 0.3333, 0.1925, 0.6060), 0.0741, 1
|-------------------------------------------------------------
okvan= T
| Norm of the initial Lanczos vector: 0.14417428E-01
| Estimated error at iter 50: 1.00285415
| Estimated error at iter 100: 0.10430261
| Estimated error at iter 150: 0.02684842
| Estimated error at iter 200: 0.01211073
| Estimated error at iter 250: 0.00406251
| Estimated error at iter 300: 0.00109834
! => CONVERGED at iter 350 with error= 0.00049478
|-------------------------------------------------------------
! k-point # 13: ( 0.3333, 0.5774, 0.0000), 0.0741, 1
|-------------------------------------------------------------
Calculation not finished
Results of STEP 1 successfully written in x_save_file
x_save_file name:
-> SiO2.xspectra_dip_restart_1.sav
x_save_file version: 2
... End STEP 1 ...