mirror of https://gitlab.com/QEF/q-e.git
509 lines
23 KiB
Plaintext
509 lines
23 KiB
Plaintext
|
|
Program XSpectra v.7.0 starts on 7Feb2022 at 15: 9:28
|
|
|
|
This program is part of the open-source Quantum ESPRESSO suite
|
|
for quantum simulation of materials; please cite
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
|
|
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
|
|
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
|
|
URL http://www.quantum-espresso.org",
|
|
in publications or presentations arising from this work. More details at
|
|
http://www.quantum-espresso.org/quote
|
|
|
|
Parallel version (MPI), running on 8 processors
|
|
|
|
MPI processes distributed on 1 nodes
|
|
R & G space division: proc/nbgrp/npool/nimage = 8
|
|
32356 MiB available memory on the printing compute node when the environment starts
|
|
|
|
|
|
-------------------------------------------------------------------------
|
|
__ ____ _
|
|
\ \/ / _\_ __ ___ ___| |_ _ __ __ _
|
|
\ /\ \| '_ \ / _ \/ __| __| \__/ _\ |
|
|
/ \_\ \ |_) | __/ (__| |_| | | (_| |
|
|
/_/\_\__/ .__/ \___|\___|\__|_| \__,_|
|
|
|_|
|
|
|
|
In publications arising from the use of XSpectra, please cite:
|
|
- O. Bunau and M. Calandra,
|
|
Phys. Rev. B 87, 205105 (2013)
|
|
- Ch. Gougoussis, M. Calandra, A. P. Seitsonen, F. Mauri,
|
|
Phys. Rev. B 80, 075102 (2009)
|
|
- M. Taillefumier, D. Cabaret, A. M. Flank, and F. Mauri,
|
|
Phys. Rev. B 66, 195107 (2002)
|
|
|
|
-------------------------------------------------------------------------
|
|
Reading input_file
|
|
-------------------------------------------------------------------------
|
|
|
|
calculation: xanes_qyadrupole
|
|
|
|
xepsilon [crystallographic coordinates]: 1.000000 -1.000000 0.000000
|
|
|
|
xonly_plot: FALSE
|
|
=> complete calculation: Lanczos + spectrum plot
|
|
|
|
filecore (core-wavefunction file): Ni.wfc
|
|
|
|
main plot parameters:
|
|
cut_occ_states: TRUE
|
|
gamma_mode: constant
|
|
-> using xgamma [eV]: 0.80
|
|
xemin [eV]: -10.00
|
|
xemax [eV]: 20.00
|
|
xnepoint: 300
|
|
energy zero automatically set to the Fermi level
|
|
|
|
Fermi level determined from SCF save directory (NiO.save)
|
|
NB: For an insulator (SCF calculated with occupations="fixed")
|
|
the Fermi level will be placed at the position of HOMO.
|
|
|
|
WARNING: variable ef_r is obsolete
|
|
|
|
-------------------------------------------------------------------------
|
|
Reading SCF save directory: NiO.save
|
|
-------------------------------------------------------------------------
|
|
|
|
|
|
Reading xml data from directory:
|
|
|
|
/scratch/timrov/QE_gitlab/tmp1/q-e/XSpectra/examples/results/tmp/NiO.save/
|
|
file Ni_PBE_TM_2pj.UPF: wavefunction(s) 3S 3P 3D renormalized
|
|
file Ni_PBE_TM_2pj.UPF: wavefunction(s) 3S 3P 3D renormalized
|
|
|
|
IMPORTANT: XC functional enforced from input :
|
|
Exchange-correlation= PBE
|
|
( 1 4 3 4 0 0 0)
|
|
Any further DFT definition will be discarded
|
|
Please, verify this is what you really want
|
|
|
|
|
|
Parallelization info
|
|
--------------------
|
|
sticks: dense smooth PW G-vecs: dense smooth PW
|
|
Min 143 143 35 2434 2434 303
|
|
Max 144 144 36 2435 2435 305
|
|
Sum 1151 1151 287 19477 19477 2437
|
|
|
|
Using Slab Decomposition
|
|
|
|
Reading collected, re-writing distributed wavefunctions
|
|
|
|
-------------------------------------------------------------------------
|
|
Getting the Fermi energy
|
|
-------------------------------------------------------------------------
|
|
|
|
From SCF save directory (spin polarized work):
|
|
ehomo [eV]: 13.9550 (highest occupied level:max of up and down)
|
|
No LUMO values in SCF calculation
|
|
ef [eV]: 13.9550
|
|
|
|
-> ef (in eV) will be written in x_save_file
|
|
|
|
-------------------------------------------------------------------------
|
|
Energy zero of the spectrum
|
|
-------------------------------------------------------------------------
|
|
|
|
-> ef will be used as energy zero of the spectrum
|
|
|
|
Parallelization info
|
|
--------------------
|
|
sticks: dense smooth PW G-vecs: dense smooth PW
|
|
Min 143 143 41 2434 2434 376
|
|
Max 144 144 42 2435 2435 377
|
|
Sum 1151 1151 331 19477 19477 3009
|
|
|
|
Using Slab Decomposition
|
|
|
|
|
|
|
|
bravais-lattice index = 5
|
|
lattice parameter (alat) = 9.6715 a.u.
|
|
unit-cell volume = 246.2189 (a.u.)^3
|
|
number of atoms/cell = 4
|
|
number of atomic types = 3
|
|
number of electrons = 48.00 (up: 24.00, down: 24.00)
|
|
number of Kohn-Sham states= 24
|
|
kinetic-energy cutoff = 70.0000 Ry
|
|
charge density cutoff = 280.0000 Ry
|
|
Exchange-correlation= PBE
|
|
( 1 4 3 4 0 0 0)
|
|
Hubbard projectors: atomic
|
|
Hubbard parameters of DFT+U (Dudarev formulation) in eV:
|
|
U(Ni-3d) = 7.6000
|
|
U(NiB-3d) = 7.6000
|
|
|
|
Internal variables: lda_plus_u = T, lda_plus_u_kind = 0
|
|
|
|
celldm(1)= 9.671550 celldm(2)= 0.000000 celldm(3)= 0.000000
|
|
celldm(4)= 0.833333 celldm(5)= 0.000000 celldm(6)= 0.000000
|
|
|
|
crystal axes: (cart. coord. in units of alat)
|
|
a(1) = ( 0.288675 -0.166667 0.942809 )
|
|
a(2) = ( 0.000000 0.333333 0.942809 )
|
|
a(3) = ( -0.288675 -0.166667 0.942809 )
|
|
|
|
reciprocal axes: (cart. coord. in units 2 pi/alat)
|
|
b(1) = ( 1.732051 -1.000000 0.353553 )
|
|
b(2) = ( 0.000000 2.000000 0.353553 )
|
|
b(3) = ( -1.732051 -1.000000 0.353553 )
|
|
|
|
|
|
PseudoPot. # 1 for Ni read from file:
|
|
/scratch/timrov/QE_gitlab/tmp1/q-e/XSpectra/examples/pseudo/Ni_PBE_TM_2pj.UPF
|
|
MD5 check sum: 3fd375d40f68096c892dcf97f555543a
|
|
Pseudo is Norm-conserving, Zval = 18.0
|
|
Generated by new atomic code, or converted to UPF format
|
|
Using radial grid of 1195 points, 2 beta functions with:
|
|
l(1) = 0
|
|
l(2) = 1
|
|
|
|
PseudoPot. # 2 for Ni read from file:
|
|
/scratch/timrov/QE_gitlab/tmp1/q-e/XSpectra/examples/pseudo/Ni_PBE_TM_2pj.UPF
|
|
MD5 check sum: 3fd375d40f68096c892dcf97f555543a
|
|
Pseudo is Norm-conserving, Zval = 18.0
|
|
Generated by new atomic code, or converted to UPF format
|
|
Using radial grid of 1195 points, 2 beta functions with:
|
|
l(1) = 0
|
|
l(2) = 1
|
|
|
|
PseudoPot. # 3 for O read from file:
|
|
/scratch/timrov/QE_gitlab/tmp1/q-e/XSpectra/examples/pseudo/O_PBE_TM.UPF
|
|
MD5 check sum: 7269e4db10efbd9bf64de7c8e654fab0
|
|
Pseudo is Norm-conserving, Zval = 6.0
|
|
Generated by new atomic code, or converted to UPF format
|
|
Using radial grid of 1095 points, 1 beta functions with:
|
|
l(1) = 0
|
|
|
|
atomic species valence mass pseudopotential
|
|
Ni 18.00 58.69340 Ni( 1.00)
|
|
NiB 18.00 58.69340 Ni( 1.00)
|
|
O 6.00 15.99940 O ( 1.00)
|
|
|
|
Starting magnetic structure
|
|
atomic species magnetization
|
|
Ni 1.000
|
|
NiB -1.000
|
|
O 0.000
|
|
|
|
12 Sym. Ops., with inversion, found
|
|
|
|
|
|
|
|
Cartesian axes
|
|
|
|
site n. atom positions (alat units)
|
|
1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
|
|
2 NiB tau( 2) = ( 0.0000000 0.6666667 0.4714045 )
|
|
3 O tau( 3) = ( 0.2886751 -0.1666667 0.2357023 )
|
|
4 O tau( 4) = ( -0.2886751 0.1666667 -0.2357023 )
|
|
|
|
number of k points= 8
|
|
cart. coord. in units 2pi/alat
|
|
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
|
|
k( 2) = ( -0.8660254 -0.5000000 0.1767767), wk = 0.1250000
|
|
k( 3) = ( 0.0000000 1.0000000 0.1767767), wk = 0.1250000
|
|
k( 4) = ( -0.8660254 0.5000000 0.3535534), wk = 0.1250000
|
|
k( 5) = ( 0.8660254 -0.5000000 0.1767767), wk = 0.1250000
|
|
k( 6) = ( 0.0000000 -1.0000000 0.3535534), wk = 0.1250000
|
|
k( 7) = ( 0.8660254 0.5000000 0.3535534), wk = 0.1250000
|
|
k( 8) = ( 0.0000000 0.0000000 0.5303301), wk = 0.1250000
|
|
|
|
Dense grid: 19477 G-vectors FFT dimensions: ( 54, 54, 54)
|
|
|
|
Estimated max dynamical RAM per process > 3.34 MB
|
|
|
|
Estimated total dynamical RAM > 26.70 MB
|
|
|
|
The potential is recalculated from file :
|
|
/scratch/timrov/QE_gitlab/tmp1/q-e/XSpectra/examples/results/tmp/NiO.save/charge-density
|
|
|
|
|
|
STARTING HUBBARD OCCUPATIONS:
|
|
|
|
=================== HUBBARD OCCUPATIONS ===================
|
|
------------------------ ATOM 1 ------------------------
|
|
Tr[ns( 1)] (up, down, total) = 4.69471 3.56044 8.25515
|
|
Atomic magnetic moment for atom 1 = 1.13427
|
|
SPIN 1
|
|
eigenvalues:
|
|
0.907 0.907 0.956 0.956 0.970
|
|
eigenvectors (columns):
|
|
0.000 -0.000 0.000 -0.000 1.000
|
|
-0.849 -0.212 0.135 -0.465 -0.000
|
|
-0.212 0.849 0.465 0.135 -0.000
|
|
-0.117 0.469 -0.840 -0.245 0.000
|
|
-0.469 -0.117 -0.245 0.840 0.000
|
|
occupation matrix ns (before diag.):
|
|
0.970 0.000 0.000 0.000 0.000
|
|
0.000 0.918 0.000 -0.000 -0.021
|
|
0.000 0.000 0.918 -0.021 -0.000
|
|
0.000 -0.000 -0.021 0.944 -0.000
|
|
0.000 -0.021 -0.000 -0.000 0.944
|
|
SPIN 2
|
|
eigenvalues:
|
|
0.346 0.346 0.952 0.952 0.966
|
|
eigenvectors (columns):
|
|
-0.000 -0.000 -0.000 -0.000 1.000
|
|
0.650 -0.459 -0.132 -0.592 -0.000
|
|
0.459 0.650 -0.592 0.132 -0.000
|
|
0.350 0.495 0.776 -0.173 0.000
|
|
0.495 -0.350 0.173 0.776 0.000
|
|
occupation matrix ns (before diag.):
|
|
0.966 0.000 0.000 0.000 0.000
|
|
0.000 0.568 0.000 -0.000 -0.292
|
|
0.000 0.000 0.568 -0.292 0.000
|
|
0.000 -0.000 -0.292 0.729 -0.000
|
|
0.000 -0.292 0.000 -0.000 0.729
|
|
------------------------ ATOM 2 ------------------------
|
|
Tr[ns( 2)] (up, down, total) = 3.56018 4.69495 8.25513
|
|
Atomic magnetic moment for atom 2 = -1.13477
|
|
SPIN 1
|
|
eigenvalues:
|
|
0.345 0.345 0.952 0.952 0.966
|
|
eigenvectors (columns):
|
|
-0.000 -0.000 -0.000 -0.000 1.000
|
|
0.652 -0.456 -0.132 -0.591 -0.000
|
|
0.456 0.652 -0.591 0.132 -0.000
|
|
0.347 0.496 0.777 -0.174 0.000
|
|
0.496 -0.347 0.174 0.777 0.000
|
|
occupation matrix ns (before diag.):
|
|
0.966 0.000 0.000 0.000 0.000
|
|
0.000 0.568 0.000 -0.000 -0.292
|
|
0.000 0.000 0.568 -0.292 0.000
|
|
0.000 -0.000 -0.292 0.730 -0.000
|
|
0.000 -0.292 0.000 -0.000 0.730
|
|
SPIN 2
|
|
eigenvalues:
|
|
0.907 0.907 0.956 0.956 0.970
|
|
eigenvectors (columns):
|
|
0.000 -0.000 0.000 -0.000 1.000
|
|
-0.849 -0.213 0.135 -0.465 -0.000
|
|
-0.213 0.849 0.465 0.135 -0.000
|
|
-0.118 0.470 -0.840 -0.244 0.000
|
|
-0.470 -0.118 -0.244 0.840 0.000
|
|
occupation matrix ns (before diag.):
|
|
0.970 0.000 0.000 0.000 0.000
|
|
0.000 0.918 0.000 -0.000 -0.021
|
|
0.000 0.000 0.918 -0.021 -0.000
|
|
0.000 -0.000 -0.021 0.944 -0.000
|
|
0.000 -0.021 -0.000 -0.000 0.944
|
|
|
|
Number of occupied Hubbard levels = 16.5103
|
|
|
|
Atomic wfc used for Hubbard projectors are NOT orthogonalized
|
|
|
|
Starting wfcs are 26 atomic wfcs
|
|
|
|
-------------------------------------------------------------------------
|
|
Reading core wavefunction file for the absorbing atom
|
|
-------------------------------------------------------------------------
|
|
|
|
Ni.wfc successfully read
|
|
|
|
-------------------------------------------------------------------------
|
|
Attributing the PAW radii
|
|
for the absorbing atom [units: Bohr radius]
|
|
-------------------------------------------------------------------------
|
|
|
|
PAW proj 1: r_paw(l= 0)= 1.88 (1.5*r_cut)
|
|
PAW proj 2: r_paw(l= 1)= 1.88 (1.5*r_cut)
|
|
PAW proj 4: r_paw(l= 0)= 1.88 (1.5*r_cut)
|
|
PAW proj 5: r_paw(l= 1)= 1.88 (1.5*r_cut)
|
|
|
|
NB: The calculation will not necessary use all these r_paw values.
|
|
- For a edge in the electric-dipole approximation,
|
|
only the r_paw(l=1) values are used.
|
|
- For a K edge in the electric-quadrupole approximation,
|
|
only the r_paw(l=2) values are used.
|
|
|
|
- For a L2 or L3 edge in the electric-quadrupole approximation,
|
|
|
|
all projectors (s, p and d) are used.
|
|
|
|
|
|
-------------------------------------------------------------------------
|
|
Starting XANES calculation
|
|
in the electric quadrupole approximation
|
|
-------------------------------------------------------------------------
|
|
|
|
Method of calculation based on the Lanczos recursion algorithm
|
|
--------------------------------------------------------------
|
|
- STEP 1: Construction of a kpoint-dependent Lanczos basis,
|
|
in which the Hamiltonian is tridiagonal (each 'iter'
|
|
corresponds to the calculation of one more Lanczos vector)
|
|
- STEP 2: Calculation of the cross-section as a continued fraction
|
|
averaged over the k-points.
|
|
|
|
... Begin STEP 1 ...
|
|
|
|
| For PAW proj. (l=2) #1: radial matrix element = 0.000829385
|
|
| For PAW proj. (l=2) #2: radial matrix element = 0.001056836
|
|
|
|
|-------------------------------------------------------------
|
|
! k-point # 1: ( 0.0000, 0.0000, 0.0000)
|
|
! weight: 0.1250 spin state: 1
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15959612E-03
|
|
| Estimated error at iter 50: 1.01015150
|
|
| Estimated error at iter 100: 0.03683351
|
|
! => CONVERGED at iter 150 with error= 0.00000000
|
|
|-------------------------------------------------------------
|
|
! k-point # 2: (-0.8660, -0.5000, 0.1768)
|
|
! weight: 0.1250 spin state: 1
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15957056E-03
|
|
| Estimated error at iter 50: 1.00984132
|
|
| Estimated error at iter 100: 0.00104208
|
|
! => CONVERGED at iter 150 with error= 0.00000000
|
|
|-------------------------------------------------------------
|
|
! k-point # 3: ( 0.0000, 1.0000, 0.1768)
|
|
! weight: 0.1250 spin state: 1
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15961957E-03
|
|
| Estimated error at iter 50: 1.00971981
|
|
| Estimated error at iter 100: 0.22418780
|
|
| Estimated error at iter 150: 0.04230200
|
|
! => CONVERGED at iter 200 with error= 0.00017277
|
|
|-------------------------------------------------------------
|
|
! k-point # 4: (-0.8660, 0.5000, 0.3536)
|
|
! weight: 0.1250 spin state: 1
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15959003E-03
|
|
| Estimated error at iter 50: 1.00972238
|
|
| Estimated error at iter 100: 0.26341289
|
|
| Estimated error at iter 150: 0.01147081
|
|
! => CONVERGED at iter 200 with error= 0.00085718
|
|
|-------------------------------------------------------------
|
|
! k-point # 5: ( 0.8660, -0.5000, 0.1768)
|
|
! weight: 0.1250 spin state: 1
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15961957E-03
|
|
| Estimated error at iter 50: 1.00971981
|
|
| Estimated error at iter 100: 0.22418623
|
|
| Estimated error at iter 150: 0.04230078
|
|
! => CONVERGED at iter 200 with error= 0.00017718
|
|
|-------------------------------------------------------------
|
|
! k-point # 6: ( 0.0000, -1.0000, 0.3536)
|
|
! weight: 0.1250 spin state: 1
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15959003E-03
|
|
| Estimated error at iter 50: 1.00972238
|
|
| Estimated error at iter 100: 0.26353011
|
|
| Estimated error at iter 150: 0.01146448
|
|
! => CONVERGED at iter 200 with error= 0.00085497
|
|
|-------------------------------------------------------------
|
|
! k-point # 7: ( 0.8660, 0.5000, 0.3536)
|
|
! weight: 0.1250 spin state: 1
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15955058E-03
|
|
| Estimated error at iter 50: 1.00999184
|
|
| Estimated error at iter 100: 0.02016815
|
|
! => CONVERGED at iter 150 with error= 0.00000000
|
|
|-------------------------------------------------------------
|
|
! k-point # 8: ( 0.0000, 0.0000, 0.5303)
|
|
! weight: 0.1250 spin state: 1
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15962985E-03
|
|
| Estimated error at iter 50: 1.00995035
|
|
| Estimated error at iter 100: 0.00257363
|
|
! => CONVERGED at iter 150 with error= 0.00000000
|
|
|-------------------------------------------------------------
|
|
! k-point # 9: ( 0.0000, 0.0000, 0.0000)
|
|
! weight: 0.1250 spin state: 2
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15959612E-03
|
|
| Estimated error at iter 50: 1.01357248
|
|
| Estimated error at iter 100: 0.00355241
|
|
! => CONVERGED at iter 150 with error= 0.00000000
|
|
|-------------------------------------------------------------
|
|
! k-point # 10: (-0.8660, -0.5000, 0.1768)
|
|
! weight: 0.1250 spin state: 2
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15957056E-03
|
|
| Estimated error at iter 50: 1.01240364
|
|
! => CONVERGED at iter 100 with error= 0.00090166
|
|
|-------------------------------------------------------------
|
|
! k-point # 11: ( 0.0000, 1.0000, 0.1768)
|
|
! weight: 0.1250 spin state: 2
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15961957E-03
|
|
| Estimated error at iter 50: 1.01274566
|
|
| Estimated error at iter 100: 0.13410892
|
|
| Estimated error at iter 150: 0.00951091
|
|
! => CONVERGED at iter 200 with error= 0.00014112
|
|
|-------------------------------------------------------------
|
|
! k-point # 12: (-0.8660, 0.5000, 0.3536)
|
|
! weight: 0.1250 spin state: 2
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15959003E-03
|
|
| Estimated error at iter 50: 1.01395649
|
|
| Estimated error at iter 100: 0.01596740
|
|
| Estimated error at iter 150: 0.00454713
|
|
! => CONVERGED at iter 200 with error= 0.00022651
|
|
|-------------------------------------------------------------
|
|
! k-point # 13: ( 0.8660, -0.5000, 0.1768)
|
|
! weight: 0.1250 spin state: 2
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15961957E-03
|
|
| Estimated error at iter 50: 1.01274566
|
|
| Estimated error at iter 100: 0.13408425
|
|
| Estimated error at iter 150: 0.00943922
|
|
! => CONVERGED at iter 200 with error= 0.00012107
|
|
|-------------------------------------------------------------
|
|
! k-point # 14: ( 0.0000, -1.0000, 0.3536)
|
|
! weight: 0.1250 spin state: 2
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15959003E-03
|
|
| Estimated error at iter 50: 1.01395649
|
|
| Estimated error at iter 100: 0.01627141
|
|
| Estimated error at iter 150: 0.00557323
|
|
! => CONVERGED at iter 200 with error= 0.00022501
|
|
|-------------------------------------------------------------
|
|
! k-point # 15: ( 0.8660, 0.5000, 0.3536)
|
|
! weight: 0.1250 spin state: 2
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15955058E-03
|
|
| Estimated error at iter 50: 1.01414644
|
|
| Estimated error at iter 100: 0.00303199
|
|
! => CONVERGED at iter 150 with error= 0.00000000
|
|
|-------------------------------------------------------------
|
|
! k-point # 16: ( 0.0000, 0.0000, 0.5303)
|
|
! weight: 0.1250 spin state: 2
|
|
|-------------------------------------------------------------
|
|
| Norm of the initial Lanczos vector: 0.15962985E-03
|
|
| Estimated error at iter 50: 1.01222090
|
|
| Estimated error at iter 100: 0.00407714
|
|
! => CONVERGED at iter 150 with error= 0.00000000
|
|
|
|
Results of STEP 1 successfully written in x_save_file
|
|
x_save_file name:
|
|
-> NiO.xspectra_qua.sav
|
|
x_save_file version: 2
|
|
|
|
... End STEP 1 ...
|
|
|
|
... Begin STEP 2 ...
|
|
|
|
The spectrum is calculated using the following parameters:
|
|
energy-zero of the spectrum [eV]: 13.9550
|
|
the occupied states are elimintate from the spectrum
|
|
xemin [eV]: -10.00
|
|
xemax [eV]: 20.00
|
|
xnepoint: 300
|
|
constant broadening parameter [eV]: 0.800
|
|
Core level energy [eV]: -8333.
|
|
(from electron binding energy of neutral atoms in X-ray data booklet)
|
|
|
|
Cross-section successfully written in xanes.dat
|
|
|
|
... End STEP 2 ...
|
|
|
|
xanes : 5.69s CPU 5.82s WALL ( 1 calls)
|
|
|
|
-------------------------------------------------------------------------
|
|
END JOB XSpectra
|
|
-------------------------------------------------------------------------
|
|
|