quantum-espresso/XSpectra/examples/reference/NiO.xspectra_qua.out

509 lines
23 KiB
Plaintext

Program XSpectra v.7.0 starts on 7Feb2022 at 15: 9:28
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 8 processors
MPI processes distributed on 1 nodes
R & G space division: proc/nbgrp/npool/nimage = 8
32356 MiB available memory on the printing compute node when the environment starts
-------------------------------------------------------------------------
__ ____ _
\ \/ / _\_ __ ___ ___| |_ _ __ __ _
\ /\ \| '_ \ / _ \/ __| __| \__/ _\ |
/ \_\ \ |_) | __/ (__| |_| | | (_| |
/_/\_\__/ .__/ \___|\___|\__|_| \__,_|
|_|
In publications arising from the use of XSpectra, please cite:
- O. Bunau and M. Calandra,
Phys. Rev. B 87, 205105 (2013)
- Ch. Gougoussis, M. Calandra, A. P. Seitsonen, F. Mauri,
Phys. Rev. B 80, 075102 (2009)
- M. Taillefumier, D. Cabaret, A. M. Flank, and F. Mauri,
Phys. Rev. B 66, 195107 (2002)
-------------------------------------------------------------------------
Reading input_file
-------------------------------------------------------------------------
calculation: xanes_qyadrupole
xepsilon [crystallographic coordinates]: 1.000000 -1.000000 0.000000
xonly_plot: FALSE
=> complete calculation: Lanczos + spectrum plot
filecore (core-wavefunction file): Ni.wfc
main plot parameters:
cut_occ_states: TRUE
gamma_mode: constant
-> using xgamma [eV]: 0.80
xemin [eV]: -10.00
xemax [eV]: 20.00
xnepoint: 300
energy zero automatically set to the Fermi level
Fermi level determined from SCF save directory (NiO.save)
NB: For an insulator (SCF calculated with occupations="fixed")
the Fermi level will be placed at the position of HOMO.
WARNING: variable ef_r is obsolete
-------------------------------------------------------------------------
Reading SCF save directory: NiO.save
-------------------------------------------------------------------------
Reading xml data from directory:
/scratch/timrov/QE_gitlab/tmp1/q-e/XSpectra/examples/results/tmp/NiO.save/
file Ni_PBE_TM_2pj.UPF: wavefunction(s) 3S 3P 3D renormalized
file Ni_PBE_TM_2pj.UPF: wavefunction(s) 3S 3P 3D renormalized
IMPORTANT: XC functional enforced from input :
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 143 143 35 2434 2434 303
Max 144 144 36 2435 2435 305
Sum 1151 1151 287 19477 19477 2437
Using Slab Decomposition
Reading collected, re-writing distributed wavefunctions
-------------------------------------------------------------------------
Getting the Fermi energy
-------------------------------------------------------------------------
From SCF save directory (spin polarized work):
ehomo [eV]: 13.9550 (highest occupied level:max of up and down)
No LUMO values in SCF calculation
ef [eV]: 13.9550
-> ef (in eV) will be written in x_save_file
-------------------------------------------------------------------------
Energy zero of the spectrum
-------------------------------------------------------------------------
-> ef will be used as energy zero of the spectrum
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 143 143 41 2434 2434 376
Max 144 144 42 2435 2435 377
Sum 1151 1151 331 19477 19477 3009
Using Slab Decomposition
bravais-lattice index = 5
lattice parameter (alat) = 9.6715 a.u.
unit-cell volume = 246.2189 (a.u.)^3
number of atoms/cell = 4
number of atomic types = 3
number of electrons = 48.00 (up: 24.00, down: 24.00)
number of Kohn-Sham states= 24
kinetic-energy cutoff = 70.0000 Ry
charge density cutoff = 280.0000 Ry
Exchange-correlation= PBE
( 1 4 3 4 0 0 0)
Hubbard projectors: atomic
Hubbard parameters of DFT+U (Dudarev formulation) in eV:
U(Ni-3d) = 7.6000
U(NiB-3d) = 7.6000
Internal variables: lda_plus_u = T, lda_plus_u_kind = 0
celldm(1)= 9.671550 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.833333 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 0.288675 -0.166667 0.942809 )
a(2) = ( 0.000000 0.333333 0.942809 )
a(3) = ( -0.288675 -0.166667 0.942809 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.732051 -1.000000 0.353553 )
b(2) = ( 0.000000 2.000000 0.353553 )
b(3) = ( -1.732051 -1.000000 0.353553 )
PseudoPot. # 1 for Ni read from file:
/scratch/timrov/QE_gitlab/tmp1/q-e/XSpectra/examples/pseudo/Ni_PBE_TM_2pj.UPF
MD5 check sum: 3fd375d40f68096c892dcf97f555543a
Pseudo is Norm-conserving, Zval = 18.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1195 points, 2 beta functions with:
l(1) = 0
l(2) = 1
PseudoPot. # 2 for Ni read from file:
/scratch/timrov/QE_gitlab/tmp1/q-e/XSpectra/examples/pseudo/Ni_PBE_TM_2pj.UPF
MD5 check sum: 3fd375d40f68096c892dcf97f555543a
Pseudo is Norm-conserving, Zval = 18.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1195 points, 2 beta functions with:
l(1) = 0
l(2) = 1
PseudoPot. # 3 for O read from file:
/scratch/timrov/QE_gitlab/tmp1/q-e/XSpectra/examples/pseudo/O_PBE_TM.UPF
MD5 check sum: 7269e4db10efbd9bf64de7c8e654fab0
Pseudo is Norm-conserving, Zval = 6.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1095 points, 1 beta functions with:
l(1) = 0
atomic species valence mass pseudopotential
Ni 18.00 58.69340 Ni( 1.00)
NiB 18.00 58.69340 Ni( 1.00)
O 6.00 15.99940 O ( 1.00)
Starting magnetic structure
atomic species magnetization
Ni 1.000
NiB -1.000
O 0.000
12 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Ni tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
2 NiB tau( 2) = ( 0.0000000 0.6666667 0.4714045 )
3 O tau( 3) = ( 0.2886751 -0.1666667 0.2357023 )
4 O tau( 4) = ( -0.2886751 0.1666667 -0.2357023 )
number of k points= 8
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k( 2) = ( -0.8660254 -0.5000000 0.1767767), wk = 0.1250000
k( 3) = ( 0.0000000 1.0000000 0.1767767), wk = 0.1250000
k( 4) = ( -0.8660254 0.5000000 0.3535534), wk = 0.1250000
k( 5) = ( 0.8660254 -0.5000000 0.1767767), wk = 0.1250000
k( 6) = ( 0.0000000 -1.0000000 0.3535534), wk = 0.1250000
k( 7) = ( 0.8660254 0.5000000 0.3535534), wk = 0.1250000
k( 8) = ( 0.0000000 0.0000000 0.5303301), wk = 0.1250000
Dense grid: 19477 G-vectors FFT dimensions: ( 54, 54, 54)
Estimated max dynamical RAM per process > 3.34 MB
Estimated total dynamical RAM > 26.70 MB
The potential is recalculated from file :
/scratch/timrov/QE_gitlab/tmp1/q-e/XSpectra/examples/results/tmp/NiO.save/charge-density
STARTING HUBBARD OCCUPATIONS:
=================== HUBBARD OCCUPATIONS ===================
------------------------ ATOM 1 ------------------------
Tr[ns( 1)] (up, down, total) = 4.69471 3.56044 8.25515
Atomic magnetic moment for atom 1 = 1.13427
SPIN 1
eigenvalues:
0.907 0.907 0.956 0.956 0.970
eigenvectors (columns):
0.000 -0.000 0.000 -0.000 1.000
-0.849 -0.212 0.135 -0.465 -0.000
-0.212 0.849 0.465 0.135 -0.000
-0.117 0.469 -0.840 -0.245 0.000
-0.469 -0.117 -0.245 0.840 0.000
occupation matrix ns (before diag.):
0.970 0.000 0.000 0.000 0.000
0.000 0.918 0.000 -0.000 -0.021
0.000 0.000 0.918 -0.021 -0.000
0.000 -0.000 -0.021 0.944 -0.000
0.000 -0.021 -0.000 -0.000 0.944
SPIN 2
eigenvalues:
0.346 0.346 0.952 0.952 0.966
eigenvectors (columns):
-0.000 -0.000 -0.000 -0.000 1.000
0.650 -0.459 -0.132 -0.592 -0.000
0.459 0.650 -0.592 0.132 -0.000
0.350 0.495 0.776 -0.173 0.000
0.495 -0.350 0.173 0.776 0.000
occupation matrix ns (before diag.):
0.966 0.000 0.000 0.000 0.000
0.000 0.568 0.000 -0.000 -0.292
0.000 0.000 0.568 -0.292 0.000
0.000 -0.000 -0.292 0.729 -0.000
0.000 -0.292 0.000 -0.000 0.729
------------------------ ATOM 2 ------------------------
Tr[ns( 2)] (up, down, total) = 3.56018 4.69495 8.25513
Atomic magnetic moment for atom 2 = -1.13477
SPIN 1
eigenvalues:
0.345 0.345 0.952 0.952 0.966
eigenvectors (columns):
-0.000 -0.000 -0.000 -0.000 1.000
0.652 -0.456 -0.132 -0.591 -0.000
0.456 0.652 -0.591 0.132 -0.000
0.347 0.496 0.777 -0.174 0.000
0.496 -0.347 0.174 0.777 0.000
occupation matrix ns (before diag.):
0.966 0.000 0.000 0.000 0.000
0.000 0.568 0.000 -0.000 -0.292
0.000 0.000 0.568 -0.292 0.000
0.000 -0.000 -0.292 0.730 -0.000
0.000 -0.292 0.000 -0.000 0.730
SPIN 2
eigenvalues:
0.907 0.907 0.956 0.956 0.970
eigenvectors (columns):
0.000 -0.000 0.000 -0.000 1.000
-0.849 -0.213 0.135 -0.465 -0.000
-0.213 0.849 0.465 0.135 -0.000
-0.118 0.470 -0.840 -0.244 0.000
-0.470 -0.118 -0.244 0.840 0.000
occupation matrix ns (before diag.):
0.970 0.000 0.000 0.000 0.000
0.000 0.918 0.000 -0.000 -0.021
0.000 0.000 0.918 -0.021 -0.000
0.000 -0.000 -0.021 0.944 -0.000
0.000 -0.021 -0.000 -0.000 0.944
Number of occupied Hubbard levels = 16.5103
Atomic wfc used for Hubbard projectors are NOT orthogonalized
Starting wfcs are 26 atomic wfcs
-------------------------------------------------------------------------
Reading core wavefunction file for the absorbing atom
-------------------------------------------------------------------------
Ni.wfc successfully read
-------------------------------------------------------------------------
Attributing the PAW radii
for the absorbing atom [units: Bohr radius]
-------------------------------------------------------------------------
PAW proj 1: r_paw(l= 0)= 1.88 (1.5*r_cut)
PAW proj 2: r_paw(l= 1)= 1.88 (1.5*r_cut)
PAW proj 4: r_paw(l= 0)= 1.88 (1.5*r_cut)
PAW proj 5: r_paw(l= 1)= 1.88 (1.5*r_cut)
NB: The calculation will not necessary use all these r_paw values.
- For a edge in the electric-dipole approximation,
only the r_paw(l=1) values are used.
- For a K edge in the electric-quadrupole approximation,
only the r_paw(l=2) values are used.
- For a L2 or L3 edge in the electric-quadrupole approximation,
all projectors (s, p and d) are used.
-------------------------------------------------------------------------
Starting XANES calculation
in the electric quadrupole approximation
-------------------------------------------------------------------------
Method of calculation based on the Lanczos recursion algorithm
--------------------------------------------------------------
- STEP 1: Construction of a kpoint-dependent Lanczos basis,
in which the Hamiltonian is tridiagonal (each 'iter'
corresponds to the calculation of one more Lanczos vector)
- STEP 2: Calculation of the cross-section as a continued fraction
averaged over the k-points.
... Begin STEP 1 ...
| For PAW proj. (l=2) #1: radial matrix element = 0.000829385
| For PAW proj. (l=2) #2: radial matrix element = 0.001056836
|-------------------------------------------------------------
! k-point # 1: ( 0.0000, 0.0000, 0.0000)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15959612E-03
| Estimated error at iter 50: 1.01015150
| Estimated error at iter 100: 0.03683351
! => CONVERGED at iter 150 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 2: (-0.8660, -0.5000, 0.1768)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15957056E-03
| Estimated error at iter 50: 1.00984132
| Estimated error at iter 100: 0.00104208
! => CONVERGED at iter 150 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 3: ( 0.0000, 1.0000, 0.1768)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15961957E-03
| Estimated error at iter 50: 1.00971981
| Estimated error at iter 100: 0.22418780
| Estimated error at iter 150: 0.04230200
! => CONVERGED at iter 200 with error= 0.00017277
|-------------------------------------------------------------
! k-point # 4: (-0.8660, 0.5000, 0.3536)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15959003E-03
| Estimated error at iter 50: 1.00972238
| Estimated error at iter 100: 0.26341289
| Estimated error at iter 150: 0.01147081
! => CONVERGED at iter 200 with error= 0.00085718
|-------------------------------------------------------------
! k-point # 5: ( 0.8660, -0.5000, 0.1768)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15961957E-03
| Estimated error at iter 50: 1.00971981
| Estimated error at iter 100: 0.22418623
| Estimated error at iter 150: 0.04230078
! => CONVERGED at iter 200 with error= 0.00017718
|-------------------------------------------------------------
! k-point # 6: ( 0.0000, -1.0000, 0.3536)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15959003E-03
| Estimated error at iter 50: 1.00972238
| Estimated error at iter 100: 0.26353011
| Estimated error at iter 150: 0.01146448
! => CONVERGED at iter 200 with error= 0.00085497
|-------------------------------------------------------------
! k-point # 7: ( 0.8660, 0.5000, 0.3536)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15955058E-03
| Estimated error at iter 50: 1.00999184
| Estimated error at iter 100: 0.02016815
! => CONVERGED at iter 150 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 8: ( 0.0000, 0.0000, 0.5303)
! weight: 0.1250 spin state: 1
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15962985E-03
| Estimated error at iter 50: 1.00995035
| Estimated error at iter 100: 0.00257363
! => CONVERGED at iter 150 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 9: ( 0.0000, 0.0000, 0.0000)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15959612E-03
| Estimated error at iter 50: 1.01357248
| Estimated error at iter 100: 0.00355241
! => CONVERGED at iter 150 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 10: (-0.8660, -0.5000, 0.1768)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15957056E-03
| Estimated error at iter 50: 1.01240364
! => CONVERGED at iter 100 with error= 0.00090166
|-------------------------------------------------------------
! k-point # 11: ( 0.0000, 1.0000, 0.1768)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15961957E-03
| Estimated error at iter 50: 1.01274566
| Estimated error at iter 100: 0.13410892
| Estimated error at iter 150: 0.00951091
! => CONVERGED at iter 200 with error= 0.00014112
|-------------------------------------------------------------
! k-point # 12: (-0.8660, 0.5000, 0.3536)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15959003E-03
| Estimated error at iter 50: 1.01395649
| Estimated error at iter 100: 0.01596740
| Estimated error at iter 150: 0.00454713
! => CONVERGED at iter 200 with error= 0.00022651
|-------------------------------------------------------------
! k-point # 13: ( 0.8660, -0.5000, 0.1768)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15961957E-03
| Estimated error at iter 50: 1.01274566
| Estimated error at iter 100: 0.13408425
| Estimated error at iter 150: 0.00943922
! => CONVERGED at iter 200 with error= 0.00012107
|-------------------------------------------------------------
! k-point # 14: ( 0.0000, -1.0000, 0.3536)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15959003E-03
| Estimated error at iter 50: 1.01395649
| Estimated error at iter 100: 0.01627141
| Estimated error at iter 150: 0.00557323
! => CONVERGED at iter 200 with error= 0.00022501
|-------------------------------------------------------------
! k-point # 15: ( 0.8660, 0.5000, 0.3536)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15955058E-03
| Estimated error at iter 50: 1.01414644
| Estimated error at iter 100: 0.00303199
! => CONVERGED at iter 150 with error= 0.00000000
|-------------------------------------------------------------
! k-point # 16: ( 0.0000, 0.0000, 0.5303)
! weight: 0.1250 spin state: 2
|-------------------------------------------------------------
| Norm of the initial Lanczos vector: 0.15962985E-03
| Estimated error at iter 50: 1.01222090
| Estimated error at iter 100: 0.00407714
! => CONVERGED at iter 150 with error= 0.00000000
Results of STEP 1 successfully written in x_save_file
x_save_file name:
-> NiO.xspectra_qua.sav
x_save_file version: 2
... End STEP 1 ...
... Begin STEP 2 ...
The spectrum is calculated using the following parameters:
energy-zero of the spectrum [eV]: 13.9550
the occupied states are elimintate from the spectrum
xemin [eV]: -10.00
xemax [eV]: 20.00
xnepoint: 300
constant broadening parameter [eV]: 0.800
Core level energy [eV]: -8333.
(from electron binding energy of neutral atoms in X-ray data booklet)
Cross-section successfully written in xanes.dat
... End STEP 2 ...
xanes : 5.69s CPU 5.82s WALL ( 1 calls)
-------------------------------------------------------------------------
END JOB XSpectra
-------------------------------------------------------------------------