quantum-espresso/XClib/qe_funct_exch_gga.f90

2285 lines
70 KiB
Fortran

!
! Copyright (C) 2020 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!------------------------------------------------------------------------
MODULE exch_gga
!------------------------------------------------------------------------
!! GGA exchange functionals
!
CONTAINS
!
!-----------------------------------------------------------------------
SUBROUTINE becke88( rho, grho, sx, v1x, v2x )
!-----------------------------------------------------------------------
!! Becke exchange: A.D. Becke, PRA 38, 3098 (1988)
!! only gradient-corrected part, no Slater term included
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: rho, grho
REAL(DP), INTENT(OUT) :: sx, v1x, v2x
!
! ... local variables
!
REAL(DP) :: rho13, rho43, xs, xs2, sa2b8, shm1, dd, dd2, ee
REAL(DP), PARAMETER :: beta=0.0042_DP
REAL(DP), PARAMETER :: third=1._DP/3._DP, two13=1.259921049894873_DP
! two13= 2^(1/3)
!
rho13 = rho**third
rho43 = rho13**4
!
xs = two13 * SQRT(grho)/rho43
xs2 = xs * xs
!
sa2b8 = SQRT(1.0_DP + xs2)
shm1 = LOG(xs + sa2b8)
!
dd = 1.0_DP + 6.0_DP * beta * xs * shm1
dd2 = dd * dd
!
ee = 6.0_DP * beta * xs2 / sa2b8 - 1._DP
sx = two13 * grho / rho43 * ( - beta / dd)
!
v1x = - (4._DP/3._DP) / two13 * xs2 * beta * rho13 * ee / dd2
v2x = two13 * beta * (ee-dd) / (rho43 * dd2)
!
RETURN
!
END SUBROUTINE becke88
!
!
!-----------------------------------------------------------------------
SUBROUTINE ggax( rho, grho, sx, v1x, v2x )
!-----------------------------------------------------------------------
!! Perdew-Wang GGA (PW91), exchange part:
!! J.P. Perdew et al.,PRB 46, 6671 (1992)
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: rho, grho
REAL(DP), INTENT(OUT) :: sx, v1x, v2x
!
! ... local variables
!
REAL(DP) :: rhom43, s, s2, s3, s4, exps, as, sa2b8, shm1, bs, das, &
dbs, dls
REAL(DP), PARAMETER :: f1=0.19645_DP, f2=7.7956_DP, f3=0.2743_DP, &
f4=0.1508_DP, f5=0.004_DP
REAL(DP), PARAMETER :: fp1=-0.019292021296426_DP, fp2=0.161620459673995_DP
! fp1= -3/(16 pi)*(3 pi^2)^(-1/3)
! fp2= (1/2)(3 pi^2)**(-1/3)
!
rhom43 = rho**(-4.d0/3.d0)
s = fp2 * SQRT(grho) * rhom43
s2 = s * s
s3 = s2 * s
s4 = s2 * s2
!
exps = f4 * EXP( - 100.d0 * s2)
as = f3 - exps - f5 * s2
sa2b8 = SQRT(1.0d0 + f2 * f2 * s2)
shm1 = LOG(f2 * s + sa2b8)
bs = 1.d0 + f1 * s * shm1 + f5 * s4
!
das = (200.d0 * exps - 2.d0 * f5) * s
dbs = f1 * (shm1 + f2 * s / sa2b8) + 4.d0 * f5 * s3
dls = (das / as - dbs / bs)
!
sx = fp1 * grho * rhom43 * as / bs
v1x = - 4.d0 / 3.d0 * sx / rho * (1.d0 + s * dls)
v2x = fp1 * rhom43 * as / bs * (2.d0 + s * dls)
!
RETURN
!
END SUBROUTINE ggax
!
!
!---------------------------------------------------------------
SUBROUTINE pbex( rho, grho, iflag, sx, v1x, v2x )
!---------------------------------------------------------------
!! PBE exchange (without Slater exchange):
!! iflag=1 J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
!! iflag=2 "revised' PBE: Y. Zhang et al., PRL 80, 890 (1998)
!! iflag=3 PBEsol: J.P.Perdew et al., PRL 100, 136406 (2008)
!! iflag=4 PBEQ2D: L. Chiodo et al., PRL 108, 126402 (2012)
!! iflag=5 optB88: Klimes et al., J. Phys. Cond. Matter, 22, 022201 (2010)
!! iflag=6 optB86b: Klimes et al., Phys. Rev. B 83, 195131 (2011)
!! iflag=7 ev: Engel and Vosko, PRB 47, 13164 (1991)
!! iflag=8 RPBE: B. Hammer, et al., Phys. Rev. B 59, 7413 (1999)
!! iflag=9 W31X: D. Chakraborty, K. Berland, and T. Thonhauser, JCTC 16, 5893 (2020)
!
USE kind_l, ONLY : DP
!
IMPLICIT NONE
!
!$acc routine seq
!
INTEGER, INTENT(IN) :: iflag
REAL(DP), INTENT(IN) :: rho, grho
! input: charge and squared gradient
REAL(DP), INTENT(OUT) :: sx, v1x, v2x
! output: energy, potential
!
! ... local variables
!
REAL(DP) :: kf, agrho, s1, s2, ds, dsg, exunif, fx, sx_s
! (3*pi2*|rho|)^(1/3)
! |grho|
! |grho|/(2*kf*|rho|)
! s^2
! n*ds/dn
! n*ds/d(gn)
! exchange energy LDA part
! exchange energy gradient part
! auxiliary variable for energy calculation
REAL(DP) :: dxunif, dfx, f1, f2, f3, dfx1
REAL(DP) :: p, amu, ab, c, dfxdp, dfxds, s, ak
! numerical coefficients (NB: c2=(3 pi^2)^(1/3) )
REAL(DP), PARAMETER :: pi=3.14159265358979323846d0
REAL(DP), PARAMETER :: third=1._DP/3._DP, c1=0.75_DP/pi, &
c2=3.093667726280136_DP, c5=4._DP*third, &
c6=c2*2.51984210_DP, c7=0.8_DP
! (3pi^2)^(1/3)*2^(4/3)
! parameters of the functional
REAL(DP) :: k(9), mu(9), ev(6)
! pbe revpbe pbesol pbeq2d optB88 optB86b
! ev rpbe W31x
DATA k / 0.804_DP, 1.2450_DP, 0.804_DP , 0.804_DP, 1.2_DP, 0.0_DP, &
0.000_DP, 0.8040_DP, 1.10_DP /, &
mu / 0.2195149727645171_DP, 0.2195149727645171_DP, 0.12345679012345679_DP, &
0.12345679012345679_DP, 0.22_DP, 0.1234_DP, 0.000_DP, &
0.2195149727645171_DP, 0.12345679012345679_DP /, &
ev / 1.647127_DP, 0.980118_DP, 0.017399_DP, 1.523671_DP, 0.367229_DP, &
0.011282_DP / ! a and b parameters of Engel and Vosko
!
SELECT CASE( iflag )
CASE( 4 )
!
agrho = SQRT(grho)
kf = c2 * rho**third
dsg = 0.5_DP / kf
s1 = agrho * dsg / rho
p = s1*s1
s = s1
ak = 0.804_DP
amu = 10._DP/81._DP
ab = 0.5217_DP
c = 2._DP
fx = ak - ak / (1.0_DP + amu * p / ak) + p**2 * (1.0_DP + p)/ &
(10**c + p**3) * ( -1.0_DP - ak + ak / (1.0_DP + amu * p / ak) &
+ ab * p ** (-0.1D1/ 0.4D1) )
!
exunif = - c1 * kf
sx_s = exunif * fx
!
dxunif = exunif * third
!
dfxdp = DBLE(1 / (1 + amu * p / ak) ** 2 * amu) + DBLE(2 * p * (1 &
+ p) / (10 ** c + p ** 3) * (-1 - ak + ak / (1 + amu * p / ak) + ab &
* p ** (-0.1d1 / 0.4D1))) + DBLE(p ** 2 / (10 ** c + p ** 3) * ( &
-1 - ak + ak / (1 + amu * p / ak) + ab * p ** (-0.1d1 / 0.4D1))) - &
DBLE(3 * p ** 4 * (1 + p) / (10 ** c + p ** 3) ** 2 * (-1 - ak + &
ak / (1 + amu * p / ak) + ab * p ** (-0.1d1 / 0.4D1))) + DBLE(p ** &
2) * DBLE(1 + p) / DBLE(10 ** c + p ** 3) * (-DBLE(1 / (1 + amu * &
p / ak) ** 2 * amu) - DBLE(ab * p ** (-0.5d1 / 0.4D1)) / 0.4D1)
!
dfxds = dfxdp*2._DP*s
dfx = dfxds
ds = - c5 * s1
!
v1x = sx_s + dxunif * fx + exunif * dfx * ds
v2x = exunif * dfx * dsg / agrho
sx = sx_s * rho
!
CASE( 5, 9 )
!
agrho = SQRT(grho)
kf = c2 * rho**third
dsg = 0.5_DP / kf
s1 = agrho * dsg / rho
ab = mu(iflag) / k(iflag)
p = s1*c6
c = LOG(p + SQRT(p*p+1)) ! asinh(p)
dfx1 = 1 + ab*s1*c
fx = mu(iflag)*s1*s1/dfx1
!
exunif = - c1 * kf
sx_s = exunif * fx
!
dxunif = exunif * third
!
dfx = 2*fx/s1-fx/dfx1*(ab*c+ab*s1/SQRT(p*p+1)*c6)
ds = - c5 * s1
!
v1x = sx_s + dxunif * fx + exunif * dfx * ds
v2x = exunif * dfx * dsg / agrho
sx = sx_s * rho
!
CASE( 6 )
!
agrho = SQRT(grho)
kf = c2 * rho**third
dsg = 0.5_DP / kf
s1 = agrho * dsg / rho
p = mu(iflag)*s1*s1
fx = p / ( 1._DP + p )**c7
!
exunif = - c1 * kf
sx_s = exunif * fx
!
dxunif = exunif * third
!
dfx = 2*mu(iflag)*s1*fx*(1+(1-c7)*p)/(p*(1+p))
ds = - c5 * s1
!
v1x = sx_s + dxunif * fx + exunif * dfx * ds
v2x = exunif * dfx * dsg / agrho
sx = sx_s * rho
!
CASE( 7 )
!
agrho = SQRT(grho)
kf = c2 * rho**third
dsg = 0.5_DP / kf
s1 = agrho * dsg / rho
s2 = s1 * s1
s = s2*s2
f1 = 1._DP + ev(1)*s2 + ev(2)*s + ev(3)*s*s2
f2 = 1._DP + ev(4)*s2 + ev(5)*s + ev(6)*s*s2
fx = f1 / f2 - 1._DP
!
exunif = - c1 * kf
sx_s = exunif * fx
!
dxunif = exunif * third
ds = - c5 * s1
!
dfx = ev(1) + 2*ev(2)*s2 + 3*ev(3)*s
dfx1 = ev(4) + 2*ev(5)*s2 + 3*ev(6)*s
dfx = 2 * s1 * ( dfx - f1*dfx1/f2 ) / f2
!
v1x = sx_s + dxunif * fx + exunif * dfx * ds
v2x = exunif * dfx * dsg / agrho
sx = sx_s * rho
!
CASE(8)
!
agrho = SQRT(grho)
kf = c2 * rho**third
dsg = 0.5_DP / kf
s1 = agrho * dsg / rho
s2 = s1 * s1
f1 = exp( - mu(iflag) * s2 / k(iflag) )
f2 = 1._DP - f1
fx = k(iflag) * f2
!
exunif = - c1 * kf
sx_s = exunif * fx
!
dxunif = exunif * third
ds = - c5 * s1
!
dfx = 2._DP * mu(iflag) * s1 * exp( - mu(iflag) * s2 / k(iflag) )
!
v1x = sx_s + dxunif * fx + exunif * dfx * ds
v2x = exunif * dfx * dsg / agrho
sx = sx_s * rho
!
CASE DEFAULT
!
agrho = SQRT(grho)
kf = c2 * rho**third
dsg = 0.5_DP / kf
s1 = agrho * dsg / rho
s2 = s1 * s1
f1 = s2 * mu(iflag) / k(iflag)
f2 = 1._DP + f1
f3 = k(iflag) / f2
fx = k(iflag) - f3
!
exunif = - c1 * kf
sx_s = exunif * fx
!
dxunif = exunif * third
ds = - c5 * s1
!
dfx1 = f2 * f2
dfx = 2._DP * mu(iflag) * s1 / dfx1
!
v1x = sx_s + dxunif * fx + exunif * dfx * ds
v2x = exunif * dfx * dsg / agrho
sx = sx_s * rho
!
END SELECT
!
!
RETURN
!
END SUBROUTINE pbex
!
!
!----------------------------------------------------------------------------
SUBROUTINE hcth( rho, grho, sx, v1x, v2x )
!--------------------------------------------------------------------------
!! HCTH/120, JCP 109, p. 6264 (1998)
!! Parameters set-up after N.L. Doltsisnis & M. Sprik (1999)
!! Present release: Mauro Boero, Tsukuba, 11/05/2004
!
!! * rhoa = rhob = 0.5 * rho
!! * grho is the SQUARE of the gradient of rho! --> gr=sqrt(grho)
!! * sx : total exchange correlation energy at point r
!! * v1x : d(sx)/drho (eq. dfdra = dfdrb in original)
!! * v2x : 1/gr*d(sx)/d(gr) (eq. 0.5 * dfdza = 0.5 * dfdzb in original)
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: rho, grho
REAL(DP), INTENT(OUT) :: sx, v1x, v2x
!
! ... local variables
!
REAL(DP), PARAMETER :: pi=3.14159265358979323846d0
REAL(DP), PARAMETER :: o3 = 1.0d0/3.0d0, o34 = 4.0d0/3.0d0, fr83 = 8.d0/3.d0
REAL(DP) :: cg0(6), cg1(6), caa(6), cab(6), cx(6)
REAL(DP) :: r3q2, r3pi, gr, rho_o3, rho_o34, xa, xa2, ra, rab, &
dra_drho, drab_drho, g, dg, era1, dera1_dra, erab0, derab0_drab, &
ex, dex_drho, uaa, uab, ux, ffaa, ffab, dffaa_drho, dffab_drho, &
denaa, denab, denx, f83rho, bygr, gaa, gab, gx, taa, tab, txx, &
dgaa_drho, dgab_drho, dgx_drho, dgaa_dgr, dgab_dgr, dgx_dgr
!
r3q2 = 2.d0**(-o3)
r3pi = (3.d0/pi)**o3
! ... coefficients for pw correlation
cg0(1) = 0.031091d0
cg0(2) = 0.213700d0
cg0(3) = 7.595700d0
cg0(4) = 3.587600d0
cg0(5) = 1.638200d0
cg0(6) = 0.492940d0
cg1(1) = 0.015545d0
cg1(2) = 0.205480d0
cg1(3) =14.118900d0
cg1(4) = 6.197700d0
cg1(5) = 3.366200d0
cg1(6) = 0.625170d0
! ... hcth-19-4 ...
caa(1) = 0.489508d+00
caa(2) = -0.260699d+00
caa(3) = 0.432917d+00
caa(4) = -0.199247d+01
caa(5) = 0.248531d+01
caa(6) = 0.200000d+00
cab(1) = 0.514730d+00
cab(2) = 0.692982d+01
cab(3) = -0.247073d+02
cab(4) = 0.231098d+02
cab(5) = -0.113234d+02
cab(6) = 0.006000d+00
cx(1) = 0.109163d+01
cx(2) = -0.747215d+00
cx(3) = 0.507833d+01
cx(4) = -0.410746d+01
cx(5) = 0.117173d+01
cx(6) = 0.004000d+00
! ... ... ... ... ...
!
gr = DSQRT(grho)
rho_o3 = rho**(o3)
rho_o34 = rho**(o34)
xa = 1.25992105d0*gr/rho_o34
xa2 = xa*xa
ra = 0.781592642d0/rho_o3
rab = r3q2*ra
dra_drho = -0.260530881d0/rho_o34
drab_drho = r3q2*dra_drho
CALL pwcorr( ra, cg1, g, dg )
era1 = g
dera1_dra = dg
CALL pwcorr( rab, cg0, g, dg )
erab0 = g
derab0_drab = dg
ex = -0.75d0*r3pi*rho_o34
dex_drho = -r3pi*rho_o3
uaa = caa(6)*xa2
uaa = uaa/(1.0d0+uaa)
uab = cab(6)*xa2
uab = uab/(1.0d0+uab)
ux = cx(6)*xa2
ux = ux/(1.0d0+ux)
ffaa = rho*era1
ffab = rho*erab0-ffaa
dffaa_drho = era1 + rho*dera1_dra*dra_drho
dffab_drho = erab0 + rho*derab0_drab*drab_drho - dffaa_drho
! mb-> i-loop removed
denaa = 1.d0 / (1.0d0+caa(6)*xa2)
denab = 1.d0 / (1.0d0+cab(6)*xa2)
denx = 1.d0 / (1.0d0+cx(6)*xa2)
f83rho = fr83 / rho
bygr = 2.0d0/gr
gaa = caa(1)+uaa*(caa(2)+uaa*(caa(3)+uaa*(caa(4)+uaa*caa(5))))
gab = cab(1)+uab*(cab(2)+uab*(cab(3)+uab*(cab(4)+uab*cab(5))))
gx = cx(1)+ux*(cx(2)+ux*(cx(3)+ux*(cx(4)+ux*cx(5))))
taa = denaa*uaa*(caa(2)+uaa*(2.d0*caa(3)+uaa &
*(3.d0*caa(4)+uaa*4.d0*caa(5))))
tab = denab*uab*(cab(2)+uab*(2.d0*cab(3)+uab &
*(3.d0*cab(4)+uab*4.d0*cab(5))))
txx = denx*ux*(cx(2)+ux*(2.d0*cx(3)+ux &
*(3.d0*cx(4)+ux*4.d0*cx(5))))
dgaa_drho = -f83rho*taa
dgab_drho = -f83rho*tab
dgx_drho = -f83rho*txx
dgaa_dgr = bygr*taa
dgab_dgr = bygr*tab
dgx_dgr = bygr*txx
! mb
sx = ex*gx + ffaa*gaa + ffab*gab
v1x = dex_drho*gx + ex*dgx_drho &
+ dffaa_drho*gaa + ffaa*dgaa_drho &
+ dffab_drho*gab + ffab*dgab_drho
v2x = (ex*dgx_dgr + ffaa*dgaa_dgr + ffab*dgab_dgr) / gr
!
RETURN
!
END SUBROUTINE hcth
!
!-------------------------------------------------------
SUBROUTINE pwcorr( r, c, g, dg )
!-----------------------------------------------------
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: r, c(6)
REAL(DP), INTENT(OUT) :: g, dg
!
! ... local variables
!
REAL(DP) :: r12, r32, r2, rb, drb, sb
!
r12 = DSQRT(r)
r32 = r*r12
r2 = r*r
rb = c(3)*r12 + c(4)*r + c(5)*r32 + c(6)*r2
sb = 1.0d0 + 1.0d0/(2.0d0*c(1)*rb)
g = -2.0d0 * c(1) * (1.0d0+c(2)*r) * DLOG(sb)
drb = c(3)/(2.0d0*r12) + c(4) + 1.5d0*c(5)*r12 + 2.0d0*c(6)*r
dg = (1.0d0+c(2)*r)*drb/(rb*rb*sb) - 2.0d0*c(1)*c(2)*DLOG(sb)
!
RETURN
!
END SUBROUTINE pwcorr
!
!
!-----------------------------------------------------------------------------
SUBROUTINE optx( rho, grho, sx, v1x, v2x )
!---------------------------------------------------------------------------
!! OPTX, Handy et al. JCP 116, p. 5411 (2002) and refs. therein
!! Present release: Mauro Boero, Tsukuba, 10/9/2002
!
!! rhoa = rhob = 0.5 * rho in LDA implementation
!! grho is the SQUARE of the gradient of rho! --> gr=sqrt(grho)
!! sx : total exchange correlation energy at point r
!! v1x : d(sx)/drho
!! v2x : 1/gr*d(sx)/d(gr)
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: rho, grho
REAL(DP), INTENT(OUT) :: sx, v1x, v2x
!
! ... local variables
!
REAL(DP), PARAMETER :: small=1.D-30, smal2=1.D-10
! ... coefficients and exponents
REAL(DP), PARAMETER :: o43=4.0d0/3.0d0, two13=1.259921049894873D0, &
two53=3.174802103936399D0, gam=0.006D0, a1cx=0.9784571170284421D0, &
a2=1.43169D0
REAL(DP) :: gr, rho43, xa, gamx2, uden, uu
!
! ... OPTX in compact form
!
gr = MAX(grho,smal2)
rho43 = rho**o43
xa = two13*DSQRT(gr)/rho43
gamx2 = gam*xa*xa
uden = 1.d+00/(1.d+00+gamx2)
uu = a2*gamx2*gamx2*uden*uden
uden = rho43*uu*uden
sx = -rho43*(a1cx+uu)/two13
v1x = o43*(sx+two53*uden)/rho
v2x = -two53*uden/gr
!
RETURN
!
END SUBROUTINE optx
!
!
!---------------------------------------------------------------
SUBROUTINE wcx( rho, grho, sx, v1x, v2x )
!---------------------------------------------------------------
!! Wu-Cohen exchange (without Slater exchange):
!! Z. Wu and R. E. Cohen, PRB 73, 235116 (2006)
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: rho, grho
REAL(DP), INTENT(OUT) :: sx, v1x, v2x
!
! ... local variables
!
REAL(DP) :: kf, agrho, s1, s2, es2, ds, dsg, exunif, fx
! (3*pi2*|rho|)^(1/3)
! |grho|
! |grho|/(2*kf*|rho|)
! s^2
! n*ds/dn
! n*ds/d(gn)
! exchange energy LDA part
! exchange energy gradient part
REAL(DP) :: dxunif, dfx, f1, f2, f3, dfx1, x1, x2, x3, &
dxds1, dxds2, dxds3, sx_s
! numerical coefficients (NB: c2=(3 pi^2)^(1/3) )
REAL(DP), PARAMETER :: pi=3.14159265358979323846d0
REAL(DP), PARAMETER :: third=1.d0 / 3.d0, c1=0.75d0/pi , &
c2=3.093667726280136d0, c5=4.d0*third, &
teneightyone = 0.123456790123d0
! parameters of the functional
REAL(DP), PARAMETER :: k=0.804d0, mu=0.2195149727645171d0, &
cwc=0.00793746933516d0
!
agrho = SQRT(grho)
kf = c2 * rho**third
dsg = 0.5d0 / kf
s1 = agrho * dsg / rho
s2 = s1 * s1
es2 = EXP(-s2)
ds = - c5 * s1
!
! Energy
! x = 10/81 s^2 + (mu - 10/81) s^2 e^-s^2 + ln (1 + c s^4)
x1 = teneightyone * s2
x2 = (mu - teneightyone) * s2 * es2
x3 = LOG(1.d0 + cwc * s2 * s2)
f1 = (x1 + x2 + x3) / k
f2 = 1.d0 + f1
f3 = k / f2
fx = k - f3
exunif = - c1 * kf
sx_s = exunif * fx
!
! Potential
dxunif = exunif * third
dfx1 = f2 * f2
dxds1 = teneightyone
dxds2 = (mu - teneightyone) * es2 * (1.d0 - s2)
dxds3 = 2.d0 * cwc * s2 / (1.d0 + cwc * s2 *s2)
dfx = 2.d0 * s1 * (dxds1 + dxds2 + dxds3) / dfx1
!
v1x = sx_s + dxunif * fx + exunif * dfx * ds
v2x = exunif * dfx * dsg / agrho
sx = sx_s * rho
!
RETURN
!
END SUBROUTINE wcx
!
!
!-----------------------------------------------------------------------
SUBROUTINE pbexsr( rho, grho, sxsr, v1xsr, v2xsr, omega, in_err )
!---------------------------------------------------------------------
! INCLUDE 'cnst.inc'
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: omega
REAL(DP), INTENT(IN) :: rho, grho
REAL(DP), INTENT(OUT) :: sxsr, v1xsr, v2xsr
INTEGER :: in_err
!
! ... local variables
!
REAL(DP) :: rs, vx, aa, rr, ex, s2, s, d1x, d2x, fx, dsdn, dsdg
REAL(DP), PARAMETER :: small=1.D-20, smal2=1.D-08
REAL(DP), PARAMETER :: us=0.161620459673995492D0, ax=-0.738558766382022406D0, &
um=0.2195149727645171D0, uk=0.8040D0, ul=um/uk
REAL(DP), PARAMETER :: f1=-1.10783814957303361_DP, alpha=2.0_DP/3.0_DP
!
! CALL XC(RHO,EX,EC,VX,VC)
!
rs = rho**(1.0_DP/3.0_DP)
vx = (4.0_DP/3.0_DP)*f1*alpha*rs
!
! aa = dmax1(grho,smal2)
aa = grho
! rr = rho**(-4.0_DP/3.0_DP)
rr = 1.0_DP/(rho*rs)
ex = ax/rr
s2 = aa*rr*rr*us*us
!
s = SQRT(s2)
IF (s > 8.3D0) THEN
s = 8.572844D0 - 18.796223D0/s2
ENDIF
!
CALL wpbe_analy_erfc_approx_grad( rho, s, omega, fx, d1x, d2x, in_err )
!
sxsr = ex*fx ! - ex
dsdn = -4.D0/3.D0*s/rho
v1xsr = vx*fx + (dsdn*d2x+d1x)*ex ! - VX
dsdg = us*rr
v2xsr = ex*1.D0/SQRT(aa)*dsdg*d2x
!
! NOTE, here sx is the total energy density,
! not just the gradient correction energy density as e.g. in pbex()
! And the same goes for the potentials V1X, V2X
!
RETURN
!
END SUBROUTINE pbexsr
!
!
!
!-----------------------------------------------------------------------
SUBROUTINE axsr( IXC, RHO, GRHO, sx, V1X, V2X, OMEGA, IN_ERR )
!-----------------------------------------------------------------------
!*** [Per Hyldgaard, No warranties. adapted from the pbesrx version above]
!-----------------------------------------------------------------------
!
! INCLUDE 'cnst.inc'
!
use kind_l, ONLY : DP
!
IMPLICIT NONE
!
!$acc routine seq
!
INTEGER :: IXC, IN_ERR
REAL(DP):: RHO, GRHO, V1X, V2X, OMEGA
REAL(DP), PARAMETER :: SMALL=1.D-20, SMAL2=1.D-08
REAL(DP), PARAMETER :: US=0.161620459673995492D0, &
AX=-0.738558766382022406D0, &
UM=0.2195149727645171D0,UK=0.8040D0,UL=UM/UK
REAL(DP), PARAMETER :: f1 = -1.10783814957303361_DP, alpha = 2.0_DP/3.0_DP
REAL(DP):: RS, VX, FX, AA, RR, EX, S2, S, D1X, D2X, SX, DSDN, DSDG
! ==--------------------------------------------------------------==
! CALL XC(RHO,EX,EC,VX,VC)
RS = RHO**(1.0_DP/3.0_DP)
VX = (4.0_DP/3.0_DP)*f1*alpha*RS
! AA = DMAX1(GRHO,SMAL2)
AA = GRHO
! RR = RHO**(-4.0_DP/3.0_DP)
RR = 1.0_DP/(RHO*RS)
EX = AX/RR
S2 = AA*RR*RR*US*US
S = SQRT(S2)
IF(S.GT.8.3D0) THEN
S = 8.572844D0 - 18.796223D0/S2
ENDIF
CALL wggax_analy_erfc(RHO,S,IXC,OMEGA,FX,D1X,D2X,IN_ERR)
sx = EX*FX ! - EX
DSDN = -4.D0/3.D0*S/RHO
V1X = VX*FX + (DSDN*D2X+D1X)*EX ! - VX
DSDG = US*RR
V2X = EX*1.D0/SQRT(AA)*DSDG*D2X
! ==--------------------------------------------------------------==
RETURN
END SUBROUTINE axsr
!
!
!-----------------------------------------------------------------------
SUBROUTINE wggax_analy_erfc(rho,s,nggatyp,omega,Fx_wgga, &
dfxdn,dfxds,in_err)
!--------------------------------------------------------------------
!
! Short-ranged wGGA Enhancement Factor (from erfc, analytical with
! gradients)
!
! This codes the HJS analytical-xc-hole idea, JCP 128, 194 105 (2008).
!
! Copyright Per Hyldgaard, GPL, No warranty, 2016-
!
! Inputs:
! rho - electron density
! s - scaled graident of electron density
! omega = default, short-range screening parameter
! nggatyp = 1 is refitted to PBEx -- via analytical hole
! nggatyp = 2 is fitted to PBEsolx - via analytical hole
! nggatyp = 3 is fitted to cx13 - via analytical hole
! nggatyp = 4 is fitted to rPW86 - via analytical hole
! nggatyp = 5 is fitted to PHexplore - via analytical hole
! nggatyp = 6 is fitted to test-reserve - via analytical hole
! ....
! nggatyp = 7 fitted to PBEx -- HJS fit to analytical hole
! nggatyp = 8 fitted to PBEsolx -- HJS fit to analytical hole
!
! Returns:
! Fx_wgga - Analytic version of short-range gga enhancement factor
! dfxdn - Derivative of Fx_wgga with respect to density rho
! dfxds - Derivative of Fx_wgga with respect to scaled gradient s.
!
!--------------------------------------------------------------------
use kind_l, only: DP
Implicit None
!$acc routine seq
REAL(DP), PARAMETER :: pi=3.14159265358979323846d0
Real(dp) :: rho,s,omega,Fx_wgga,dfxdn,dfxds
integer :: in_err
integer :: nggatyp
Real(dp) :: Abar,B,C,D,E
parameter (Abar = 0.757211D0, B = -0.106364D0, C = -0.118649D0)
parameter (D = 0.609650D0, E = -0.0477963D0)
Real(dp) :: One, Two, Three, Four, Five, Six, Seven, Eight, Nine
parameter(One=1.0D0,Two=2.0D0,Three=3.0D0,Four=4.0D0,Five=5.0D0)
parameter(Six=6.0D0,Seven=7.0D0,Eight=8.0D0,Nine=9.0D0)
Real(dp) :: f12, f32, f52, f72, f13, f23, f25, f45, f65, f54, f18, f38, f58
parameter(f12=0.5D0,f32=Three*f12,f52=Five*f12,f72=Seven*f12)
parameter (f13=One/Three,f23=Two*f13)
parameter (f25=Two/Five, f45=Two*f25, f65=Three*f25,f54=Five/Four)
parameter(f18=One/Eight,f38=Three*f18,f58=Five*f18)
Real(dp) :: pi2, pisqrt
parameter( pi2=pi**Two, pisqrt=pi**f12)
Real(dp) :: s0val,s0sq
parameter (s0val=2.0D0,s0sq=s0val*s0val)
Real(dp) :: coef1,coef2,coef3
parameter (coef1=(Four/Nine)*B,coef2=(Four/Nine),coef3=Eight/Nine)
! Real(dp) ::, dimension(6) :: a2,a3,a4,a5,a6,a7
! Real(dp) ::, dimension(6) :: b1,b2,b3,b4
! Real(dp) ::, dimension(6) :: b5,b6,b7,b8,b9
Real(dp), dimension(8) :: a2,a3,a4,a5,a6,a7
Real(dp), dimension(8) :: b1,b2,b3,b4
Real(dp), dimension(8) :: b5,b6,b7,b8,b9
! HJS-type/ pbe-x pbesol-x cx13 rPW86 explore TestReserve /
! Last two columns are parameters from the original HJS fits for PBE/PBesol
data a2 / 0.0154999D0, 4.58809D-3, 2.43873D-3, 6.00962D-7, &
0.0139602D0, 4.56198D-3, 0.0159941D0, 0.0047333D0 /
data a3 / -0.0361006D0, -8.57842D-3, -4.15263D-3, 0.0402647D0, &
-0.0363194D0, -8.70003D-3, 0.0852995D0, 0.0403304D0 /
data a4 / 0.0379567D0, 7.29562D-3, 2.58261D-3, -0.0353219D0, &
0.0469970D0, 7.36958D-3, -0.1603680D0, -0.0574615D0 /
data a5 / -0.0186715D0, -3.20195D-3, 1.23940D-6, 0.0116112D0, &
-0.0317508D0, -3.02436D-3, 0.1526450D0, 0.0435395D0 /
data a6 / 1.74264D-3, 6.04936D-4, -7.58225D-4, -1.55532D-4, &
8.26494D-3, 3.86773D-4, -0.0971263D0, -0.0216251D0 /
data a7 / 1.90765D-3, 2.16112D-5, 2.76378D-4, 5.03561D-5, &
1.45383D-3, 9.43741D-5, 0.0422061D0, 0.0063721D0 /
data b1 / -2.7062566D0, -2.1449453D0, -2.2030319D0, -1.8779594D0, &
-3.0623921D0, -2.2089330D0, 5.3331900D0, 8.5205600D0 /
data b2 / 3.3316842D0, 2.0901104D0, 2.1759315D0, 1.5198811D0, &
4.3601225D0, 2.1968353D0, -12.4780000D0, -13.9885000D0 /
data b3 / -2.3871819D0, -1.1935421D0, -1.2997841D0, -0.5383109D0, &
-3.7025379D0, -1.2662249D0, 11.0988000D0, 9.2858300D0 /
data b4 / 1.1197810D0, 0.4476392D0, 0.5347267D0, 0.1352399D0, &
2.0707006D0, 0.4689964D0, -5.1101300D0, -3.2728700D0 /
data b5 / -0.3606638D0, -0.1172367D0, -0.1588798D0, -0.0428465D0, &
-0.7578009D0, -0.1165714D0, 1.7146800D0, 0.8434990D0 /
data b6 / 0.0841990D0, 0.0231625D0, 0.0367329D0, 0.0117903D0, &
0.1666493D0, 0.0207188D0, -0.6103800D0, -0.2355430D0 /
data b7 / -0.0114719D0, -3.52782D-3, -7.73178D-3, 3.37908D-3, &
-0.0178278D0, -2.97718D-3, 0.3075550D0, 0.0847074D0 /
data b8 / 1.69283D-3, 5.39942D-4, 1.26670D-3, -4.93453D-5, &
7.58236D-3, 5.98226D-4, -0.0770547D0, -0.0171561D0 /
data b9 / 1.50540D-3, 1.58065D-5, 8.04175D-7, 7.09955D-6, &
7.01937D-5, 4.67972D-6, 0.0334840D0, 0.0050552D0 /
! End HJS-type parameters: JPCM 34, 025902 (2022)
integer :: i
Real(dp) :: s2,s3,s4,s5,s6,s7,s8,s9
Real(dp) :: hnom,hdenom,dhnomds,dhdenomds
Real(dp) :: hs,dhds
Real(dp) :: lam,eta,zeta,dzetads
Real(dp) :: xi,phi,psi
Real(dp) :: alpha,dalphadn,dalphads
Real(dp) :: beta,dbetadn,dbetads
Real(dp) :: chi,dchidn,dchids
Real(dp) :: chiP1, chiP1p, dchiP1dn, dchiP1ds
Real(dp) :: chiP2, chiP2p, dchiP2dn, dchiP2ds
Real(dp) :: chiP3, chiP3p, dchiP3dn, dchiP3ds
Real(dp) :: dampfac,cfbars,dcfbards
Real(dp) :: egbars,degbards
Real(dp) :: kf,ny,ny2,dnydn
kf = (Three*pi2*rho) ** f13
ny= omega/kf
ny2=ny*ny
dnydn= -f13*ny/rho
! if ((nggatyp.ge.1).or.(nggatyp.le.6)) then
if ((nggatyp>=1).or.(nggatyp<=8)) then
i = nggatyp
else
in_err = 3 ! wgga_analy_erfc: yet to be coded Wcx part
return
endif
s2=s*s
s3=s2*s
s4=s2*s2
s5=s2*s3
s6=s3*s3
s7=s4*s3
s8=s4*s4
s9=s4*s5
hnom = a2(i)*s2+a3(i)*s3+a4(i)*s4
hnom = hnom +a5(i)*s5+a6(i)*s6+a7(i)*s7
dhnomds = Two*a2(i)*s+Three*a3(i)*s2+Four*a4(i)*s3
dhnomds = dhnomds +Five*a5(i)*s4+Six*a6(i)*s5+Seven*a7(i)*s6
hdenom = One+b1(i)*s+b2(i)*s2+b3(i)*s3+b4(i)*s4+b5(i)*s5
hdenom = hdenom +b6(i)*s6+b7(i)*s7+b8(i)*s8+b9(i)*s9
dhdenomds = b1(i)+Two*b2(i)*s+Three*b3(i)*s2+Four*b4(i)*s3
dhdenomds = dhdenomds +Five*b5(i)*s4+Six*b6(i)*s5
dhdenomds = dhdenomds +Seven*b7(i)*s6+Eight*b8(i)*s7
dhdenomds = dhdenomds +Nine*b9(i)*s8
hs=hnom/hdenom
dhds=dhnomds/hdenom-hnom*dhdenomds/hdenom/hdenom
zeta = s2*hs
dzetads = Two*s*hs+s2*dhds
lam=zeta+D
eta=zeta+Abar
dampfac = (One+s2/s0sq)
cfbars=C-s2/dampfac/27.0D0 - zeta/Two
dcfbards=-Two*s/dampfac/dampfac/27.0D0 - dzetads/Two
egbars=-f25*cfbars*lam-(f45/Three)*B*lam**Two
egbars=egbars-f65*Abar*lam**Three
egbars=egbars-f45*pisqrt*lam**f72
egbars=egbars-Three*f45*(zeta**f12-eta**f12)*lam**f72
degbards=-f25*(dcfbards*lam+cfbars*dzetads)
degbards=degbards-f23*f45*B*dzetads*lam
degbards=degbards-Nine*f25*Abar*dzetads*lam**Two
degbards=degbards-Seven*f25*pisqrt*dzetads*lam**f52
degbards=degbards-Seven*f65*dzetads*(zeta**f12-eta**f12)*lam**f52
degbards=degbards-f65*dzetads*(zeta**(-f12)-eta**(-f12))*lam**f72
phi=(lam+ny2)**(f12)
psi=(eta+ny2)**(f12)
xi=(zeta+ny2)**(f12)
alpha=Two*ny*(xi-psi)
dalphadn=dnydn*Two*(xi-psi+ny2/xi-ny2/psi)
dalphads=dzetads*(ny/xi-ny/psi)
beta=Two*zeta*log((ny+xi)/(ny+phi))-Two*eta*log((ny+psi)/(ny+phi))
dbetadn=Abar/phi
dbetadn=dbetadn+zeta/xi-eta/psi
dbetadn=Two*dbetadn*dnydn
dbetads=Abar/(ny+phi)/phi+Two*log((ny+xi)/(ny+psi))
dbetads=dbetads+zeta/(ny+xi)/xi-eta/(ny+psi)/psi
dbetads=dbetads*dzetads
chi=ny/phi
dchidn=dnydn*lam/phi**Three
dchids=-f12*chi*dzetads/phi/phi
chiP1=One-chi
chiP1p=-One
dchiP1dn=chiP1p*dchidn
dchiP1ds=chiP1p*dchids
chiP2=One-f32*chi+f12*chi**Three
chiP2p=-f32*(One-chi**Two)
dchiP2dn=chiP2p*dchidn
dchiP2ds=chiP2p*dchids
chiP3=One-Five*f38*chi+f54*chi**Three-f38*chi**Five
chiP3p=-Five*f38+Three*f54*chi**Two-Five*f38*chi**Four
dchiP3dn=chiP3p*dchidn
dchiP3ds=chiP3p*dchids
Fx_wgga=Abar
Fx_wgga=Fx_wgga-coef1*chiP1/lam
Fx_wgga=Fx_wgga-coef2*cfbars*chiP2/lam**Two
Fx_wgga=Fx_wgga-coef3*egbars*chiP3/lam**Three
Fx_wgga=Fx_wgga+alpha+beta
dfxdn=-coef1*dchiP1dn/lam
dfxdn=dfxdn-coef2*cfbars*dchiP2dn/lam**Two
dfxdn=dfxdn-coef3*egbars*dchiP3dn/lam**Three
dfxdn=dfxdn+dalphadn+dbetadn
dfxds=-coef1*(dchiP1ds/lam-chiP1*dzetads/lam**Two)
dfxds=dfxds-coef2*(dcfbards*chiP2+cfbars*dchiP2ds)/lam**Two
dfxds=dfxds+coef2*cfbars*chiP2*(Two*dzetads/lam**Three)
dfxds=dfxds-coef3*(degbards*chiP3+egbars*dchiP3ds)/lam**Three
dfxds=dfxds+coef3*egbars*chiP3*(Three*dzetads/lam**Four)
dfxds=dfxds+dalphads+dbetads
! ==--------------------------------------------------------------==
RETURN
END SUBROUTINE wggax_analy_erfc
!
!-----------------------------------------------------------------------
!
!
!-----------------------------------------------------------------------
SUBROUTINE rPW86( rho, grho, sx, v1x, v2x )
!---------------------------------------------------------------------
!! PRB 33, 8800 (1986) and J. Chem. Theory comp. 5, 2754 (2009).
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: rho, grho
REAL(DP), INTENT(OUT) :: sx, v1x, v2x
!
! ... local variables
!
REAL(DP) :: s, s_2, s_3, s_4, s_5, s_6, fs, grad_rho, df_ds
REAL(DP), PARAMETER :: a=1.851_DP, b=17.33_DP, c=0.163_DP, &
s_prefactor=6.18733545256027_DP, &
Ax=-0.738558766382022_DP, four_thirds=4._DP/3._DP
!
grad_rho = SQRT(grho)
!
s = grad_rho/(s_prefactor*rho**(four_thirds))
!
s_2 = s**2
s_3 = s_2 * s
s_4 = s_2**2
s_5 = s_3 * s_2
s_6 = s_2 * s_4
!
! Calculation of energy
fs = (1 + a*s_2 + b*s_4 + c*s_6)**(1._DP/15._DP)
sx = Ax * rho**(four_thirds) * (fs -1.0_DP)
!
! Calculation of the potential
df_ds = (1._DP/(15._DP*fs**(14.0_DP)))*(2*a*s + 4*b*s_3 + 6*c*s_5)
!
v1x = Ax*(four_thirds)*(rho**(1._DP/3._DP)*(fs -1.0_DP) &
-grad_rho/(s_prefactor * rho)*df_ds)
!
v2x = Ax * df_ds/(s_prefactor*grad_rho)
!
END SUBROUTINE rPW86
!
!
!-----------------------------------------------------------------
SUBROUTINE c09x( rho, grho, sx, v1x, v2x )
!---------------------------------------------------------------
!! Cooper '09 exchange for vdW-DF (without Slater exchange):
!! V. R. Cooper, Phys. Rev. B 81, 161104(R) (2010)
!
!! Developed thanks to the contribution of
!! Ikutaro Hamada - ikutaro@wpi-aimr.tohoku.ac.jp
!! WPI-Advanced Institute of Materials Research, Tohoku University
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: rho, grho
REAL(DP), INTENT(OUT) :: sx, v1x, v2x
!
! ... local variables
!
REAL(DP) :: kf, agrho, s1, s2, sx_s, ds, dsg, exunif, fx
! (3*pi2*|rho|)^(1/3)
! |grho|
! |grho|/(2*kf*|rho|)
! s^2
! n*ds/dn
! n*ds/d(gn)
! exchange energy LDA part
! exchange energy gradient part
REAL(DP) :: dxunif, dfx, f1, f2, f3, dfx1, dfx2
! numerical coefficients (NB: c2=(3 pi^2)^(1/3) )
REAL(DP), PARAMETER :: pi=3.14159265358979323846d0
REAL(DP), PARAMETER :: third=1._DP/3._DP, c1=0.75_DP/pi, &
c2=3.093667726280136_DP, c5=4._DP*third
! parameters of the functional
REAL(DP) :: kappa, mu, alpha
DATA kappa / 1.245_DP /, &
mu / 0.0617_DP /, &
alpha / 0.0483_DP /
!
agrho = SQRT(grho)
kf = c2 * rho**third
dsg = 0.5_DP / kf
s1 = agrho * dsg / rho
s2 = s1 * s1
ds = - c5 * s1
!
! ... Energy
!
f1 = EXP( - alpha * s2 )
f2 = EXP( - alpha * s2 / 2.0_DP )
f3 = mu * s2 * f1
fx = f3 + kappa * ( 1.0_DP - f2 )
exunif = - c1 * kf
sx_s = exunif * fx
!
! ... Potential
!
dxunif = exunif * third
dfx1 = 2.0_DP * mu * s1 * ( 1.0_DP - alpha * s2 ) * f1
dfx2 = kappa * alpha * s1 * f2
dfx = dfx1 + dfx2
v1x = sx_s + dxunif * fx + exunif * dfx * ds
v2x = exunif * dfx * dsg / agrho
!
sx = sx_s * rho
!
RETURN
!
END SUBROUTINE c09x
!
!
!---------------------------------------------------------------
SUBROUTINE sogga( rho, grho, sx, v1x, v2x )
!-------------------------------------------------------------
!! SOGGA exchange
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: rho, grho
REAL(DP), INTENT(OUT) :: sx, v1x, v2x
! input: charge and abs gradient
! output: energy and potential
!
! ... local variables
!
REAL(DP) :: rho43, xs, xs2, dxs2_drho, dxs2_dgrho2
REAL(DP) :: CX, denom, C1, C2, Fso, Fpbe, ex, Fx, dFx_dxs2, dex_drho
!
REAL(DP), PARAMETER :: one = 1.0_DP, two = 2.0_DP, three = 3.0_DP, &
& four = 4.0_DP, eight = 8.0_DP, &
& f13 = one/three, f23 = two/three, f43 = four/three, &
& f34 = three/four,f83 = eight/three, f12 = one/two
!
REAL(DP), PARAMETER :: mu=0.12346_DP, kapa=0.552_DP
REAL(DP), PARAMETER :: pi=3.14159265358979323846d0
!
! Cx LDA
CX = f34 * (three/pi)**f13
denom = four * (three*pi**two)**f23
C1 = mu / denom
C2 = mu / (kapa * denom)
!
rho43 = rho**f43
xs = grho / rho43
xs2 = xs * xs
!
dxs2_drho = -f83 * xs2 / rho
dxs2_dgrho2 = one /rho**f83
!
ex = - CX * rho43
dex_drho = - f43 * CX * rho**f13
!
Fso = kapa * (one - EXP(-C2*xs2))
Fpbe = C1 * xs2 / (one + C2*xs2)
!
Fx = f12 * (Fpbe + Fso)
dFx_dxs2 = f12 * (C1 / ((one + C2*xs2)**2) + C1*EXP(-C2*xs2))
!
! Energy
sx = Fx * ex
!
! Potential
v1x = dex_drho * Fx + ex * dFx_dxs2 * dxs2_drho
v2x = two * ex * dFx_dxs2 * dxs2_dgrho2
!
END SUBROUTINE sogga
!
!
!-------------------------------------------------------------------------
SUBROUTINE pbexgau( rho, grho, sxsr, v1xsr, v2xsr, alpha_gau )
!-----------------------------------------------------------------------
!! PBEX gaussian.
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: alpha_gau
REAL(DP), INTENT(IN) :: rho, grho
REAL(DP), INTENT(OUT) :: sxsr, v1xsr, v2xsr
!
! ... local variables
!
REAL(DP) :: rs, vx, aa, rr, ex, s2, s, d1x, d2x, fx, dsdn, dsdg
!
REAL(DP), PARAMETER :: small=1.D-20, smal2=1.D-08
REAL(DP), PARAMETER :: us=0.161620459673995492D0, ax=-0.738558766382022406D0, &
um=0.2195149727645171D0, uk=0.8040D0, ul=um/uk
REAL(DP), PARAMETER :: f1 = -1.10783814957303361_DP, alpha = 2.0_DP/3.0_DP
!
rs = rho**(1.0_DP/3.0_DP)
vx = (4.0_DP/3.0_DP)*f1*alpha*rs
aa = grho
rr = 1.0_DP/(rho*rs)
ex = ax/rr
! AX is 3/4/PI*(3*PI*PI)**(1/3). This is the same as -c1*c2 in pbex().
s2 = aa*rr*rr*us*us
s = SQRT(s2)
IF (s > 10.D0) THEN
s = 10.D0
ENDIF
CALL pbe_gauscheme( rho, s, alpha_gau, fx, d1x, d2x )
sxsr = ex*fx ! - EX
dsdn = -4.D0/3.D0*s/rho
v1xsr = vx*fx + (dsdn*d2x+d1x)*ex ! - VX
dsdg = us*rr
v2xsr = ex*1.D0/SQRT(aa)*dsdg*d2x
!
! NOTE, here sx is the total energy density,
! not just the gradient correction energy density as e.g. in pbex()
! And the same goes for the potentials V1X, V2X
!
RETURN
!
END SUBROUTINE pbexgau
!
!-----------------------------------------------------------------------
SUBROUTINE pbe_gauscheme( rho, s, alpha_gau, Fx, dFxdr, dFxds )
!--------------------------------------------------------------------
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(dp) :: rho,s,alpha_gau,Fx,dFxdr,dFxds
! input: charge and squared gradient and alpha_gau
! output: GGA enhancement factor of gau-PBE
! output: d(Fx)/d(s), d(Fx)/d(rho)
!
REAL(dp) :: Kx, Nx
! PBE96 GGA enhancement factor
! GGA enhancement factor of Gaussian Function
!
REAL(dp) :: bx, cx, PI, sqrtpial, Prefac, term_PBE, Third, KsF
REAL(dp) :: d1sdr, d1Kxds, d1Kxdr, d1bxdr, d1bxds, d1bxdKx, &
d1Nxdbx,d1Nxdr, d1Nxds
!
REAL(dp) :: Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten
!
SAVE Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten
DATA Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten &
/ 0D0,1D0,2D0,3D0,4D0,5D0,6D0,7D0,8D0,9D0,10D0 /
!
REAL(dp) :: k , mu
DATA k / 0.804d0 / , mu / 0.21951d0 /
! parameters of PBE functional
!
Third = One/Three
PI = ACOS(-One)
KsF = (Three*PI*PI*rho)**Third
sqrtpial = SQRT(PI/alpha_gau)
Prefac = Two * SQRT(PI/alpha_gau) / Three
!
! PBE96 GGA enhancement factor part
term_PBE = One / (One + s*s*mu/k)
Kx = One + k - k * term_PBE
!
! GGA enhancement factor of Gaussian Function part
bx = SQRT(Kx*alpha_gau) / KsF
!
! cx = exp(-One/Four/bx/bx) - One
IF (ABS(One/bx/bx) < 1.0D-4) THEN
cx = TayExp(-One/bx/bx)
ELSE
cx = EXP(-One/bx/bx) - One
ENDIF
!
Nx = bx * Prefac * ( SQRT(PI) * ERF(One/bx) + &
(bx - Two*bx*bx*bx)*cx - Two*bx )
!
! for convergence
IF (ABS(Nx) < 1.0D-15) THEN
Nx = Zero
ELSEIF ((One - ABS(Nx)) < 1.0D-15) THEN
Nx = One
ELSE
Nx = Nx
ENDIF
! for convergence end
!
Fx = Kx * Nx
!
! 1st derivatives
d1sdr = - Four / Three * s / rho
!
d1Kxds = Two * s * mu * term_PBE * term_PBE
d1Kxdr = d1Kxds * d1sdr
d1bxdKx = bx / (Two* Kx)
!
d1bxdr = - bx /(Three*rho) + d1Kxdr * d1bxdKx
!
d1bxds = d1bxdKx * d1Kxds
!
d1Nxdbx = Nx/bx - Prefac * bx * Three * &
( cx*(One + Two*bx*bx) + Two )
!
d1Nxdr = d1Nxdbx * d1bxdr
d1Nxds = d1Nxdbx * d1bxds
!
dFxdr = d1Kxdr * Nx + Kx * d1Nxdr
dFxds = d1Kxds * Nx + Kx * d1Nxds
!
RETURN
!
END SUBROUTINE pbe_gauscheme
!
!
!-------------------------------------------------
FUNCTION TayExp(X)
!-------------------------------------------
USE kind_l, ONLY: DP
IMPLICIT NONE
!$acc routine seq
REAL(DP), INTENT(IN) :: X
REAL(DP) :: TAYEXP
INTEGER :: NTERM,I
REAL(DP) :: SUMVAL,IVAL,COEF
PARAMETER (NTERM=16)
!
SUMVAL = X
IVAL = X
COEF = 1.0D0
DO 10 I = 2, NTERM
COEF = COEF * I
IVAL = IVAL * (X / COEF)
SUMVAL = SUMVAL + IVAL
10 CONTINUE
TAYEXP = SUMVAL
!
RETURN
!
END FUNCTION TayExp
!
!
!
!-------------------------------------------------------------------------
SUBROUTINE PW86( rho, grho, sx, v1x, v2x )
!-----------------------------------------------------------------------
!! Perdew-Wang 1986 exchange gradient correction: PRB 33, 8800 (1986)
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: rho, grho
REAL(DP), INTENT(OUT) :: sx, v1x, v2x
!
! ... local variables
!
REAL(DP) :: s, s_2, s_3, s_4, s_5, s_6, fs, grad_rho, df_ds
REAL(DP), PARAMETER :: a=1.296_DP, b=14._DP, c=0.2_DP, &
s_prefactor=6.18733545256027_DP, &
Ax=-0.738558766382022_DP, four_thirds=4._DP/3._DP
!
grad_rho = SQRT(grho)
!
s = grad_rho / ( s_prefactor*rho**(four_thirds) )
!
s_2 = s**2
s_3 = s_2 * s
s_4 = s_2**2
s_5 = s_3 * s_2
s_6 = s_2 * s_4
!
! Calculation of energy
fs = (1 + a*s_2 + b*s_4 + c*s_6)**(1._DP/15._DP)
sx = Ax * rho**(four_thirds) * (fs-1._DP)
!
! Calculation of the potential
df_ds = (1._DP/(15._DP*fs**(14._DP)))*(2*a*s + 4*b*s_3 + 6*c*s_5)
!
v1x = Ax*(four_thirds)*( rho**(1._DP/3._DP)*(fs-1._DP) &
-grad_rho/(s_prefactor * rho)*df_ds )
!
v2x = Ax * df_ds/(s_prefactor*grad_rho)
!
END SUBROUTINE PW86
!
!
!-----------------------------------------------------------------------
SUBROUTINE becke86b( rho, grho, sx, v1x, v2x )
!-----------------------------------------------------------------------
!! Becke 1986 gradient correction to exchange
!! A.D. Becke, J. Chem. Phys. 85 (1986) 7184
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: rho, grho
REAL(DP), INTENT(OUT) :: sx, v1x, v2x
!
! ... local variables
!
REAL(DP) :: arho, agrho
REAL(DP) :: sgp1, sgp1_45, sgp1_95
REAL(DP) :: rdg2_43, rdg2_73, rdg2_83, rdg2_4, rdg4_5
REAL(DP), PARAMETER :: beta=0.00375_DP, gamma=0.007_DP
!
arho = 0.5_DP * rho
agrho = 0.25_DP * grho
!
rdg2_43 = agrho / arho**(4d0/3d0)
rdg2_73 = rdg2_43 / arho
rdg2_83 = rdg2_43 * rdg2_43 / agrho
rdg2_4 = rdg2_43 * rdg2_83 / agrho
rdg4_5 = rdg2_73 * rdg2_83
!
sgp1 = 1d0 + gamma * rdg2_83
sgp1_45 = sgp1**(-4d0/5d0)
sgp1_95 = sgp1_45 / sgp1
!
sx = -2d0 * beta * agrho / arho**(4d0/3d0) * sgp1_45
v1x = -beta * (-4d0/3d0*rdg2_73*sgp1_45 + 32d0/15d0*gamma*rdg4_5*sgp1_95)
v2x = -beta * (sgp1_45*rdg2_43/agrho - 4d0/5d0 *gamma*rdg2_4*sgp1_95)
!
END SUBROUTINE becke86b
!
!
!---------------------------------------------------------------
SUBROUTINE b86b( rho, grho, iflag, sx, v1x, v2x )
!-------------------------------------------------------------
!! Becke exchange (without Slater exchange):
!! iflag=1: A. D. Becke, J. Chem. Phys. 85, 7184 (1986) (B86b)
!! iflag=2: J. Klimes, Phys. Rev. B 83, 195131 (2011). (OptB86b)
!! iflag=3: I. Hamada, Phys. Rev. B 89, 121103(R) (B86R)
!! iflag=4: D. Chakraborty, K. Berland, and T. Thonhauser, JCTC 16, 5893 (2020)
!
!! Ikutaro Hamada - HAMADA.Ikutaro@nims.go.jp
!! National Institute for Materials Science
!
USE kind_l, ONLY : DP
IMPLICIT NONE
!
!$acc routine seq
!
INTEGER, INTENT(IN) :: iflag
REAL(DP), INTENT(IN) :: rho, grho
REAL(DP), INTENT(OUT) :: sx, v1x, v2x
!
! ... local variables
!
REAL(DP) :: kf, agrho, s1, s2, sx_s, ds, dsg, exunif, fx
! (3*pi2*|rho|)^(1/3)
! |grho|
! |grho|/(2*kf*|rho|)
! s^2
! n*ds/dn
! n*ds/d(gn)
! exchange energy LDA part
! exchange energy gradient part
REAL(DP) :: dxunif, dfx, f1, f2, f3, dfx1
! numerical coefficients (NB: c2=(3 pi^2)^(1/3) )
REAL(DP), PARAMETER :: pi=3.14159265358979323846d0
REAL(DP), PARAMETER :: third=1._DP/3._DP, c1=0.75_DP/pi, &
c2=3.093667726280136_DP, c5=4._DP*third
! parameters of the functional
REAL(DP) :: k(4), mu(4)
DATA k / 0.5757_DP, 1.0000_DP, 0.711357_DP, 0.58_DP /, &
mu/ 0.2449_DP, 0.1234_DP, 0.1234_DP, 0.12345679012345679_DP /
!
agrho = SQRT(grho)
kf = c2 * rho**third
dsg = 0.5_DP / kf
s1 = agrho * dsg / rho
s2 = s1 * s1
ds = - c5 * s1
!
! ... Energy
!
f1 = mu(iflag)*s2
f2 = 1._DP + mu(iflag)*s2/k(iflag)
f3 = f2**(4._DP/5._DP)
fx = f1/f3
exunif = - c1 * kf
sx_s = exunif * fx
!
! ... Potential
!
dxunif = exunif * third
dfx1 = 1._DP + (1._DP/5._DP)*mu(iflag)*s2 / k(iflag)
dfx = 2._DP * mu(iflag) * s1 * dfx1 / (f2 * f3)
v1x = sx_s + dxunif * fx + exunif * dfx * ds
v2x = exunif * dfx * dsg / agrho
sx = sx_s * rho
!
RETURN
!
END SUBROUTINE b86b
!
!
!-----------------------------------------------------------------------
SUBROUTINE cx13( rho, grho, sx, v1x, v2x )
!-----------------------------------------------------------------------
!! The new exchange partner for a vdW-DF1-cx suggested
!! by K. Berland and P. Hyldgaard, see PRB 89, 035412 (2014),
!! to test the plasmon nature of the vdW-DF1 inner functional.
!
USE kind_l, ONLY : DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: rho, grho
REAL(DP), INTENT(OUT) :: sx, v1x, v2x
!
! ... local variables
!
REAL(DP) :: s, s_2, s_3, s_4, s_5, s_6, fs, fs_rPW86, df_rPW86_ds, grad_rho, df_ds
REAL(DP), PARAMETER :: alp=0.021789_DP, beta=1.15_DP, a=1.851_DP, b=17.33_DP, &
c=0.163_DP, mu_LM=0.09434_DP, &
s_prefactor=6.18733545256027_DP, &
Ax = -0.738558766382022_DP, four_thirds = 4._DP/3._DP
!
grad_rho = SQRT(grho)
!
s = grad_rho/(s_prefactor*rho**(four_thirds))
!
s_2 = s*s
s_3 = s_2 * s
s_4 = s_2 * s_2
s_5 = s_3 * s_2
s_6 = s_2 * s_2 *s_2
!
! ... Energy
fs_rPW86 = (1._DP + a*s_2 + b*s_4 + c*s_6)**(1._DP/15._DP)
fs = 1._DP/(1._DP + alp*s_6) * (1._DP + mu_LM *s_2) &
+ alp*s_6/(beta+alp*s_6)*fs_rPW86
!
sx = Ax * rho**(four_thirds) * (fs-1._DP)
!
! ... Potential
df_rPW86_ds = (1._DP/(15._DP*fs_rPW86**(14._DP)))*(2*a*s + 4*b*s_3 + 6*c*s_5)
!
df_ds = 1._DP/(1._DP+alp*s_6)**2*( 2._DP*mu_LM*s*(1._DP+alp*s_6) &
- 6._DP*alp*s_5*( 1._DP+mu_LM*s_2) ) &
+ alp*s_6/(beta+alp*s_6)*df_rPW86_ds &
+ 6._DP*alp*s_5*fs_rPW86/(beta+alp*s_6)*(1._DP-alp*s_6/(beta + alp*s_6))
!
v1x = Ax*(four_thirds)*(rho**(1._DP/3._DP)*(fs-1._DP) &
-grad_rho/(s_prefactor * rho)*df_ds)
v2x = Ax * df_ds/(s_prefactor*grad_rho)
!
END SUBROUTINE cx13
!
!
!
! ===========> SPIN <===========
!
!-----------------------------------------------------------------------
SUBROUTINE becke88_spin( rho_up, rho_dw, grho_up, grho_dw, sx_up, sx_dw, v1x_up, v1x_dw, v2x_up, v2x_dw )
!-----------------------------------------------------------------------
!! Becke exchange: A.D. Becke, PRA 38, 3098 (1988) - Spin polarized case
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP), INTENT(IN) :: rho_up, rho_dw
!! charge
REAL(DP), INTENT(IN) :: grho_up, grho_dw
!! gradient
REAL(DP), INTENT(OUT) :: sx_up, sx_dw
!! the up and down energies
REAL(DP), INTENT(OUT) :: v1x_up, v1x_dw
!! first part of the potential
REAL(DP), INTENT(OUT) :: v2x_up, v2x_dw
!! second part of the potential
!
! ... local variables
!
!INTEGER :: is
REAL(DP), PARAMETER :: beta = 0.0042_DP, third = 1._DP/3._DP
REAL(DP) :: rho13, rho43, xs, xs2, sa2b8, shm1, dd, dd2, ee
!
!
!DO is = 1, 2
rho13 = rho_up**third
rho43 = rho13**4
xs = SQRT(grho_up) / rho43
xs2 = xs * xs
sa2b8 = SQRT(1.0d0 + xs2)
shm1 = LOG(xs + sa2b8)
dd = 1.0d0 + 6.0d0 * beta * xs * shm1
dd2 = dd * dd
ee = 6.0d0 * beta * xs2 / sa2b8 - 1.d0
sx_up = grho_up / rho43 * (-beta/dd)
v1x_up = -(4.d0/3.d0) * xs2 * beta * rho13 * ee / dd2
v2x_up = beta * (ee-dd) / (rho43*dd2)
rho13 = rho_dw**third
rho43 = rho13**4
xs = SQRT(grho_dw) / rho43
xs2 = xs * xs
sa2b8 = SQRT(1.0d0 + xs2)
shm1 = LOG(xs + sa2b8)
dd = 1.0d0 + 6.0d0 * beta * xs * shm1
dd2 = dd * dd
ee = 6.0d0 * beta * xs2 / sa2b8 - 1.d0
sx_dw = grho_dw / rho43 * (-beta/dd)
v1x_dw = -(4.d0/3.d0) * xs2 * beta * rho13 * ee / dd2
v2x_dw = beta * (ee-dd) / (rho43*dd2)
!ENDDO
!
RETURN
!
END SUBROUTINE becke88_spin
!
!
!-----------------------------------------------------------------------------
SUBROUTINE wpbe_analy_erfc_approx_grad( rho, s, omega, Fx_wpbe, d1rfx, d1sfx, in_err )
!-----------------------------------------------------------------------
!! wPBE Enhancement Factor (erfc approx.,analytical, gradients).
!
USE kind_l, ONLY: DP
!
IMPLICIT NONE
!
!$acc routine seq
!
REAL(DP) rho,s,omega,Fx_wpbe,d1sfx,d1rfx
INTEGER in_err
!
REAL(DP) f12,f13,f14,f18,f23,f43,f32,f72,f34,f94,f1516,f98
REAL(DP) pi,pi2,pi_23,srpi
REAL(DP) Three_13
!
REAL(DP) ea1,ea2,ea3,ea4,ea5,ea6,ea7,ea8
REAL(DP) eb1
REAL(DP) A,B,C,D,E
REAL(DP) Ha1,Ha2,Ha3,Ha4,Ha5
REAL(DP) Fc1,Fc2
REAL(DP) EGa1,EGa2,EGa3
REAL(DP) EGscut,wcutoff,expfcutoff
!
REAL(DP) xkf, xkfrho
REAL(DP) w,w2,w3,w4,w5,w6,w7,w8
REAL(DP) d1rw
REAL(DP) A2,A3,A4,A12,A32,A52,A72
REAL(DP) X
REAL(DP) s2,s3,s4,s5,s6
!
REAL(DP) H,F
REAL(DP) Hnum,Hden,d1sHnum,d1sHden
REAL(DP) d1sH,d1sF
REAL(DP) G_a,G_b,EG
REAL(DP) d1sG_a,d1sG_b,d1sEG
!
REAL(DP) Hsbw,Hsbw2,Hsbw3,Hsbw4,Hsbw12,Hsbw32,Hsbw52,Hsbw72
REAL(DP) DHsbw,DHsbw2,DHsbw3,DHsbw4,DHsbw5
REAL(DP) DHsbw12,DHsbw32,DHsbw52,DHsbw72,DHsbw92
REAL(DP) d1sHsbw,d1rHsbw
REAL(DP) HsbwA94,HsbwA9412
REAL(DP) HsbwA942,HsbwA943,HsbwA945
REAL(DP) piexperf,expei
REAL(DP) piexperfd1,expeid1
REAL(DP) d1spiexperf,d1sexpei
REAL(DP) d1rpiexperf,d1rexpei
REAL(DP) expei1,expei2,expei3,expei4
REAL(DP) exint
!
REAL(DP) DHs,DHs2,DHs3,DHs4,DHs72,DHs92,DHsw,DHsw2,DHsw52,DHsw72
REAL(DP) d1sDHs,d1rDHsw
!
REAL(DP) np1,np2
REAL(DP) d1rnp1,d1rnp2
REAL(DP) t1,t2t9,t10,t10d1
REAL(DP) f2,f3,f4,f5,f6,f7,f8,f9
REAL(DP) f2d1,f3d1,f4d1,f5d1,f6d1,f8d1,f9d1
REAL(DP) d1sf2,d1sf3,d1sf4,d1sf5,d1sf6,d1sf7,d1sf8,d1sf9
REAL(DP) d1rf2,d1rf3,d1rf4,d1rf5,d1rf6,d1rf7,d1rf8,d1rf9
REAL(DP) d1st1,d1rt1
REAL(DP) d1st2t9,d1rt2t9
REAL(DP) d1st10,d1rt10
REAL(DP) d1sterm1,d1rterm1,term1d1
REAL(DP) d1sterm2
REAL(DP) d1sterm3,d1rterm3
REAL(DP) d1sterm4,d1rterm4
REAL(DP) d1sterm5,d1rterm5
!
REAL(DP) term1,term2,term3,term4,term5
!
! REAL(DP) ei
!
REAL(DP) Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten
REAL(DP) Fifteen,Sixteen
REAL(DP) r12,r64,r36,r81,r256,r384,r864,r1944,r4374
REAL(DP) r20,r25,r27,r48,r120,r128,r144,r288,r324,r512,r729
REAL(DP) r30,r32,r75,r243,r2187,r6561,r40,r105,r54,r135
REAL(DP) r1215,r15309
!
SAVE Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten
DATA Zero,One,Two,Three,Four,Five,Six,Seven,Eight,Nine,Ten &
/ 0D0,1D0,2D0,3D0,4D0,5D0,6D0,7D0,8D0,9D0,10D0 /
SAVE Fifteen,Sixteen
DATA Fifteen,Sixteen / 1.5D1, 1.6D1 /
SAVE r36,r64,r81,r256,r384,r864,r1944,r4374
DATA r36,r64,r81,r256,r384,r864,r1944,r4374 &
/ 3.6D1,6.4D1,8.1D1,2.56D2,3.84D2,8.64D2,1.944D3,4.374D3 /
SAVE r27,r48,r120,r128,r144,r288,r324,r512,r729
DATA r27,r48,r120,r128,r144,r288,r324,r512,r729 &
/ 2.7D1,4.8D1,1.2D2,1.28D2,1.44D2,2.88D2,3.24D2,5.12D2,7.29D2 /
SAVE r20,r32,r243,r2187,r6561,r40
DATA r20,r32,r243,r2187,r6561,r40 &
/ 2.0d1,3.2D1,2.43D2,2.187D3,6.561D3,4.0d1 /
SAVE r12,r25,r30,r54,r75,r105,r135,r1215,r15309
DATA r12,r25,r30,r54,r75,r105,r135,r1215,r15309 &
/ 1.2D1,2.5d1,3.0d1,5.4D1,7.5d1,1.05D2,1.35D2,1.215D3,1.5309D4 /
!
! ... General constants
!
f12 = 0.5d0
f13 = One/Three
f14 = 0.25d0
f18 = 0.125d0
!
f23 = Two * f13
f43 = Two * f23
!
f32 = 1.5d0
f72 = 3.5d0
f34 = 0.75d0
f94 = 2.25d0
f98 = 1.125d0
f1516 = Fifteen / Sixteen
!
pi = ACOS(-One)
pi2 = pi*pi
pi_23 = pi2**f13
srpi = SQRT(pi)
!
Three_13 = Three**f13
!
! Constants from fit
!
ea1 = -1.128223946706117d0
ea2 = 1.452736265762971d0
ea3 = -1.243162299390327d0
ea4 = 0.971824836115601d0
ea5 = -0.568861079687373d0
ea6 = 0.246880514820192d0
ea7 = -0.065032363850763d0
ea8 = 0.008401793031216d0
!
eb1 = 1.455915450052607d0
!
! Constants for PBE hole
!
A = 1.0161144d0
B = -3.7170836d-1
C = -7.7215461d-2
D = 5.7786348d-1
E = -5.1955731d-2
X = - Eight/Nine
!
! Constants for fit of H(s) (PBE)
!
Ha1 = 9.79681d-3
Ha2 = 4.10834d-2
Ha3 = 1.87440d-1
Ha4 = 1.20824d-3
Ha5 = 3.47188d-2
!
! Constants for F(H) (PBE)
!
Fc1 = 6.4753871d0
Fc2 = 4.7965830d-1
!
! Constants for polynomial expansion for EG for small s
!
EGa1 = -2.628417880d-2
EGa2 = -7.117647788d-2
EGa3 = 8.534541323d-2
!
! Constants for large x expansion of exp(x)*ei(-x)
!
expei1 = 4.03640D0
expei2 = 1.15198D0
expei3 = 5.03627D0
expei4 = 4.19160D0
!
! Cutoff criterion below which to use polynomial expansion
!
EGscut = 8.0d-2
wcutoff = 1.4D1
expfcutoff = 7.0D2
!
! Calculate prelim variables
!
xkf = (Three*pi2*rho) ** f13
xkfrho = xkf * rho
!
A2 = A*A
A3 = A2*A
A4 = A3*A
A12 = SQRT(A)
A32 = A12*A
A52 = A32*A
A72 = A52*A
!
w = omega / xkf
w2 = w * w
w3 = w2 * w
w4 = w2 * w2
w5 = w3 * w2
w6 = w5 * w
w7 = w6 * w
w8 = w7 * w
!
d1rw = -(One/(Three*rho))*w
!
X = - Eight/Nine
!
s2 = s*s
s3 = s2*s
s4 = s2*s2
s5 = s4*s
s6 = s5*s
!
! Calculate wPBE enhancement factor
!
Hnum = Ha1*s2 + Ha2*s4
Hden = One + Ha3*s4 + Ha4*s5 + Ha5*s6
!
H = Hnum/Hden
!
d1sHnum = Two*Ha1*s + Four*Ha2*s3
d1sHden = Four*Ha3*s3 + Five*Ha4*s4 + Six*Ha5*s5
!
d1sH = (Hden*d1sHnum - Hnum*d1sHden) / (Hden*Hden)
!
F = Fc1*H + Fc2
d1sF = Fc1*d1sH
!
! Change exponent of Gaussian if we're using the simple approx.
!
IF (w > wcutoff) eb1 = 2.0d0
!
! Calculate helper variables (should be moved later on...)
!
Hsbw = s2*H + eb1*w2
Hsbw2 = Hsbw*Hsbw
Hsbw3 = Hsbw2*Hsbw
Hsbw4 = Hsbw3*Hsbw
Hsbw12 = SQRT(Hsbw)
Hsbw32 = Hsbw12*Hsbw
Hsbw52 = Hsbw32*Hsbw
Hsbw72 = Hsbw52*Hsbw
!
d1sHsbw = d1sH*s2 + Two*s*H
d1rHsbw = Two*eb1*d1rw*w
!
DHsbw = D + s2*H + eb1*w2
DHsbw2 = DHsbw*DHsbw
DHsbw3 = DHsbw2*DHsbw
DHsbw4 = DHsbw3*DHsbw
DHsbw5 = DHsbw4*DHsbw
DHsbw12 = SQRT(DHsbw)
DHsbw32 = DHsbw12*DHsbw
DHsbw52 = DHsbw32*DHsbw
DHsbw72 = DHsbw52*DHsbw
DHsbw92 = DHsbw72*DHsbw
!
HsbwA94 = f94 * Hsbw / A
HsbwA942 = HsbwA94*HsbwA94
HsbwA943 = HsbwA942*HsbwA94
HsbwA945 = HsbwA943*HsbwA942
HsbwA9412 = SQRT(HsbwA94)
!
DHs = D + s2*H
DHs2 = DHs*DHs
DHs3 = DHs2*DHs
DHs4 = DHs3*DHs
DHs72 = DHs3*SQRT(DHs)
DHs92 = DHs72*DHs
!
d1sDHs = Two*s*H + s2*d1sH
!
DHsw = DHs + w2
DHsw2 = DHsw*DHsw
DHsw52 = SQRT(DHsw)*DHsw2
DHsw72 = DHsw52*DHsw
!
d1rDHsw = Two*d1rw*w
!
IF (s > EGscut) THEN
!
G_a = srpi * (Fifteen*E + Six*C*(One+F*s2)*DHs + &
Four*B*(DHs2) + Eight*A*(DHs3)) &
* (One / (Sixteen * DHs72)) &
- f34*pi*SQRT(A) * EXP(f94*H*s2/A) * &
(One - ERF(f32*s*SQRT(H/A)))
!
d1sG_a = (One/r32)*srpi * &
((r36*(Two*H + d1sH*s) / (A12*SQRT(H/A))) &
+ (One/DHs92) * &
(-Eight*A*d1sDHs*DHs3 - r105*d1sDHs*E &
-r30*C*d1sDHs*DHs*(One+s2*F) &
+r12*DHs2*(-B*d1sDHs + C*s*(d1sF*s + Two*F))) &
- ((r54*EXP(f94*H*s2/A)*srpi*s*(Two*H+d1sH*s)* &
ERFC(f32*SQRT(H/A)*s)) &
/ A12))
!
G_b = (f1516 * srpi * s2) / DHs72
!
d1sG_b = (Fifteen*srpi*s*(Four*DHs - Seven*d1sDHs*s)) &
/ (r32*DHs92)
!
EG = - (f34*pi + G_a) / G_b
!
d1sEG = (-Four*d1sG_a*G_b + d1sG_b*(Four*G_a + Three*pi)) &
/ (Four*G_b*G_b)
!
ELSE
!
EG = EGa1 + EGa2*s2 + EGa3*s4
d1sEG = Two*EGa2*s + Four*EGa3*s3
!
ENDIF
!
! Calculate the terms needed in any case
!
term2 = (DHs2*B + DHs*C + Two*E + DHs*s2*C*F + Two*s2*EG) / &
(Two*DHs3)
!
d1sterm2 = (-Six*d1sDHs*(EG*s2 + E) &
+ DHs2 * (-d1sDHs*B + s*C*(d1sF*s + Two*F)) &
+ Two*DHs * (Two*EG*s - d1sDHs*C &
+ s2 * (d1sEG - d1sDHs*C*F))) &
/ (Two*DHs4)
term3 = - w * (Four*DHsw2*B + Six*DHsw*C + Fifteen*E &
+ Six*DHsw*s2*C*F + Fifteen*s2*EG) / &
(Eight*DHs*DHsw52)
!
d1sterm3 = w * (Two*d1sDHs*DHsw * (Four*DHsw2*B &
+ Six*DHsw*C + Fifteen*E &
+ Three*s2*(Five*EG + Two*DHsw*C*F)) &
+ DHs * (r75*d1sDHs*(EG*s2 + E) &
+ Four*DHsw2*(d1sDHs*B &
- Three*s*C*(d1sF*s + Two*F)) &
- Six*DHsw*(-Three*d1sDHs*C &
+ s*(Ten*EG + Five*d1sEG*s &
- Three*d1sDHs*s*C*F)))) &
/ (Sixteen*DHs2*DHsw72)
!
d1rterm3 = (-Two*d1rw*DHsw * (Four*DHsw2*B &
+ Six*DHsw*C + Fifteen*E &
+ Three*s2*(Five*EG + Two*DHsw*C*F)) &
+ w * d1rDHsw * (r75*(EG*s2 + E) &
+ Two*DHsw*(Two*DHsw*B + Nine*C &
+ Nine*s2*C*F))) &
/ (Sixteen*DHs*DHsw72)
term4 = - w3 * (DHsw*C + Five*E + DHsw*s2*C*F + Five*s2*EG) / &
(Two*DHs2*DHsw52)
!
d1sterm4 = (w3 * (Four*d1sDHs*DHsw * (DHsw*C + Five*E &
+ s2 * (Five*EG + DHsw*C*F)) &
+ DHs * (r25*d1sDHs*(EG*s2 + E) &
- Two*DHsw2*s*C*(d1sF*s + Two*F) &
+ DHsw * (Three*d1sDHs*C + s*(-r20*EG &
- Ten*d1sEG*s &
+ Three*d1sDHs*s*C*F))))) &
/ (Four*DHs3*DHsw72)
!
d1rterm4 = (w2 * (-Six*d1rw*DHsw * (DHsw*C + Five*E &
+ s2 * (Five*EG + DHsw*C*F)) &
+ w * d1rDHsw * (r25*(EG*s2 + E) + &
Three*DHsw*C*(One + s2*F)))) &
/ (Four*DHs2*DHsw72)
!
term5 = - w5 * (E + s2*EG) / &
(DHs3*DHsw52)
!
d1sterm5 = (w5 * (Six*d1sDHs*DHsw*(EG*s2 + E) &
+ DHs * (-Two*DHsw*s * (Two*EG + d1sEG*s) &
+ Five*d1sDHs * (EG*s2 + E)))) &
/ (Two*DHs4*DHsw72)
!
d1rterm5 = (w4 * Five*(EG*s2 + E) * (-Two*d1rw*DHsw &
+ d1rDHsw * w)) &
/ (Two*DHs3*DHsw72)
!
!
IF ((s > 0.0d0).OR.(w > 0.0d0)) THEN
!
t10 = (f12)*A*LOG(Hsbw / DHsbw)
t10d1 = f12*A*(One/Hsbw - One/DHsbw)
d1st10 = d1sHsbw*t10d1
d1rt10 = d1rHsbw*t10d1
!
ENDIF
!
! Calculate exp(x)*f(x) depending on size of x
!
IF (HsbwA94 < expfcutoff) THEN
!
piexperf = pi*EXP(HsbwA94)*ERFC(HsbwA9412)
! expei = Exp(HsbwA94)*Ei(-HsbwA94)
CALL expint(1,HsbwA94,exint,in_err)
expei = EXP(HsbwA94)*(-exint)
ELSE
!
! print *,rho,s," LARGE HsbwA94"
!
piexperf = pi*(One/(srpi*HsbwA9412) &
- One/(Two*SQRT(pi*HsbwA943)) &
+ Three/(Four*SQRT(pi*HsbwA945)))
!
expei = - (One/HsbwA94) * &
(HsbwA942 + expei1*HsbwA94 + expei2) / &
(HsbwA942 + expei3*HsbwA94 + expei4)
ENDIF
!
! Calculate the derivatives (based on the orig. expression)
! --> Is this ok? ==> seems to be ok...
!
piexperfd1 = - (Three*srpi*SQRT(Hsbw/A))/(Two*Hsbw) &
+ (Nine*piexperf)/(Four*A)
d1spiexperf = d1sHsbw*piexperfd1
d1rpiexperf = d1rHsbw*piexperfd1
expeid1 = f14*(Four/Hsbw + (Nine*expei)/A)
d1sexpei = d1sHsbw*expeid1
d1rexpei = d1rHsbw*expeid1
!
IF (w == Zero) THEN
!
! Fall back to original expression for the PBE hole
!
t1 = -f12*A*expei
d1st1 = -f12*A*d1sexpei
d1rt1 = -f12*A*d1rexpei
!
! write(*,*) s, t1, t10, d1st1,d1rt1,d1rt10
!
IF (s > 0.0D0) THEN
!
term1 = t1 + t10
d1sterm1 = d1st1 + d1st10
d1rterm1 = d1rt1 + d1rt10
!
Fx_wpbe = X * (term1 + term2)
!
d1sfx = X * (d1sterm1 + d1sterm2)
d1rfx = X * d1rterm1
!
ELSE
!
Fx_wpbe = 1.0d0
!
! TODO This is checked to be true for term1
! How about the other terms???
!
d1sfx = 0.0d0
d1rfx = 0.0d0
!
ENDIF
!
!
ELSEIF (w > wcutoff) THEN
!
! Use simple Gaussian approximation for large w
!
! print *,rho,s," LARGE w"
!
term1 = -f12*A*(expei+LOG(DHsbw)-LOG(Hsbw))
term1d1 = - A/(Two*DHsbw) - f98*expei
d1sterm1 = d1sHsbw*term1d1
d1rterm1 = d1rHsbw*term1d1
Fx_wpbe = X * (term1 + term2 + term3 + term4 + term5)
d1sfx = X * (d1sterm1 + d1sterm2 + d1sterm3 &
+ d1sterm4 + d1sterm5)
d1rfx = X * (d1rterm1 + d1rterm3 + d1rterm4 + d1rterm5)
!
ELSE
!
! For everything else, use the full blown expression
!
! First, we calculate the polynomials for the first term
!
np1 = -f32*ea1*A12*w + r27*ea3*w3/(Eight*A12) &
- r243*ea5*w5/(r32*A32) + r2187*ea7*w7/(r128*A52)
!
d1rnp1 = - f32*ea1*d1rw*A12 + (r81*ea3*d1rw*w2)/(Eight*A12) &
- (r1215*ea5*d1rw*w4)/(r32*A32) &
+ (r15309*ea7*d1rw*w6)/(r128*A52)
!
np2 = -A + f94*ea2*w2 - r81*ea4*w4/(Sixteen*A) &
+ r729*ea6*w6/(r64*A2) - r6561*ea8*w8/(r256*A3)
!
!
d1rnp2 = f12*(Nine*ea2*d1rw*w) &
- (r81*ea4*d1rw*w3)/(Four*A) &
+ (r2187*ea6*d1rw*w5)/(r32*A2) &
- (r6561*ea8*d1rw*w7)/(r32*A3)
!
! The first term is
!
t1 = f12*(np1*piexperf + np2*expei)
d1st1 = f12*(d1spiexperf*np1 + d1sexpei*np2)
d1rt1 = f12*(d1rnp2*expei + d1rpiexperf*np1 + &
d1rexpei*np2 + d1rnp1*piexperf)
!
! The factors for the main polynomoal in w and their derivatives
!
f2 = (f12)*ea1*srpi*A / DHsbw12
f2d1 = - ea1*srpi*A / (Four*DHsbw32)
d1sf2 = d1sHsbw*f2d1
d1rf2 = d1rHsbw*f2d1
!
f3 = (f12)*ea2*A / DHsbw
f3d1 = - ea2*A / (Two*DHsbw2)
d1sf3 = d1sHsbw*f3d1
d1rf3 = d1rHsbw*f3d1
!
f4 = ea3*srpi*(-f98 / Hsbw12 &
+ f14*A / DHsbw32)
f4d1 = ea3*srpi*((Nine/(Sixteen*Hsbw32))- &
(Three*A/(Eight*DHsbw52)))
d1sf4 = d1sHsbw*f4d1
d1rf4 = d1rHsbw*f4d1
!
f5 = ea4*(One/r128) * (-r144*(One/Hsbw) &
+ r64*(One/DHsbw2)*A)
f5d1 = ea4*((f98/Hsbw2)-(A/DHsbw3))
d1sf5 = d1sHsbw*f5d1
d1rf5 = d1rHsbw*f5d1
!
f6 = ea5*(Three*srpi*(Three*DHsbw52*(Nine*Hsbw-Two*A) &
+ Four*Hsbw32*A2)) &
/ (r32*DHsbw52*Hsbw32*A)
f6d1 = ea5*srpi*((r27/(r32*Hsbw52))- &
(r81/(r64*Hsbw32*A))- &
((Fifteen*A)/(Sixteen*DHsbw72)))
d1sf6 = d1sHsbw*f6d1
d1rf6 = d1rHsbw*f6d1
!
f7 = ea6*(((r32*A)/DHsbw3 &
+ (-r36 + (r81*s2*H)/A)/Hsbw2)) / r32
d1sf7 = ea6*(Three*(r27*d1sH*DHsbw4*Hsbw*s2 + &
Eight*d1sHsbw*A*(Three*DHsbw4 - Four*Hsbw3*A) + &
r54*DHsbw4*s*(Hsbw - d1sHsbw*s)*H))/ &
(r32*DHsbw4*Hsbw3*A)
d1rf7 = ea6*d1rHsbw*((f94/Hsbw3)-((Three*A)/DHsbw4) &
-((r81*s2*H)/(Sixteen*Hsbw3*A)))
!
f8 = ea7*(-Three*srpi*(-r40*Hsbw52*A3 &
+Nine*DHsbw72*(r27*Hsbw2-Six*Hsbw*A+Four*A2))) &
/ (r128 * DHsbw72*Hsbw52*A2)
f8d1 = ea7*srpi*((r135/(r64*Hsbw72)) + (r729/(r256*Hsbw32*A2)) &
-(r243/(r128*Hsbw52*A)) &
-((r105*A)/(r32*DHsbw92)))
d1sf8 = d1sHsbw*f8d1
d1rf8 = d1rHsbw*f8d1
!
f9 = (r324*ea6*eb1*DHsbw4*Hsbw*A &
+ ea8*(r384*Hsbw3*A3 + DHsbw4*(-r729*Hsbw2 &
+ r324*Hsbw*A - r288*A2))) / (r128*DHsbw4*Hsbw3*A2)
f9d1 = -((r81*ea6*eb1)/(Sixteen*Hsbw3*A)) &
+ ea8*((r27/(Four*Hsbw4))+(r729/(r128*Hsbw2*A2)) &
-(r81/(Sixteen*Hsbw3*A)) &
-((r12*A/DHsbw5)))
d1sf9 = d1sHsbw*f9d1
d1rf9 = d1rHsbw*f9d1
!
t2t9 = f2*w + f3*w2 + f4*w3 + f5*w4 + f6*w5 &
+ f7*w6 + f8*w7 + f9*w8
d1st2t9 = d1sf2*w + d1sf3*w2 + d1sf4*w3 + d1sf5*w4 &
+ d1sf6*w5 + d1sf7*w6 + d1sf8*w7 &
+ d1sf9*w8
d1rt2t9 = d1rw*f2 + d1rf2*w + Two*d1rw*f3*w &
+ d1rf3*w2 + Three*d1rw*f4*w2 &
+ d1rf4*w3 + Four*d1rw*f5*w3 &
+ d1rf5*w4 + Five*d1rw*f6*w4 &
+ d1rf6*w5 + Six*d1rw*f7*w5 &
+ d1rf7*w6 + Seven*d1rw*f8*w6 &
+ d1rf8*w7 + Eight*d1rw*f9*w7 + d1rf9*w8
!
! The final value of term1 for 0 < omega < wcutoff is:
!
term1 = t1 + t2t9 + t10
!
d1sterm1 = d1st1 + d1st2t9 + d1st10
d1rterm1 = d1rt1 + d1rt2t9 + d1rt10
!
! The final value for the enhancement factor and its
! derivatives is:
!
Fx_wpbe = X * (term1 + term2 + term3 + term4 + term5)
!
d1sfx = X * (d1sterm1 + d1sterm2 + d1sterm3 &
+ d1sterm4 + d1sterm5)
!
d1rfx = X * (d1rterm1 + d1rterm3 + d1rterm4 + d1rterm5)
!
ENDIF
END SUBROUTINE wpbe_analy_erfc_approx_grad
!
!------------------------------------------------------------------
SUBROUTINE EXPINT(n, x, exin, in_err)
!-----------------------------------------------------------------------
!! Evaluates the exponential integral \(E_n(x)\).
!! Inspired by Numerical Recipes.
! Parameters: maxit is the maximum allowed number of iterations,
! eps is the desired relative error, not smaller than the machine precision,
! big is a number near the largest representable floating-point number,
!
USE kind_l, ONLY: DP
IMPLICIT NONE
!$acc routine seq
INTEGER, INTENT(IN) :: n
REAL(DP), INTENT(IN) :: x
REAL(DP), INTENT(OUT) :: exin
INTEGER :: in_err
INTEGER, parameter :: maxit=200
REAL(DP), parameter :: eps=1E-12, big=huge(x)*eps
REAL(DP), parameter :: euler = 0.577215664901532860606512d0
! EPS=1E-9, FPMIN=1E-30
INTEGER :: i, nm1, k
REAL(DP) :: a,b,c,d,del,fact,h,iarsum
IF (.NOT. ((n >= 0).AND.(x >= 0.0).AND.((x > 0.0).OR.(n > 1)))) THEN
in_err = 1 ! expint: bad arguments
RETURN
END IF
IF (n == 0) THEN
exin= exp(-x)/x
RETURN
END IF
nm1 = n-1
IF (x == 0.0d0) THEN
exin = 1.0d0/nm1
ELSE IF (x > 1.0d0) THEN
b = x+n
c = big
d = 1.0d0/b
h = d
DO i=1,maxit
a = -i*(nm1+i)
b = b+2.0d0
d = 1.0d0/(a*d+b)
c = b+a/c
del = c*d
h = h*del
IF (ABS(del-1.0d0) <= EPS) EXIT
END DO
IF (i > maxit) THEN
in_err = 2 ! expint: continued fraction failed
RETURN
ENDIF
exin = h*EXP(-x)
ELSE
IF (nm1 /= 0) THEN
exin = 1.0d0/nm1
ELSE
exin = -LOG(x)-euler
END IF
fact = 1.0d0
do i=1,maxit
fact = -fact*x/i
IF (i /= nm1) THEN
del = -fact/(i-nm1)
ELSE
iarsum = 0.0d0
do k=1,nm1
iarsum = iarsum + 1.0d0/k
end do
del = fact*(-LOG(x)-euler+iarsum)
! del = fact*(-LOG(x)-euler+sum(1.0d0/arth(1,1,nm1)))
END IF
exin = exin + del
IF (ABS(del) < ABS(exin)*eps) EXIT
END DO
IF (i > maxit) THEN
in_err = 2 ! expint: series failed
RETURN
ENDIF
END IF
END SUBROUTINE EXPINT
!
END MODULE