quantum-espresso/PW/examples/vdwDF_example/reference_dscf/water.scf.-1.out

629 lines
25 KiB
Plaintext

Program PWSCF v.6.4.1 starts on 23Sep2019 at 12:53:49
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 4 processors
MPI processes distributed on 1 nodes
R & G space division: proc/nbgrp/npool/nimage = 4
Waiting for input...
Reading input from standard input
Current dimensions of program PWSCF are:
Max number of different atomic species (ntypx) = 10
Max number of k-points (npk) = 40000
Max angular momentum in pseudopotentials (lmaxx) = 3
IMPORTANT: XC functional enforced from input :
Exchange-correlation= VDW-DF
( 1 4 4 0 1 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
file O.pbe-rrkjus.UPF: wavefunction(s) 2S renormalized
file H.pbe-rrkjus.UPF: wavefunction(s) 1S renormalized
gamma-point specific algorithms are used
Subspace diagonalization in iterative solution of the eigenvalue problem:
a serial algorithm will be used
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 768 512 127 40311 21940 2739
Max 770 513 130 40318 21949 2746
Sum 3077 2049 515 161263 87777 10971
bravais-lattice index = 8
lattice parameter (alat) = 14.9500 a.u.
unit-cell volume = 3914.3646 (a.u.)^3
number of atoms/cell = 6
number of atomic types = 2
number of electrons = 16.00
number of Kohn-Sham states= 8
kinetic-energy cutoff = 30.2010 Ry
charge density cutoff = 181.2060 Ry
convergence threshold = 1.0E-08
mixing beta = 0.7000
number of iterations used = 8 plain mixing
Exchange-correlation= VDW-DF
( 1 4 4 0 1 0 0)
celldm(1)= 14.950000 celldm(2)= 0.954545 celldm(3)= 1.227273
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.000000 0.000000 0.000000 )
a(2) = ( 0.000000 0.954545 0.000000 )
a(3) = ( 0.000000 0.000000 1.227273 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.000000 0.000000 0.000000 )
b(2) = ( 0.000000 1.047619 0.000000 )
b(3) = ( 0.000000 0.000000 0.814815 )
PseudoPot. # 1 for O read from file:
/benchmarks/pseudo/O.pbe-rrkjus.UPF
MD5 check sum: fadcf19ee70a498d3030e2e79cf929a4
Pseudo is Ultrasoft, Zval = 6.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1269 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
PseudoPot. # 2 for H read from file:
/benchmarks/pseudo/H.pbe-rrkjus.UPF
MD5 check sum: 2d52a7f45632fd764c17cc6affed14c8
Pseudo is Ultrasoft, Zval = 1.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1061 points, 2 beta functions with:
l(1) = 0
l(2) = 0
Q(r) pseudized with 0 coefficients
atomic species valence mass pseudopotential
O 6.00 15.99940 O ( 1.00)
H 1.00 1.00794 H ( 1.00)
2 Sym. Ops. (no inversion) found
s frac. trans.
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 inv. 180 deg rotation - cart. axis [1,0,0]
cryst. s( 2) = ( -1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
point group C_s (m)
there are 2 classes
the character table:
E s
A' 1.00 1.00
A'' 1.00 -1.00
the symmetry operations in each class and the name of the first element:
E 1
identity
s 2
inv. 180 deg rotation - cart. axis [1,0,0]
Cartesian axes
site n. atom positions (alat units)
1 O tau( 1) = ( 0.0000000 0.0016540 -0.0072484 )
2 H tau( 2) = ( 0.0000000 0.0981485 -0.0826521 )
3 H tau( 3) = ( 0.0000000 0.0490883 0.1065556 )
4 O tau( 4) = ( 0.0000000 0.1117595 0.3550478 )
5 H tau( 5) = ( -0.0975766 0.0656956 0.4133167 )
6 H tau( 6) = ( 0.0975766 0.0656956 0.4133167 )
Crystallographic axes
site n. atom positions (cryst. coord.)
1 O tau( 1) = ( 0.0000000 0.0017328 -0.0059061 )
2 H tau( 2) = ( 0.0000000 0.1028222 -0.0673462 )
3 H tau( 3) = ( 0.0000000 0.0514258 0.0868231 )
4 O tau( 4) = ( 0.0000000 0.1170814 0.2892982 )
5 H tau( 5) = ( -0.0975766 0.0688240 0.3367766 )
6 H tau( 6) = ( 0.0975766 0.0688240 0.3367766 )
number of k points= 1
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000
cryst. coord.
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000
Dense grid: 80632 G-vectors FFT dimensions: ( 72, 64, 80)
Smooth grid: 43889 G-vectors FFT dimensions: ( 54, 50, 72)
Dynamical RAM for wfc: 0.17 MB
Dynamical RAM for wfc (w. buffer): 0.17 MB
Dynamical RAM for str. fact: 0.62 MB
Dynamical RAM for local pot: 0.00 MB
Dynamical RAM for nlocal pot: 0.50 MB
Dynamical RAM for qrad: 1.47 MB
Dynamical RAM for rho,v,vnew: 3.03 MB
Dynamical RAM for rhoin: 1.01 MB
Dynamical RAM for rho*nmix: 4.92 MB
Dynamical RAM for G-vectors: 1.24 MB
Dynamical RAM for h,s,v(r/c): 0.02 MB
Dynamical RAM for <psi|beta>: 0.00 MB
Dynamical RAM for psi: 0.67 MB
Dynamical RAM for hpsi: 0.67 MB
Dynamical RAM for spsi: 0.67 MB
Dynamical RAM for wfcinit/wfcrot: 0.51 MB
Dynamical RAM for addusdens: 14.46 MB
Dynamical RAM for addusforce: 18.31 MB
Dynamical RAM for addusstress: 15.38 MB
Estimated static dynamical RAM per process > 17.39 MB
Estimated max dynamical RAM per process > 35.70 MB
Estimated total dynamical RAM > 142.79 MB
Initial potential from superposition of free atoms
starting charge 15.61518, renormalised to 16.00000
negative rho (up, down): 2.471E-05 0.000E+00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% You are using vdW-DF, which was implemented by the Thonhauser group. %
% Please cite the following two papers that made this development %
% possible and the two reviews that describe the various versions: %
% %
% T. Thonhauser et al., PRL 115, 136402 (2015). %
% T. Thonhauser et al., PRB 76, 125112 (2007). %
% K. Berland et al., Rep. Prog. Phys. 78, 066501 (2015). %
% D.C. Langreth et al., J. Phys.: Condens. Matter 21, 084203 (2009). %
% %
% %
% If you are calculating the stress with vdW-DF, please also cite: %
% %
% R. Sabatini et al., J. Phys.: Condens. Matter 24, 424209 (2012). %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Carrying out vdW-DF run using the following parameters:
Nqs = 20 Npoints = 1024 r_max = 100.000
q_mesh = 0.00001000 0.04494208 0.09755937 0.15916263
0.23128650 0.31572767 0.41458969 0.53033537
0.66584808 0.82450364 1.01025438 1.22772762
1.48234092 1.78043706 2.12944203 2.53805004
3.01644009 3.57652955 4.23227104 5.00000000
-----------------------------------------------
Non-local corr. energy = 0.27481953 Ry
-----------------------------------------------
Starting wfcs are 12 randomized atomic wfcs
total cpu time spent up to now is 26.5 secs
Self-consistent Calculation
iteration # 1 ecut= 30.20 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 1.00E-02, avg # of iterations = 2.0
negative rho (up, down): 2.110E-05 0.000E+00
-----------------------------------------------
Non-local corr. energy = 0.30228475 Ry
-----------------------------------------------
total cpu time spent up to now is 26.9 secs
total energy = -68.60915420 Ry
Harris-Foulkes estimate = -69.74983676 Ry
estimated scf accuracy < 1.48273954 Ry
iteration # 2 ecut= 30.20 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 9.27E-03, avg # of iterations = 2.0
negative rho (up, down): 7.086E-05 0.000E+00
-----------------------------------------------
Non-local corr. energy = 0.29915827 Ry
-----------------------------------------------
total cpu time spent up to now is 27.3 secs
total energy = -68.82995203 Ry
Harris-Foulkes estimate = -69.34300068 Ry
estimated scf accuracy < 0.99464854 Ry
iteration # 3 ecut= 30.20 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 6.22E-03, avg # of iterations = 2.0
negative rho (up, down): 5.923E-04 0.000E+00
-----------------------------------------------
Non-local corr. energy = 0.30435487 Ry
-----------------------------------------------
total cpu time spent up to now is 27.8 secs
total energy = -69.04903598 Ry
Harris-Foulkes estimate = -69.06869375 Ry
estimated scf accuracy < 0.03433522 Ry
iteration # 4 ecut= 30.20 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 2.15E-04, avg # of iterations = 2.0
negative rho (up, down): 4.995E-04 0.000E+00
-----------------------------------------------
Non-local corr. energy = 0.30389750 Ry
-----------------------------------------------
total cpu time spent up to now is 28.2 secs
total energy = -69.05605995 Ry
Harris-Foulkes estimate = -69.05644491 Ry
estimated scf accuracy < 0.00066357 Ry
iteration # 5 ecut= 30.20 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 4.15E-06, avg # of iterations = 2.0
negative rho (up, down): 1.558E-03 0.000E+00
-----------------------------------------------
Non-local corr. energy = 0.30408726 Ry
-----------------------------------------------
total cpu time spent up to now is 28.6 secs
total energy = -69.05626306 Ry
Harris-Foulkes estimate = -69.05623851 Ry
estimated scf accuracy < 0.00003166 Ry
iteration # 6 ecut= 30.20 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 1.98E-07, avg # of iterations = 2.0
negative rho (up, down): 1.654E-03 0.000E+00
-----------------------------------------------
Non-local corr. energy = 0.30407190 Ry
-----------------------------------------------
total cpu time spent up to now is 28.9 secs
total energy = -69.05626666 Ry
Harris-Foulkes estimate = -69.05626891 Ry
estimated scf accuracy < 0.00000285 Ry
iteration # 7 ecut= 30.20 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 1.78E-08, avg # of iterations = 2.0
negative rho (up, down): 1.671E-03 0.000E+00
-----------------------------------------------
Non-local corr. energy = 0.30407153 Ry
-----------------------------------------------
total cpu time spent up to now is 29.3 secs
total energy = -69.05626683 Ry
Harris-Foulkes estimate = -69.05626714 Ry
estimated scf accuracy < 0.00000009 Ry
iteration # 8 ecut= 30.20 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 5.54E-10, avg # of iterations = 2.0
negative rho (up, down): 1.672E-03 0.000E+00
-----------------------------------------------
Non-local corr. energy = 0.30407093 Ry
-----------------------------------------------
total cpu time spent up to now is 29.7 secs
total energy = -69.05626686 Ry
Harris-Foulkes estimate = -69.05626686 Ry
estimated scf accuracy < 0.00000003 Ry
iteration # 9 ecut= 30.20 Ry beta= 0.70
Davidson diagonalization with overlap
ethr = 2.17E-10, avg # of iterations = 2.0
negative rho (up, down): 1.670E-03 0.000E+00
-----------------------------------------------
Non-local corr. energy = 0.30407028 Ry
-----------------------------------------------
total cpu time spent up to now is 30.1 secs
End of self-consistent calculation
k = 0.0000 0.0000 0.0000 ( 5486 PWs) bands (ev):
-25.6784 -24.2952 -13.5964 -12.3221 -9.7644 -8.3469 -7.6869 -6.4201
occupation numbers
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
highest occupied level (ev): -6.4201
! total energy = -69.05626684 Ry
Harris-Foulkes estimate = -69.05626687 Ry
estimated scf accuracy < 8.0E-10 Ry
The total energy is the sum of the following terms:
one-electron contribution = -122.48449758 Ry
hartree contribution = 64.44248856 Ry
xc contribution = -17.38797256 Ry
ewald contribution = 6.37371474 Ry
convergence has been achieved in 9 iterations
Forces acting on atoms (cartesian axes, Ry/au):
atom 1 type 1 force = 0.00000000 -0.00581452 -0.00391900
atom 2 type 2 force = 0.00000000 0.00489173 -0.00359098
atom 3 type 2 force = 0.00000000 0.00159624 0.00585187
atom 4 type 1 force = 0.00000000 0.00523886 -0.00401252
atom 5 type 2 force = -0.00528520 -0.00295616 0.00283531
atom 6 type 2 force = 0.00528520 -0.00295616 0.00283531
The non-local contrib. to forces
atom 1 type 1 force = 0.00000000 2.37269000 0.53044714
atom 2 type 2 force = 0.00000000 -0.15506394 0.13034264
atom 3 type 2 force = 0.00000000 -0.07033478 -0.18904879
atom 4 type 1 force = 0.00000000 -1.58436475 1.86436702
atom 5 type 2 force = 0.16693735 0.07246469 -0.09223055
atom 6 type 2 force = -0.16693735 0.07246469 -0.09223055
The ionic contribution to forces
atom 1 type 1 force = -0.00000000 -4.73264477 -3.37708282
atom 2 type 2 force = -0.00000000 2.84706666 -2.67875275
atom 3 type 2 force = -0.00000000 1.09619699 2.55289713
atom 4 type 1 force = -0.00000000 3.37891499 -0.50587941
atom 5 type 2 force = -3.12370759 -1.29476694 2.00440892
atom 6 type 2 force = 3.12370759 -1.29476694 2.00440892
The local contribution to forces
atom 1 type 1 force = 0.00000010 2.35470104 2.84297979
atom 2 type 2 force = 0.00000001 -2.68652479 2.54508475
atom 3 type 2 force = 0.00000001 -1.02367983 -2.35772700
atom 4 type 1 force = 0.00000000 -1.78870131 -1.36224541
atom 5 type 2 force = 2.95148356 1.21993130 -1.90907537
atom 6 type 2 force = -2.95148356 1.21993130 -1.90907537
The core correction contribution to forces
atom 1 type 1 force = 0.00000000 0.00000000 0.00000000
atom 2 type 2 force = 0.00000000 0.00000000 0.00000000
atom 3 type 2 force = 0.00000000 0.00000000 0.00000000
atom 4 type 1 force = 0.00000000 0.00000000 0.00000000
atom 5 type 2 force = 0.00000000 0.00000000 0.00000000
atom 6 type 2 force = 0.00000000 0.00000000 0.00000000
The Hubbard contrib. to forces
atom 1 type 1 force = 0.00000000 0.00000000 0.00000000
atom 2 type 2 force = 0.00000000 0.00000000 0.00000000
atom 3 type 2 force = 0.00000000 0.00000000 0.00000000
atom 4 type 1 force = 0.00000000 0.00000000 0.00000000
atom 5 type 2 force = 0.00000000 0.00000000 0.00000000
atom 6 type 2 force = 0.00000000 0.00000000 0.00000000
The SCF correction term to forces
atom 1 type 1 force = -0.00000011 0.00002418 0.00000420
atom 2 type 2 force = -0.00000002 -0.00000123 0.00000171
atom 3 type 2 force = -0.00000001 -0.00000117 -0.00000213
atom 4 type 1 force = 0.00000000 -0.00002510 0.00001261
atom 5 type 2 force = 0.00000147 -0.00000025 -0.00000037
atom 6 type 2 force = -0.00000148 -0.00000024 -0.00000037
Total force = 0.015992 Total SCF correction = 0.000037
Computing stress (Cartesian axis) and pressure
total stress (Ry/bohr**3) (kbar) P= -0.99
-0.00000685 0.00000000 0.00000000 -1.01 0.00 0.00
0.00000000 -0.00000751 -0.00000218 0.00 -1.10 -0.32
0.00000000 -0.00000218 -0.00000590 0.00 -0.32 -0.87
kinetic stress (kbar) 782.26 0.00 0.00
0.00 803.92 35.40
0.00 35.40 756.41
local stress (kbar) -1271.86 0.00 -0.00
0.00 -1432.68 -164.63
-0.00 -164.63 -2519.92
nonloc. stress (kbar) 281.32 0.00 0.00
0.00 283.65 11.34
0.00 11.34 272.04
hartree stress (kbar) 590.16 0.00 -0.00
0.00 692.67 103.39
-0.00 103.39 1138.98
exc-cor stress (kbar) -209.63 0.00 0.00
0.00 -210.20 -1.04
0.00 -1.04 -207.98
corecor stress (kbar) 0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
ewald stress (kbar) -176.25 0.00 0.00
0.00 -141.46 15.26
0.00 15.26 557.23
hubbard stress (kbar) 0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
london stress (kbar) 0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
DFT-D3 stress (kbar) 0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
XDM stress (kbar) 0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
dft-nl stress (kbar) 2.99 -0.00 -0.00
-0.00 3.01 -0.05
-0.00 -0.05 2.37
TS-vdW stress (kbar) 0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
Writing output data file /benchmarks/tempdir/water_vdw.save/
init_run : 26.02s CPU 26.17s WALL ( 1 calls)
electrons : 3.35s CPU 3.62s WALL ( 1 calls)
forces : 0.20s CPU 0.21s WALL ( 1 calls)
stress : 0.71s CPU 0.73s WALL ( 1 calls)
Called by init_run:
wfcinit : 0.01s CPU 0.01s WALL ( 1 calls)
wfcinit:atom : 0.00s CPU 0.00s WALL ( 1 calls)
wfcinit:wfcr : 0.01s CPU 0.01s WALL ( 1 calls)
potinit : 25.78s CPU 25.92s WALL ( 1 calls)
hinit0 : 0.19s CPU 0.20s WALL ( 1 calls)
Called by electrons:
c_bands : 0.19s CPU 0.19s WALL ( 9 calls)
sum_band : 0.19s CPU 0.19s WALL ( 9 calls)
v_of_rho : 28.33s CPU 28.67s WALL ( 10 calls)
v_h : 0.02s CPU 0.04s WALL ( 10 calls)
v_xc : 28.31s CPU 28.64s WALL ( 10 calls)
newd : 0.16s CPU 0.19s WALL ( 10 calls)
mix_rho : 0.05s CPU 0.05s WALL ( 9 calls)
vdW_kernel : 25.29s CPU 25.40s WALL ( 1 calls)
Called by c_bands:
init_us_2 : 0.01s CPU 0.01s WALL ( 19 calls)
regterg : 0.18s CPU 0.18s WALL ( 9 calls)
Called by sum_band:
sum_band:bec : 0.00s CPU 0.00s WALL ( 9 calls)
addusdens : 0.12s CPU 0.12s WALL ( 9 calls)
Called by *egterg:
h_psi : 0.17s CPU 0.17s WALL ( 28 calls)
s_psi : 0.00s CPU 0.00s WALL ( 28 calls)
g_psi : 0.00s CPU 0.00s WALL ( 18 calls)
rdiaghg : 0.01s CPU 0.01s WALL ( 27 calls)
regterg:over : 0.00s CPU 0.00s WALL ( 18 calls)
regterg:upda : 0.00s CPU 0.00s WALL ( 18 calls)
regterg:last : 0.00s CPU 0.00s WALL ( 9 calls)
Called by h_psi:
h_psi:calbec : 0.00s CPU 0.00s WALL ( 28 calls)
vloc_psi : 0.16s CPU 0.16s WALL ( 28 calls)
add_vuspsi : 0.00s CPU 0.00s WALL ( 28 calls)
General routines
calbec : 0.01s CPU 0.01s WALL ( 42 calls)
fft : 1.32s CPU 1.42s WALL ( 659 calls)
ffts : 0.02s CPU 0.03s WALL ( 19 calls)
fftw : 0.16s CPU 0.17s WALL ( 256 calls)
interpolate : 0.03s CPU 0.04s WALL ( 10 calls)
Parallel routines
fft_scatt_xy : 0.16s CPU 0.16s WALL ( 934 calls)
fft_scatt_yz : 0.51s CPU 0.58s WALL ( 934 calls)
PWSCF : 30.60s CPU 31.10s WALL
This run was terminated on: 12:54:20 23Sep2019
=------------------------------------------------------------------------------=
JOB DONE.
=------------------------------------------------------------------------------=