quantum-espresso/Modules/wgauss.f90

91 lines
2.4 KiB
Fortran

!
! Copyright (C) 2001 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
function wgauss (x, n)
!-----------------------------------------------------------------------
!! This function computes the approximate theta function for the
!! given order n, at the point x:
!
!! * \( n \geq 0 \): Methfessel-Paxton case. See PRB 40, 3616 (1989).
!! * \( n=-1 \): cold smearing (Marzari-Vanderbilt-DeVita-Payne,
!! see PRL 82, 3296 (1999)):
!! $$ \frac{1}{2} \text{erf}\(x-\frac{1}{\sqrt(2)}\) + \frac{1}{\sqrt{2\pi}} \exp
!! {-\(x-\frac{1}{sqrt{2}}\)^2} + 1/2 $$
!! * \( n=-99 \): Fermi-Dirac case:
!! $$ \frac{1.0}{1.0+\exp{-x}} $$
!
USE kinds, ONLY : DP
USE constants, ONLY : pi
implicit none
real(DP) :: wgauss
!! output: the value of the function
real(DP) :: x
!! input: the argument of the function
integer :: n
!! input: the order of the function
!
! ... local variables
!
real(DP) :: a, hp, arg, hd, xp
! the coefficient a_n
! the hermitean function
! the argument of the exponential
! the hermitean function
! auxiliary variable (cold smearing)
integer :: i, ni
! counter on the n indices
! counter on 2n
real(DP), parameter :: maxarg = 200.d0
! maximum value for the argument of the exponential
! Fermi-Dirac smearing
if (n.eq. - 99) then
if (x.lt. - maxarg) then
wgauss = 0.d0
elseif (x.gt.maxarg) then
wgauss = 1.d0
else
wgauss = 1.0d0 / (1.0d0 + exp ( - x) )
endif
return
endif
! Cold smearing
if (n.eq. - 1) then
xp = x - 1.0d0 / sqrt (2.0d0)
arg = min (maxarg, xp**2)
wgauss = 0.5d0 * erf(xp) + 1.0d0 / sqrt (2.0d0 * pi) * exp ( - &
arg) + 0.5d0
return
endif
! Methfessel-Paxton and plain gaussian cases
arg = -x
IF (arg .LT. sqrt(maxarg)) THEN
wgauss = 0.5_DP * ERFC( arg)
ELSE
wgauss = 0._DP
END IF
if (n.eq.0) return
hd = 0.d0
arg = min (maxarg, x**2)
hp = exp ( - arg)
ni = 0
a = 1.d0 / sqrt (pi)
do i = 1, n
hd = 2.0d0 * x * hp - 2.0d0 * DBLE (ni) * hd
ni = ni + 1
a = - a / (DBLE (i) * 4.0d0)
wgauss = wgauss - a * hd
hp = 2.0d0 * x * hd-2.0d0 * DBLE (ni) * hp
ni = ni + 1
enddo
return
end function wgauss