quantum-espresso/Modules/remove_tot_torque.f90

131 lines
3.2 KiB
Fortran

!
! Copyright (C) 2001-2006 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!----------------------------------------------------------------------------
SUBROUTINE remove_tot_torque( nat, tau, mass, force )
!----------------------------------------------------------------------------
!! This routine sets to zero the total torque associated to the internal
!! forces acting on the atoms by correcting the force vector.
!
!! The algorithm is based on the following expressions ( F' is the
!! torqueless force ) :
!
!! $$ {\bf m} = \frac{1}{N} \sum_i d {\bf R}_i\times {\bf F}_i $$
!
!! $$ {\bf F}_i' = {\bf F}_i - \frac{1}{\|d {\bf R}_i\|^2} {\bf m} \times d {\bf R}_i $$
!
!! with \( d {\bf R}_i = {\bf R}_i - {\bf R}_\text{cm} \)
!
!! Written by Carlo Sbraccia (2006).
!
! _
! _ 1 \ __ _ __ _ _
! ... m = --- /_ dR_i /\ F_i , dR_i = ( R_i - R_cm ) ,
! N i
!
! __ _ 1 _ __
! ... F'_i = F_i - -------- m /\ dR_i
! |dR_i|^2
!
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: nat
!! number of atoms
REAL(DP), INTENT(IN) :: tau(3,nat)
!! atomic positions
REAL(DP), INTENT(IN) :: mass(nat)
!! atomic mass
REAL(DP), INTENT(INOUT) :: force(3,nat)
!! force on atoms
!
! ... local variables
!
INTEGER :: ia
REAL(DP) :: m(3), mo(3), tauref(3), delta(3), sumf(3)
REAL(DP) :: nrmsq
!
!
tauref(:) = 0.D0
!
DO ia = 1, nat
!
tauref(:) = tauref(:) + tau(:,ia)*mass(ia)
!
END DO
!
tauref(:) = tauref(:) / SUM( mass(:) )
!
m(:) = 0.D0
!
DO ia = 1, nat
!
delta(:) = tau(:,ia) - tauref(:)
!
m(:) = m(:) + ext_prod( delta(:), force(:,ia) )
!
END DO
!
mo(:) = m(:)
!
m(:) = m(:) / DBLE( nat )
!
sumf(:) = 0.D0
!
DO ia = 1, nat
!
delta(:) = tau(:,ia) - tauref(:)
!
nrmsq = delta(1)**2 + delta(2)**2 + delta(3)**2
!
force(:,ia) = force(:,ia) - ext_prod( m(:), delta(:) ) / nrmsq
!
sumf(:) = sumf(:) + force(:,ia)
!
END DO
!
DO ia = 1, nat
!
force(:,ia) = force(:,ia) - sumf(:) / DBLE( nat )
!
END DO
!
m(:) = 0.D0
!
DO ia = 1, nat
!
delta(:) = tau(:,ia) - tauref(:)
!
m(:) = m(:) + ext_prod( delta(:), force(:,ia) )
!
END DO
!
IF ( m(1)**2+m(2)**2+m(3)**2 > mo(1)**2+mo(2)**2+mo(3)**2 ) &
CALL errore( 'remove_tot_torque', &
'total torque has not been properly removed', 1 )
!
RETURN
!
CONTAINS
!
!------------------------------------------------------------------------
FUNCTION ext_prod( a, b )
!------------------------------------------------------------------------
!
REAL(DP), INTENT(IN) :: a(3), b(3)
REAL(DP) :: ext_prod(3)
!
ext_prod(1) = a(2)*b(3) - a(3)*b(2)
ext_prod(2) = a(3)*b(1) - a(1)*b(3)
ext_prod(3) = a(1)*b(2) - a(2)*b(1)
!
END FUNCTION ext_prod
!
END SUBROUTINE remove_tot_torque