quantum-espresso/Modules/qexsd_init.f90

1550 lines
69 KiB
Fortran

! Copyright (C) 2019 Quantum ESPRESSO foundation
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!----------------------------------------------------------------------------
MODULE qexsd_init
!----------------------------------------------------------------------------
!! This module contains some common subroutines used to copy data used by
!! the Quantum ESPRESSO package into XML format.
!
!! Written by Paolo Giannozzi, building upon pre-existing code qexsd.f90.
!
!
USE kinds, ONLY : DP
!
USE qes_types_module
USE qes_reset_module, ONLY: qes_reset
USE qes_init_module, ONLY: qes_init
! FIXME: none of the following modules should be used here
USE constants, ONLY : e2
USE mp_world, ONLY : nproc
USE mp_images, ONLY : nimage,nproc_image
USE mp_pools, ONLY : npool
USE mp_bands, ONLY : ntask_groups, nproc_bgrp, nbgrp
!
IMPLICIT NONE
!
PRIVATE
SAVE
!
! type of objects
!
TYPE (berryPhaseOutput_type), TARGET :: qexsd_bp_obj
TYPE (k_points_IBZ_type) :: qexsd_start_k_obj
TYPE (occupations_type) :: qexsd_occ_obj
!
PUBLIC :: qexsd_bp_obj, qexsd_start_k_obj, qexsd_occ_obj
!
! public subroutines. They all work in the same way:
! call qexsd_init_*( xml object, list of QE variables)
! copies QE variables into the xml object
!
PUBLIC :: qexsd_init_convergence_info, qexsd_init_algorithmic_info, &
qexsd_init_atomic_species, qexsd_init_atomic_structure, &
qexsd_init_symmetries, qexsd_init_basis_set, qexsd_init_dft, &
qexsd_init_magnetization, qexsd_init_band_structure, &
qexsd_init_total_energy, qexsd_init_forces, qexsd_init_stress, &
qexsd_init_dipole_info, qexsd_init_outputElectricField, &
qexsd_init_outputPBC, qexsd_init_gate_info, qexsd_init_hybrid, &
qexsd_init_dftU, qexsd_init_vdw, qexsd_init_berryPhaseOutput, &
qexsd_init_rism3d, qexsd_init_rismlaue, qexsd_init_esm, qexsd_init_sawtooth_info
!
CONTAINS
!
!
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_convergence_info(obj, n_scf_steps, scf_has_converged, scf_error, &
optimization_has_converged, n_opt_steps, grad_norm, wf_collected)
!------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(convergence_info_type) :: obj
INTEGER, INTENT(IN) :: n_scf_steps
LOGICAL, INTENT(IN) :: scf_has_converged
REAL(DP), INTENT(IN) :: scf_error
LOGICAL, OPTIONAL, INTENT(IN) :: optimization_has_converged
INTEGER, OPTIONAL, INTENT(in) :: n_opt_steps
REAL(DP),OPTIONAL, INTENT(IN) :: grad_norm
LOGICAL,OPTIONAL, INTENT(IN) :: wf_collected
!
CHARACTER(27) :: subname="qexsd_init_convergence_info"
TYPE(scf_conv_type) :: scf_conv
TYPE(opt_conv_type) :: opt_conv
!
call qes_init (scf_conv, "scf_conv", scf_has_converged, n_scf_steps, scf_error)
!
IF ( PRESENT(optimization_has_converged )) THEN
!
IF ( .NOT. PRESENT(n_opt_steps) ) CALL errore(subname,"n_opt_steps not present",10)
IF ( .NOT. PRESENT(grad_norm) ) CALL errore(subname,"grad_norm not present",10)
!
call qes_init (opt_conv, "opt_conv", optimization_has_converged, n_opt_steps, grad_norm)
call qes_init (obj, "convergence_info", scf_conv, opt_conv, wf_collected)
call qes_reset (scf_conv)
CALL qes_reset (opt_conv)
!
ELSE
!
call qes_init (obj, "convergence_info", scf_conv, WF_COLLECTED = wf_collected)
call qes_reset (scf_conv)
!
ENDIF
!
END SUBROUTINE qexsd_init_convergence_info
!
!
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_algorithmic_info(obj, real_space_beta, real_space_q, uspp, paw )
!------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(algorithmic_info_type) :: obj
LOGICAL, INTENT(IN) :: real_space_beta, real_space_q, uspp, paw
!
CALL qes_init (obj, "algorithmic_info", REAL_SPACE_Q = real_space_q, &
REAL_SPACE_BETA = real_space_beta, USPP = uspp, PAW = paw)
!
END SUBROUTINE qexsd_init_algorithmic_info
!
!
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_atomic_species(obj, nsp, atm, psfile, amass, starting_magnetization,&
angle1,angle2)
!------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(atomic_species_type) :: obj
INTEGER, INTENT(IN) :: nsp
CHARACTER(len=*), INTENT(IN) :: atm(:)
CHARACTER(len=*), INTENT(IN) :: psfile(:)
REAL(DP), OPTIONAL,TARGET, INTENT(IN) :: amass(:)
REAL(DP), OPTIONAL,TARGET, INTENT(IN) :: starting_magnetization(:)
REAL(DP), OPTIONAL,TARGET, INTENT(IN) :: angle1(:),angle2(:)
!
TYPE(species_type), ALLOCATABLE :: species(:)
REAL(DP),POINTER :: amass_
REAL(DP),POINTER :: start_mag_
REAL(DP),POINTER :: spin_teta
REAL(DP),POINTER :: spin_phi
INTEGER :: i
ALLOCATE(species(nsp))
NULLIFY ( amass_, start_mag_, spin_teta, spin_phi)
!
DO i = 1, nsp
!
IF ( PRESENT(amass) ) THEN
IF (amass(i) .GT. 0._DP) amass_=>amass(i)
END IF
IF ( PRESENT(starting_magnetization) ) THEN
IF (ANY( starting_magnetization(1:nsp) /= 0.0_DP)) start_mag_ => starting_magnetization(i)
END IF
IF ( PRESENT( angle1 ) ) THEN
IF (ANY ( angle1(1:nsp) /= 0.0_DP)) spin_teta => angle1(i)
END IF
IF ( PRESENT( angle2 ) ) THEN
IF (ANY(angle2(1:nsp) /= 0.0_DP)) spin_phi => angle2(i)
END IF
!
CALL qes_init ( species(i), "species", NAME = TRIM(atm(i)), PSEUDO_FILE = TRIM(psfile(i)), MASS = amass_, &
STARTING_MAGNETIZATION = start_mag_, SPIN_TETA = spin_teta, SPIN_PHI = spin_phi )
ENDDO
!
CALL qes_init (obj, "atomic_species", NTYP = nsp, SPECIES = species)
!
DO i = 1, nsp
CALL qes_reset (species(i))
ENDDO
DEALLOCATE(species)
!
END SUBROUTINE qexsd_init_atomic_species
!
!
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_atomic_structure(obj, nsp, atm, ityp, nat, tau, &
alat, a1, a2, a3, ibrav, natomwfc)
!------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(atomic_structure_type) :: obj
INTEGER, INTENT(IN) :: nsp, nat
INTEGER, INTENT(in) :: ityp(:)
CHARACTER(LEN=*), INTENT(in) :: atm(:)
REAL(DP), INTENT(IN) :: tau(3,*)! cartesian atomic positions, a.u.
REAL(DP), INTENT(IN) :: alat
REAL(DP), INTENT(IN) :: a1(:), a2(:), a3(:)
INTEGER, INTENT(IN) :: ibrav
INTEGER,OPTIONAL, INTENT(IN) :: natomwfc
!
INTEGER :: ia
TYPE(atom_type), ALLOCATABLE :: atom(:)
TYPE(cell_type) :: cell
TYPE(atomic_positions_type) :: atomic_pos
TYPE(wyckoff_positions_type) :: wyckoff_pos
REAL(DP) :: new_alat
INTEGER,TARGET :: ibrav_tgt
INTEGER,POINTER :: ibrav_ptr
CHARACTER(LEN=256),TARGET :: use_alt_axes
CHARACTER(LEN=256),POINTER :: use_alt_axes_
!
! atomic positions
!
NULLIFY(use_alt_axes_, ibrav_ptr)
IF ( ibrav .ne. 0 ) THEN
ibrav_tgt = abs(ibrav)
ibrav_ptr => ibrav_tgt
SELECT CASE(ibrav)
CASE(-3)
use_alt_axes="b:a-b+c:-c"
use_alt_axes_ => use_alt_axes
CASE(-5)
use_alt_axes="3fold-111"
use_alt_axes_ => use_alt_axes
CASE(-9)
use_alt_axes="-b:a:c"
use_alt_axes_ => use_alt_axes
CASE (91)
ibrav_tgt = 9
use_alt_axes ="bcoA-type"
use_alt_axes_ => use_alt_axes
CASE(-12,-13)
use_alt_axes="unique-axis-b"
use_alt_axes_ => use_alt_axes
END SELECT
END IF
!
ALLOCATE(atom(nat))
DO ia = 1, nat
CALL qes_init ( atom(ia), "atom", name=trim(atm(ityp(ia))), atom=tau(1:3,ia), index = ia )
ENDDO
!
CALL qes_init (atomic_pos, "atomic_positions", atom)
!
DO ia = 1, nat
CALL qes_reset ( atom(ia) )
ENDDO
DEALLOCATE(atom)
!
! cell
!
CALL qes_init (cell, "cell", a1, a2, a3)
!
! global init
!
CALL qes_init (obj, "atomic_structure", NAT=nat, ALAT=alat, &
ATOMIC_POSITIONS=atomic_pos, CELL=cell , &
BRAVAIS_INDEX=ibrav_ptr, ALTERNATIVE_AXES = use_alt_axes_ , NUM_OF_ATOMIC_WFC= natomwfc)
!
! cleanup
!
CALL qes_reset (atomic_pos)
CALL qes_reset (cell)
!
END SUBROUTINE qexsd_init_atomic_structure
!
!
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_symmetries(obj, space_group, nsym, nrot, s, ft, &
sname, t_rev, nat, irt, class_names, verbosity, noncolin, colin_mag_)
!------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(symmetries_type) :: obj
INTEGER, INTENT(IN) :: nsym, nrot, nat
INTEGER, INTENT(IN) :: space_group
INTEGER, INTENT(IN) :: s(:,:,:), irt(:,:)
REAL(DP), INTENT(IN) :: ft(:,:)
INTEGER, INTENT(IN) :: t_rev(:)
CHARACTER(LEN=*), INTENT(IN) :: sname(:), verbosity
CHARACTER(LEN=15),INTENT(IN) :: class_names(:)
LOGICAL,INTENT(IN) :: noncolin
INTEGER, OPTIONAL, INTENT(IN) :: colin_mag_
!
INTEGER :: colin_mag
TYPE(symmetry_type), ALLOCATABLE :: symm(:)
TYPE(equivalent_atoms_type) :: equiv_atm
TYPE(info_type) :: info
TYPE(matrix_type) :: matrix
CHARACTER(LEN=15),POINTER :: classname
CHARACTER(LEN=256) :: la_info
LOGICAL :: class_ispresent = .FALSE., time_reversal_ispresent = .FALSE.
INTEGER :: i
REAL(DP) :: mat_(3,3)
LOGICAL :: true_=.TRUE., false_ = .FALSE.
LOGICAL,POINTER :: trev
TARGET :: class_names, true_, false_
ALLOCATE(symm(nrot))
NULLIFY( classname, trev)
!
IF ( TRIM(verbosity) .EQ. 'high' .OR. TRIM(verbosity) .EQ. 'medium') class_ispresent= .TRUE.
IF ( PRESENT(colin_mag_) ) THEN
colin_mag = colin_mag_
ELSE
colin_mag = -1
END IF
IF ( noncolin .OR. (colin_mag == 2) ) time_reversal_ispresent = .TRUE.
DO i = 1, nrot
!
IF (class_ispresent ) classname => class_names(i)
IF (time_reversal_ispresent) THEN
SELECT CASE (t_rev(i))
CASE (1)
trev => true_
CASE default
trev => false_
END SELECT
END IF
IF ( i .LE. nsym ) THEN
la_info = "crystal_symmetry"
ELSE
la_info = "lattice_symmetry"
END IF
CALL qes_init (info, "info", name=sname(i), class=classname, time_reversal= trev, INFO= TRIM(la_info) )
!
mat_ = real(s(:,:,i),DP)
CALL qes_init (matrix, "rotation", DIMS=[3,3], mat=mat_ )
!
IF ( i .LE. nsym ) THEN
CALL qes_init (equiv_atm, "equivalent_atoms", nat=nat, equivalent_atoms = irt(i,1:nat) )
!
CALL qes_init (symm(i),"symmetry", info=info, rotation=matrix, fractional_translation=ft(:,i), &
equivalent_atoms=equiv_atm)
ELSE
CALL qes_init ( symm(i), "symmetry", INFO = info, ROTATION = matrix )
END IF
!
CALL qes_reset (info)
CALL qes_reset (matrix)
IF ( i .LT. nsym ) THEN
CALL qes_reset ( equiv_atm )
ELSE IF ( i .EQ. nrot ) THEN
CALL qes_reset ( equiv_atm )
END IF
!
ENDDO
!
CALL qes_init (obj,"symmetries",NSYM = nsym, NROT=nrot, SPACE_GROUP = space_group, &
SYMMETRY=symm, COLIN_MAG=colin_mag)
!
DO i = 1, nsym
CALL qes_reset (symm(i))
ENDDO
DEALLOCATE(symm)
!
END SUBROUTINE qexsd_init_symmetries
!
!
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_basis_set(obj, gamma_only, ecutwfc, ecutrho, &
nr1, nr2, nr3, nr1s, nr2s, nr3s, &
fft_box_ispresent, nr1b, nr2b, nr3b, &
ngm, ngms, npwx, b1, b2, b3 )
!------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(basis_set_type) :: obj
LOGICAL, INTENT(IN) :: gamma_only
INTEGER, INTENT(IN) :: nr1, nr2, nr3
INTEGER, INTENT(IN) :: nr1s, nr2s, nr3s
LOGICAL, INTENT(IN) :: fft_box_ispresent
INTEGER, INTENT(IN) :: nr1b, nr2b, nr3b
INTEGER, INTENT(IN) :: ngm, ngms, npwx
REAL(DP), INTENT(IN) :: ecutwfc, ecutrho
REAL(DP), INTENT(IN) :: b1(3), b2(3), b3(3)
!
TYPE(basisSetItem_type) :: fft_grid
TYPE(basisSetItem_type) :: fft_smooth
TYPE(basisSetItem_type) :: fft_box
TYPE(reciprocal_lattice_type) :: recipr_latt
CALL qes_init (fft_grid, "fft_grid", nr1, nr2, nr3, "")
CALL qes_init (fft_smooth, "fft_smooth", nr1s, nr2s, nr3s, "")
CALL qes_init (fft_box, "fft_box", nr1b, nr2b, nr3b, "" )
CALL qes_init (recipr_latt, "reciprocal_lattice", b1, b2, b3)
CALL qes_init (obj, "basis_set", GAMMA_ONLY=gamma_only, ECUTWFC=ecutwfc, ECUTRHO=ecutrho, FFT_GRID=fft_grid, &
FFT_SMOOTH=fft_smooth, FFT_BOX=fft_box, NGM=ngm, NGMS=ngms, NPWX=npwx, &
RECIPROCAL_LATTICE=recipr_latt )
!
CALL qes_reset(fft_grid)
CALL qes_reset(fft_smooth)
CALL qes_reset(fft_box)
CALL qes_reset(recipr_latt)
!
END SUBROUTINE qexsd_init_basis_set
!
!
SUBROUTINE qexsd_init_dft (obj, functional, hybrid_, vdW_, dftU_)
IMPLICIT NONE
TYPE (dft_type),INTENT(INOUT) :: obj
CHARACTER(LEN=*),INTENT(IN) :: functional
TYPE(hybrid_type),OPTIONAL,INTENT(IN) :: hybrid_
TYPE(vdW_type),OPTIONAL,INTENT(IN) :: vdW_
TYPE(dftU_type),OPTIONAL,INTENT(IN) :: dftU_
!
CALL qes_init(obj, 'dft', functional, hybrid_, dftU_, vdW_)
END SUBROUTINE qexsd_init_dft
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_hybrid ( obj, dft_is_hybrid, nq1, nq2, nq3, ecutfock, exx_fraction, screening_parameter,&
exxdiv_treatment, x_gamma_extrapolation, ecutvcut, local_thr )
IMPLICIT NONE
TYPE (hybrid_type),INTENT(INOUT) :: obj
LOGICAL,INTENT(IN) :: dft_is_hybrid
INTEGER,OPTIONAL, INTENT(IN) :: nq1, nq2, nq3
REAL(DP),OPTIONAL,INTENT(IN) :: ecutfock, exx_fraction, screening_parameter, ecutvcut,&
local_thr
CHARACTER(LEN=*), INTENT(IN) :: exxdiv_treatment
LOGICAL,OPTIONAL,INTENT(IN) :: x_gamma_extrapolation
!
TYPE (qpoint_grid_type),TARGET :: qpoint_grid
TYPE (qpoint_grid_type),POINTER :: qpoint_grid_opt
!
NULLIFY ( qpoint_grid_opt)
IF (.NOT. dft_is_hybrid) RETURN
IF (PRESENT(nq1) .AND. PRESENT(nq2) .AND. PRESENT(nq3) ) THEN
qpoint_grid_opt => qpoint_grid
CALL qes_init (qpoint_grid, "qpoint_grid", nq1, nq2, nq3, "")
END IF
!
CALL qes_init ( obj, "hybrid", qpoint_grid_opt, ecutfock, exx_fraction, &
screening_parameter, exxdiv_treatment, x_gamma_extrapolation, ecutvcut,&
local_thr )
!
IF (ASSOCIATED (qpoint_grid_opt)) CALL qes_reset (qpoint_grid_opt)
!
END SUBROUTINE qexsd_init_hybrid
!
SUBROUTINE qexsd_init_dftU (obj, nsp, psd, species, ityp, is_hubbard, &
is_hubbard_back, backall, hubb_n2, hubb_l2, hubb_n3, hubb_l3, &
noncolin, lda_plus_u_kind, U_projection_type, hubb_occ, U, U2, J0, J, &
n, l, alpha, beta, alpha_back, starting_ns, Hub_ns, Hub_ns_nc, Hub_nsg, Hubbard_V )
IMPLICIT NONE
TYPE(dftU_type),INTENT(INOUT) :: obj
INTEGER,INTENT(IN) :: nsp
CHARACTER(LEN=*),INTENT(IN) :: psd(nsp)
CHARACTER(LEN=*),INTENT(IN) :: species(nsp)
INTEGER,INTENT(IN) :: ityp(:)
LOGICAL,INTENT(IN) :: is_hubbard(nsp)
LOGICAL,OPTIONAL,INTENT(IN) :: is_hubbard_back(nsp)
LOGICAL,OPTIONAL,INTENT(IN) :: backall(nsp)
INTEGER,OPTIONAL,INTENT(IN) :: hubb_n2(nsp)
INTEGER,OPTIONAL,INTENT(IN) :: hubb_n3(nsp)
INTEGER,OPTIONAL,INTENT(IN) :: hubb_l2(nsp)
INTEGER,OPTIONAL,INTENT(IN) :: hubb_l3(nsp)
INTEGER,OPTIONAL,INTENT(IN) :: n(nsp), l(nsp)
INTEGER,INTENT(IN) :: lda_plus_u_kind
CHARACTER(LEN=*),INTENT(IN) :: U_projection_type
LOGICAL,OPTIONAL,INTENT(IN) :: noncolin
REAL(DP),OPTIONAL,INTENT(IN) :: U(:), U2(:), J0(:), alpha(:), alpha_back(:), &
beta(:), J(:,:), hubb_occ(:,:)
REAL(DP),OPTIONAL,INTENT(IN) :: hubbard_v(:,:,:)
REAL(DP),OPTIONAL,INTENT(IN) :: starting_ns(:,:,:), Hub_ns(:,:,:,:), Hub_nsg(:,:,:,:)
COMPLEX(DP),OPTIONAL,INTENT(IN) :: Hub_ns_nc(:,:,:,:)
!
CHARACTER(10), ALLOCATABLE :: label(:)
TYPE(HubbardCommon_type),ALLOCATABLE :: U_(:), U2_(:), J0_(:), alpha_(:), &
alpha_back_(:), beta_(:)
TYPE(HubbardOcc_type),ALLOCATABLE :: hubb_occ_(:)
TYPE(HubbardJ_type),ALLOCATABLE :: J_(:)
TYPE(starting_ns_type),ALLOCATABLE :: starting_ns_(:)
TYPE(Hubbard_ns_type),ALLOCATABLE :: Hubbard_ns_(:), Hubbard_ns_nc_(:)
TYPE(HubbardBack_type),ALLOCATABLE :: Hub_back_(:)
TYPE(HubbardInterSpecieV_type),ALLOCATABLE :: Hub_V_(:)
LOGICAL :: noncolin_ =.FALSE.
INTEGER :: icheck
!
IF (PRESENT(n) .AND. PRESENT(l)) THEN
CALL set_labels (nsp, n, l)
ELSE
ALLOCATE(label(nsp))
label(:)="no Hubbard"
ENDIF
IF (PRESENT(hubb_occ)) CALL init_hubbard_occs(hubb_occ, hubb_occ_, label, n2 = hubb_n2, n3=hubb_n3, &
l2 = hubb_l2, l3 = hubb_l3)
IF ( PRESENT(noncolin)) noncolin_ = noncolin
!
IF (lda_plus_u_kind == 2 ) THEN
IF (PRESENT(hubbard_v)) icheck = check_and_init_Hubbard_V (hub_v_, hubbard_v, species, label)
ELSE
IF (PRESENT(U)) CALL init_hubbard_commons(U, U_, label, "Hubbard_U")
IF (PRESENT(is_hubbard_back)) THEN
IF (ANY(is_hubbard_back)) THEN
IF (.NOT.PRESENT(hubb_l2) .OR. .NOT.PRESENT(hubb_n2) .OR. .NOT. PRESENT(U2)) &
CALL errore('qexsd_init_dft:',&
'Internal error: second Hubbard channel is present but hubb_n2 or hubb_l2 or U2 is not present',1)
CALL init_Hubbard_back(is_hubbard_back, Hub_back_, U2, hubb_n2, hubb_l2, backall, n3 = hubb_n3, l3 = hubb_l3)
ENDIF
END IF
END IF
IF (PRESENT(J0)) CALL init_hubbard_commons(J0, J0_, label, "Hubbard_J0" )
IF (PRESENT(alpha)) CALL init_hubbard_commons(alpha, alpha_,label, "Hubbard_alpha")
IF (PRESENT(alpha_back)) CALL init_hubbard_commons(alpha_back, alpha_back_,label, "Hubbard_alpha_back")
IF (PRESENT(beta)) CALL init_hubbard_commons(beta, beta_, label, "Hubbard_beta")
IF (PRESENT(J)) CALL init_hubbard_J (J, J_, label, "Hubbard_J" )
IF (PRESENT(starting_ns)) CALL init_starting_ns(starting_ns_ , label)
IF (PRESENT(Hub_ns)) THEN
CALL init_Hubbard_ns(Hubbard_ns_ , label, Hub_ns)
ELSE IF (PRESENT(Hub_ns_nc)) THEN
CALL init_Hubbard_ns(Hubbard_ns_nc_ , label)
ELSE IF (PRESENT(Hub_nsg)) THEN
CALL init_Hubbard_ns(Hubbard_ns_, label, Hub_nsg)
END IF
!
CALL qes_init (obj, "dftU", .true., lda_plus_u_kind, hubb_occ_, U_, J0_, alpha_, beta_, J_, starting_ns_, Hub_V_, &
Hubbard_ns_, U_projection_type, Hub_back_, alpha_back_, Hubbard_ns_nc_)
!
CALL reset_hubbard_occs(hubb_occ_)
CALL reset_hubbard_commons(U_)
CALL reset_hubbard_commons(U2_)
CALL reset_hubbard_commons(beta_)
CALL reset_hubbard_commons(J0_)
CALL reset_hubbard_commons(alpha_)
CALL reset_hubbard_commons(alpha_back_)
CALL reset_hubbard_J(J_)
CALL reset_starting_ns(starting_ns_)
CALL reset_Hubbard_ns(Hubbard_ns_)
!
CONTAINS
SUBROUTINE set_labels(ldim, n_, l_)
IMPLICIT NONE
CHARACTER :: hubbard_shell(4)=['s','p','d','f']
INTEGER :: i, hubb_l, hubb_n
INTEGER :: ldim
INTEGER :: n_(ldim), l_(ldim)
!
ALLOCATE(label(nsp))
DO i = 1, nsp
IF (is_hubbard(i)) THEN
hubb_n=n_(i)
hubb_l=l_(i)
WRITE (label(i),'(I0,A)') hubb_n,hubbard_shell(hubb_l+1)
ELSE
label(i)="no Hubbard"
ENDIF
ENDDO
END SUBROUTINE set_labels
SUBROUTINE init_hubbard_commons(dati, objs, labs, tag)
IMPLICIT NONE
REAL(DP) :: dati(:)
TYPE(HubbardCommon_type),ALLOCATABLE :: objs(:)
CHARACTER(LEN=*) :: labs(:), tag
INTEGER :: i
!
ALLOCATE (objs(nsp))
DO i = 1, nsp
CALL qes_init( objs(i), TRIM(tag), TRIM(species(i)), TRIM(labs(i)), dati(i))
IF (TRIM(labs(i)) =='no Hubbard') objs(i)%lwrite = .FALSE.
END DO
END SUBROUTINE init_hubbard_commons
!
SUBROUTINE init_hubbard_J(dati, objs, labs, tag)
IMPLICIT NONE
REAL(DP) :: dati(:,:)
TYPE(HubbardJ_type),ALLOCATABLE :: objs(:)
CHARACTER(LEN=*) :: labs(:), tag
INTEGER :: i
!
IF ( SIZE(dati,2) .LE. 0 ) RETURN
ALLOCATE (objs(nsp))
DO i = 1, nsp
CALL qes_init( objs(i), TRIM(tag), TRIM(species(i)), HubbardJ = dati(1:3,i), LABEL = TRIM(labs(i)))
IF (TRIM(labs(i)) =='no Hubbard') objs(i)%lwrite = .FALSE.
END DO
END SUBROUTINE init_hubbard_J
!
FUNCTION check_and_init_Hubbard_V (objs, hubbard_v_, specs, labs) result( ndim )
IMPLICIT NONE
TYPE(HubbardInterSpecieV_type), ALLOCATABLE :: objs(:)
REAL(DP) :: hubbard_v_(:,:,:)
CHARACTER(len=*) :: labs(:), specs(:)
INTEGER :: ndim
!
INTEGER :: nat_, nbt_, na, nb, idim, nb2isp
CHARACTER(LEN=4) :: lab1, spec1, lab2, spec2, lab1_bkg = "no_H", lab2_bkg='no_H'
CHARACTER :: hubbard_shell(4) = ['s','p','d','f']
!
nat_ = SIZE(ityp)
nbt_ = SIZE(hubbard_v_, 2) / SIZE( hubbard_v_, 1) * nat_
!
ndim = COUNT( hubbard_v_(:,:,1:4) /= 0._DP )
IF (ndim == 0 ) RETURN
ALLOCATE (objs(ndim))
idim = 0
DO na =1, nat_
spec1 = TRIM(species(ityp(na)))
lab1 = TRIM(label(ityp(na)))
IF (PRESENT(hubb_n2) .AND.PRESENT(hubb_l2)) THEN
IF (hubb_n2(ityp(na)) /= -1 .AND. hubb_l2(ityp(na)) /= -1) &
WRITE(lab1_bkg,'(I0,A)') hubb_n2(ityp(na)), hubbard_shell( hubb_l2(ityp(na)) + 1 )
END IF
DO nb = 1, nbt_
IF (ALL(hubbard_v(na,nb,:) == 0._DP)) CYCLE
nb2isp = ityp ( mod(nb -1, nat_) +1)
spec2 = TRIM(species(nb2isp))
lab2 = TRIM(label (nb2isp))
IF (PRESENT(hubb_n2) .AND. PRESENT(hubb_l2)) THEN
IF ( hubb_n2(nb2isp) /= -1 .AND. hubb_l2(nb2isp) /= -1 ) &
WRITE (lab2_bkg, '(I0,A)') hubb_n2(nb2isp), hubbard_shell( hubb_l2(nb2isp) + 1 )
END IF
IF (hubbard_v(na, nb, 1) /= 0._DP) THEN
idim = idim + 1
CALL qes_init(objs(idim), "Hubbard_V", spec1, na, lab1, spec2, nb, lab2, Hubbard_V_(na,nb,1))
END IF
IF ( hubbard_v(na, nb, 2) /= 0._DP) THEN
idim = idim + 1
CALL qes_init (objs(idim), "Hubbard_V", spec1, na, lab1, spec2, nb, lab2_bkg, Hubbard_V_(na,nb,2))
END IF
IF (hubbard_v(na, nb, 3) /= 0._DP ) THEN
idim = idim + 1
CALL qes_init(objs(idim), "Hubbard_V", spec1, na, lab1_bkg, spec2, nb, lab2_bkg, Hubbard_V_(na,nb,3))
END IF
IF (hubbard_v(na,nb, 4) /= 0._DP ) THEN
idim = idim + 1
CALL qes_init(objs(idim), "Hubbard_V", spec1, na, lab1_bkg, spec2, nb, lab2, Hubbard_V_(na,nb,4))
END IF
END DO
END DO
END FUNCTION check_and_init_Hubbard_V
!
!
SUBROUTINE reset_hubbard_occs(objs)
IMPLICIT NONE
TYPE (HubbardOcc_type),INTENT(INOUT),ALLOCATABLE :: objs(:)
!
INTEGER :: i
IF (.NOT. ALLOCATED(objs)) RETURN
DO i =1, SIZE (objs)
CALL qes_reset(objs(i))
END DO
DEALLOCATE (objs)
END SUBROUTINE reset_hubbard_occs
!
!
SUBROUTINE reset_hubbard_commons(objs)
IMPLICIT NONE
TYPE(HubbardCommon_type),ALLOCATABLE :: objs(:)
INTEGER :: i
IF (.NOT. ALLOCATED(objs)) RETURN
DO i =1, SIZE(objs)
CALL qes_reset(objs(i))
END DO
DEALLOCATE(objs)
END SUBROUTINE reset_hubbard_commons
!
SUBROUTINE reset_hubbard_J(objs)
IMPLICIT NONE
TYPE(HubbardJ_type),ALLOCATABLE :: objs(:)
INTEGER :: i
IF (.NOT. ALLOCATED(objs)) RETURN
DO i =1, SIZE(objs)
CALL qes_reset(objs(i))
END DO
DEALLOCATE(objs)
END SUBROUTINE reset_hubbard_J
!
SUBROUTINE init_starting_ns(objs, labs )
IMPLICIT NONE
TYPE(starting_ns_type), ALLOCATABLE :: objs(:)
REAL(DP), ALLOCATABLE :: dati(:)
CHARACTER(len=*) :: labs(nsp)
INTEGER :: i, is, ind, llmax, nspin
!
IF ( .NOT. PRESENT(starting_ns)) RETURN
IF (noncolin_) THEN
llmax = SIZE(starting_ns,1)
nspin = 1
ALLOCATE(objs(nsp))
ind = 0
DO i = 1, nsp
IF (.NOT. ANY(starting_ns(1:llmax,1:2,i)>0.d0)) CYCLE
ind = ind + 1
ALLOCATE (dati(2*llmax))
dati(1:llmax) = MAX(starting_ns(1:llmax,1,i),0._DP)
dati(llmax+1:2*llmax) = MAX(starting_ns(1:llmax,2,i),0._DP)
CALL qes_init(objs(ind),"starting_ns", TRIM(species(i)), TRIM(labs(i)), 1, dati)
DEALLOCATE(dati)
END DO
RETURN
ELSE
llmax = SIZE (starting_ns, 1)
nspin = SIZE(starting_ns, 2)
ALLOCATE(objs(nspin*nsp))
ind = 0
DO is = 1, nspin
DO i = 1, nsp
IF (.NOT. ANY (starting_ns(1:llmax,is,i) > 0.d0)) CYCLE
ind = ind + 1
CALL qes_init(objs(ind), "starting_ns", TRIM(species(i)), TRIM (labs(i)), &
is,MAX(starting_ns(1:llmax,is,i),0._DP))
END DO
END DO
RETURN
END IF
END SUBROUTINE init_starting_ns
!
SUBROUTINE init_Hubbard_ns(objs, labs, hub_ns_)
IMPLICIT NONE
TYPE (Hubbard_ns_type),ALLOCATABLE :: objs(:)
CHARACTER(LEN=*) :: labs(nsp)
REAL(DP),OPTIONAL,INTENT(IN) :: hub_ns_(:,:,:,:)
!
REAL(DP), ALLOCATABLE :: Hubb_occ_aux(:,:)
INTEGER :: i, is,ind, ldim, m1, m2, llmax, nat, nspin
!
IF (PRESENT(Hub_ns_nc )) THEN
llmax = SIZE ( Hub_ns_nc, 1)
nat = size(Hub_ns_nc,4)
ALLOCATE (objs(nat))
ldim = SIZE(Hub_ns_nc,1)
ALLOCATE (Hubb_occ_aux(2*ldim, 2*ldim))
DO i =1, nat
Hubb_occ_aux = 0._DP
DO m2 = 1, ldim
DO m1 =1, ldim
Hubb_occ_aux(m1,m2)=SQRT(DCONJG(Hub_ns_nc(m1,m2,1,i))*Hub_ns_nc(m1,m2,1,i))
Hubb_occ_aux(m1,ldim+m2)=SQRT(DCONJG(Hub_ns_nc(m1,m2,2,i))*Hub_ns_nc(m1,m2,2,i))
Hubb_occ_aux(ldim+m1,m2)=SQRT(DCONJG(Hub_ns_nc(m1,m2,3,i))*Hub_ns_nc(m1,m2,3,i))
Hubb_occ_aux(ldim+m1,ldim+m2)=SQRT(DCONJG(Hub_ns_nc(m1,m2,4,i))*Hub_ns_nc(m1,m2,4,i))
END DO
END DO
CALL qes_init (objs(i), TAGNAME = "Hubbard_ns_mod", SPECIE = TRIM(species(ityp(i))), &
LABEL = TRIM(labs(ityp(i))), SPIN =1, INDEX = i,ORDER ='F',Hubbard_NS = Hubb_occ_aux)
IF (TRIM(labs(ityp(i))) == 'no Hubbard') objs(i)%lwrite = .FALSE.
END DO
RETURN
ELSE IF (PRESENT (hub_ns_)) THEN
llmax = SIZE ( hub_ns_,1)
nat = size(hub_ns_,4)
nspin = size(hub_ns_,3)
ALLOCATE( objs(nspin*nat) )
ind = 0
DO i = 1, nat
DO is = 1, nspin
ind = ind+1
CALL qes_init(objs(ind),"Hubbard_ns", SPECIE = TRIM(species(ityp(i))), SPIN = is, &
ORDER = 'F', INDEX = i, LABEL = TRIM(labs(ityp(i))), Hubbard_NS = hub_ns_(:,:,is,i))
IF (TRIM(labs(ityp(i))) =='no Hubbard' ) objs(ind)%lwrite=.FALSE.
IF (nspin ==1 ) objs(ind)%spin_ispresent = .FALSE.
END DO
END DO
END IF
RETURN
!
END SUBROUTINE init_Hubbard_ns
SUBROUTINE init_Hubbard_back(is_back, objs, U2, n2, l2, backall_, n3, l3)
IMPLICIT NONE
LOGICAL, INTENT(IN) :: is_back(nsp)
REAL(DP) :: U2 (nsp)
INTEGER, INTENT(IN) :: n2(nsp)
INTEGER, INTENT(IN) :: l2(nsp)
TYPE(HubbardBack_type),ALLOCATABLE,INTENT(INOUT) :: objs(:)
LOGICAL,OPTIONAL,INTENT(IN) :: backall_(nsp)
INTEGER,OPTIONAL,INTENT(IN) :: l3(nsp)
INTEGER,OPTIONAL,INTENT(IN) :: n3(nsp)
!
INTEGER :: isp, il, ndimbackL, l2_, l3_, n2_, n3_
REAL(DP) :: u2_
LOGICAL,ALLOCATABLE :: temp(:)
CHARACTER(LEN=16) :: backchar
!
l2_ = -1; l3_ = -1; n2_ = -1; n3_ = -1; u2_ = 0._DP
ALLOCATE(objs(nsp), temp(nsp))
IF (PRESENT(backall_)) THEN
temp(1:nsp) = backall_(1:nsp)
ELSE
temp(1:nsp) = .FALSE.
END IF
DO isp =1, nsp
u2_ = U2(isp)
l2_ = l2(isp)
n2_ = n2(isp)
ndimbackL = 1
IF (temp(isp) .AND. PRESENT(l3) ) THEN
IF (l3(isp) >=0) THEN
ndimbackL=2
l3_ = l3(isp)
IF (PRESENT(n3)) n3_ = n3(isp)
ELSE
CALL errore ('qexsd_init_dftU:', 'internal error: l3 < 0',1)
END IF
ELSEIF (temp(isp) .AND. .NOT.PRESENT(l3) ) THEN
CALL errore ('qexsd_init_dftU:', 'internal error: backall is true but l3 is not present',1)
END IF
IF (temp(isp)) THEN
backchar = 'two_orbitals'
ELSE
backchar = 'one_orbital'
END IF
CALL qes_init(objs(isp), "Hubbard_back", SPECIES = TRIM(species(isp)), Hubbard_U2= u2_ , &
background=TRIM(backchar), l2_number = l2_, l3_number=l3_, n2_number = n2_, n3_number = n3_)
IF (.NOT. is_back(isp)) THEN
objs(isp)%lwrite = .FALSE.
ELSE IF (.NOT. temp(isp)) THEN
objs(isp)%l3_number_ispresent = .FALSE.
objs(isp)%n3_number_ispresent = .FALSE.
END IF
END DO
END SUBROUTINE init_Hubbard_back
SUBROUTINE init_hubbard_occs(data, objs, labels_, n2, n3, l2, l3)
IMPLICIT NONE
!
REAL(DP),INTENT(IN) :: data(:,:)
TYPE(HubbardOcc_type),ALLOCATABLE, INTENT(INOUT) :: objs(:)
CHARACTER(LEN=10),INTENT(IN) :: labels_(:)
INTEGER,OPTIONAL,INTENT(IN) :: n2(:), n3(:), l2(:), l3(:)
!
CHARACTER(LEN=10) :: lbl_(3)
!
INTEGER :: i, ich, idx_i, ndim, nchannels
INTEGER, ALLOCATABLE :: idx(:)
LOGICAL :: n2_ispresent, n3_ispresent
TYPE(ChannelOcc_type) :: channels(3)
CHARACTER :: hubbard_shell(4) = ['s','p','d','f']
n2_ispresent = PRESENT(n2) .AND. PRESENT(l2)
n3_ispresent = PRESENT(n3) .AND. PRESENT(l3)
idx = PACK( [(i,i=1, nsp)] , [(INDEX(labels_(i),"no")==0,i=1,nsp)])
ndim = SIZE(idx)
ALLOCATE (objs(ndim))
DO i = 1, ndim
idx_i = idx(i)
nchannels = 1
lbl_(1) = TRIM(labels_(idx_i))
IF (n2_ispresent ) THEN
IF ( n2(idx_i) > 0 ) THEN
nchannels = nchannels + 1
WRITE (lbl_(nchannels),'(I0,A)') n2(idx_i),hubbard_shell(l2(idx_i)+1)
END IF
END IF
IF (n3_ispresent ) THEN
IF ( n3(idx_i) > 0 ) THEN
nchannels = nchannels + 1
WRITE (lbl_(nchannels),'(I0,A)') n3(idx_i),hubbard_shell(l3(idx_i)+1)
END IF
END IF
DO ich =1, nchannels
CALL qes_init(channels(ich), 'channel_occ', species(idx_i), lbl_(ich), ich, data(idx_i, ich))
END DO
CALL qes_init(objs(i),"Hubbard_Occ", nchannels, species(idx_i), channels(1:nchannels))
DO ich = 1, nchannels
CALL qes_reset(channels(ich))
END DO
END DO
END SUBROUTINE init_hubbard_occs
!
!
SUBROUTINE reset_Hubbard_ns(objs)
IMPLICIT NONE
!
TYPE(hubbard_ns_type),OPTIONAL :: objs(:)
INTEGER :: i_
IF ( .NOT. PRESENT (objs)) RETURN
DO i_ = 1, SIZE(objs)
CALL qes_reset(objs(i_))
END DO
END SUBROUTINE reset_Hubbard_ns
SUBROUTINE reset_starting_ns(obj)
IMPLICIT NONE
TYPE (starting_ns_type), OPTIONAL :: obj(:)
INTEGER :: i
IF ( .NOT. PRESENT(obj) ) RETURN
DO i = 1, SIZE(obj)
CALL qes_reset(obj(i))
END DO
END SUBROUTINE reset_starting_ns
!
END SUBROUTINE qexsd_init_dftU
!
!
SUBROUTINE qexsd_init_vdw(obj, non_local_term, vdw_corr, vdw_term, ts_thr, ts_isol,&
london_s6, london_c6, london_rcut, species, xdm_a1, xdm_a2,&
dftd3_version, dftd3_threebody )
IMPLICIT NONE
TYPE(vdW_type) :: obj
CHARACTER(LEN=*),OPTIONAL,INTENT(IN) :: non_local_term, vdw_corr
REAL(DP),OPTIONAL,INTENT(IN) :: vdw_term, london_c6(:), london_rcut, xdm_a1, xdm_a2, ts_thr,&
london_s6
INTEGER,OPTIONAL,INTENT(IN) :: dftd3_version
CHARACTER(LEN=*),OPTIONAL :: species(:)
LOGICAL,OPTIONAL,INTENT(IN) :: ts_isol, dftd3_threebody
!
LOGICAL :: empirical_vdw = .FALSE. , dft_is_vdw = .FALSE.
TYPE(HubbardCommon_type),ALLOCATABLE :: london_c6_obj(:)
INTEGER :: isp
!
empirical_vdw = PRESENT(vdw_corr)
dft_is_vdw = PRESENT(non_local_term)
IF ( .NOT. (dft_is_vdW .OR. empirical_vdw)) RETURN
IF ( PRESENT (london_c6)) CALL init_londonc6(london_c6, london_c6_obj)
CALL qes_init (obj, "vdW", VDW_CORR = vdw_corr, NON_LOCAL_TERM = non_local_term,&
TOTAL_ENERGY_TERM = vdw_term, LONDON_S6 = london_s6,&
TS_VDW_ECONV_THR = ts_thr, TS_VDW_ISOLATED = ts_isol, LONDON_RCUT = london_rcut, &
XDM_A1 = xdm_a1, XDM_A2 = xdm_a2, LONDON_C6 = london_c6_obj, &
DFTD3_VERSION = dftd3_version, DFTD3_THREEBODY = dftd3_threebody)
!
IF (ALLOCATED(london_c6_obj)) THEN
DO isp=1, SIZE(london_c6_obj,1)
CALL qes_reset(london_c6_obj(isp))
END DO
END IF
CONTAINS
!
SUBROUTINE init_londonc6(c6data, c6objs )
USE constants, ONLY: eps16
IMPLICIT NONE
REAL(DP),INTENT(IN) :: c6data(:)
TYPE(HubbardCommon_type),ALLOCATABLE,INTENT(INOUT) :: c6objs(:)
!
INTEGER :: ndim_london_c6, isp, ind, nsp
!
IF (.NOT. PRESENT ( species)) RETURN
nsp = SIZE(c6data)
ndim_london_c6 = COUNT ( c6data .GT. -eps16)
IF ( ndim_london_c6 .GT. 0 ) THEN
ALLOCATE (c6objs(ndim_london_c6))
ind = 0
DO isp = 1, nsp
IF ( c6data(isp) .GT. -eps16 ) THEN
ind = ind + 1
CALL qes_init(c6objs(ind ), "london_c6", SPECIE = TRIM(species(isp)), HUBBARDCOMMON = c6data(isp))
END IF
END DO
END IF
END SUBROUTINE init_londonc6
!
END SUBROUTINE qexsd_init_vdw
!--------------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_outputPBC(obj,assume_isolated)
!--------------------------------------------------------------------------------------------
!
IMPLICIT NONE
!
TYPE (outputPBC_type) :: obj
CHARACTER(LEN=*),INTENT(IN) :: assume_isolated
CHARACTER(LEN=*),PARAMETER :: TAGNAME="boundary_conditions"
!
CALL qes_init (obj,TAGNAME,ASSUME_ISOLATED =assume_isolated)
END SUBROUTINE qexsd_init_outputPBC
!
!
SUBROUTINE qexsd_init_esm(esm_obj, bc, nfit, w, efield, a, zb, debug, debug_gpmax)
IMPLICIT NONE
TYPE(esm_type),INTENT(INOUT) :: esm_obj
CHARACTER(LEN=*),INTENT(IN) :: bc
INTEGER,INTENT(IN) :: nfit
REAL(DP),INTENT(IN) :: w, efield, a
REAL(DP),INTENT(IN),OPTIONAL :: zb
LOGICAL,INTENT(IN),OPTIONAL :: debug, debug_gpmax
!
CALL qes_init (esm_obj, "esm", bc=TRIM(bc), nfit=nfit, w=w, efield=efield, a=a )
END SUBROUTINE qexsd_init_esm
!
!---------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_magnetization(obj, lsda, noncolin, spinorbit, total_mag, total_mag_nc, absolute_mag, &
atm, ityp, site_mag_pol, site_mag, site_charges, do_magnetization)
!------------------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(magnetization_type) :: obj
!! magnetization object to initialize
LOGICAL, INTENT(IN) :: lsda, noncolin, spinorbit
!! flag: true for spin-polarized calculations
!! flag: true for noncolinear calculations
!! flag: true for fully relativistic calculations
REAL(DP),OPTIONAL,INTENT(IN) :: total_mag
!! total scalar magnetization present for spin-polarized calculation
REAL(DP), INTENT(IN) :: absolute_mag
!! sum of the magnetization's module (scalar or colinear)
CHARACTER(LEN=*),INTENT(IN) :: atm(:)
!! species labels
INTEGER,INTENT(IN) :: ityp(:)
!! species index for each atom
REAL(DP),OPTIONAL,INTENT(IN) :: total_mag_nc(3)
!! total magnetization (vector) present for noncolinear magnetic calculations
REAL(DP),OPTIONAL,INTENT(IN) :: site_charges(:)
!! array with the estimate charge of the site
LOGICAL,OPTIONAL, INTENT(IN) :: do_magnetization
!! flag: true if the noncolinear calculation has a finite magnetization
REAL(DP),DIMENSION(:,:),OPTIONAL,INTENT(IN) :: site_mag
!! array with the estimated magnetization per site (noncollinear case)
REAL(DP),DIMENSION(:,:) ,OPTIONAL,INTENT(IN) :: site_mag_pol
!! array with the magnetic polarization per site (nspin=2 case)
!
INTEGER :: iobj
TYPE (scalmags_type),TARGET :: smag_obj
TYPE (scalmags_type),POINTER :: smag_ptr
TYPE (d3mags_type), TARGET :: vmag_obj
TYPE (d3mags_type), POINTER :: vmag_ptr
NULLIFY(smag_ptr, vmag_ptr)
IF (PRESENT(site_mag_pol)) THEN
CALL qexsd_init_scalmags(smag_obj, SIZE(site_mag_pol,2), site_mag_pol(1,:), ityp, atm, site_charges)
smag_ptr => smag_obj
ELSE IF (PRESENT(site_mag)) THEN
CALL qexsd_init_d3mags (vmag_obj, SIZE(site_mag, 2), site_mag, ityp, atm, site_charges )
vmag_ptr => vmag_obj
END IF
CALL qes_init(obj, "magnetization", lsda, noncolin, spinorbit, absolute_mag, total_mag, total_mag_nc,&
smag_ptr, vmag_ptr, do_magnetization)
!
END SUBROUTINE qexsd_init_magnetization
!
!----------------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_scalmags(obj, nat_, data, ityp, atm, charges)
!! stores site scalar magnetization into a structure for XML output
!-------------------------------------------------------------------------------------------
IMPLICIT NONE
TYPE (scalmags_type),INTENT(INOUT) :: obj
!! structure where to store data
INTEGER :: nat_
!! number of atomic sites
REAL(DP), INTENT(IN) :: data (:)
!! site magnetizations
REAL(DP), OPTIONAL,INTENT(IN) :: charges(:)
!! site charges
INTEGER,INTENT(IN) :: ityp(:)
!! species index for each atom
CHARACTER(LEN=*),INTENT(IN) :: atm(:)
!! species labels
!
INTEGER :: ia
TYPE(SiteMoment_type),ALLOCATABLE :: site_obj(:)
ALLOCATE (site_obj(nat_))
DO ia = 1, nat_
CALL qes_init(site_obj(ia), "SiteMagnetization", SPECIES=atm(ityp(ia)), ATOM=ia, CHARGE = charges(ia), &
SiteMoment= data(ia))
END DO
CALL qes_init(obj, "Scalar_Site_Magnetic_Moments", NAT = nat_, SiteMagnetization=site_obj )
DEALLOCATE (site_obj)
END SUBROUTINE qexsd_init_scalmags
!
!
!---------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_d3mags (obj, nat_, data, ityp, atm, charges)
!---------------------------------------------------------------------------------------
IMPLICIT NONE
TYPE (d3mags_type),INTENT(INOUT) :: obj
!! structure where to store data
INTEGER :: nat_
!! number of atomic sites
REAL(DP), INTENT(IN) :: data (:,:)
!! site magnetizations (vectors)
REAL(DP), OPTIONAL,INTENT(IN) :: charges(:)
!! site charges
INTEGER,INTENT(IN) :: ityp(:)
!! species index for each atom
CHARACTER(LEN=*),INTENT(IN) :: atm(:)
!! species labels
!
INTEGER :: ia
TYPE(SitMag_type),ALLOCATABLE :: site_obj(:)
ALLOCATE (site_obj(nat_))
DO ia = 1, nat_
CALL qes_init(site_obj(ia), "SiteMagnetization", SPECIES=atm(ityp(ia)), ATOM=ia, CHARGE = charges(ia), &
SitMag = data(1:3,ia))
END DO
CALL qes_init(obj, "Site_Magnetizations", NAT = nat_, SiteMagnetization = site_obj )
DEALLOCATE (site_obj)
END SUBROUTINE qexsd_init_d3mags
!
!---------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_band_structure(obj, lsda, noncolin, lspinorb, nelec, n_wfc_at, et, wg, nks, xk, ngk, wk, &
starting_kpoints, occupations_kind, wf_collected, &
smearing, nbnd, nbnd_up, nbnd_dw, fermi_energy, ef_updw, homo, lumo)
!----------------------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(band_structure_type) :: obj
CHARACTER(LEN=*), PARAMETER :: TAGNAME="band_structure"
LOGICAL,INTENT(IN) :: lsda, noncolin, lspinorb
INTEGER,INTENT(IN) :: nks, n_wfc_at
INTEGER,OPTIONAL,INTENT(IN) :: nbnd, nbnd_up, nbnd_dw
REAL(DP),INTENT(IN) :: nelec
REAL(DP),OPTIONAL,INTENT(IN) :: fermi_energy, ef_updw(:), homo, lumo
REAL(DP),DIMENSION(:,:),INTENT(IN) :: et, wg, xk
REAL(DP),DIMENSION(:),INTENT(IN) :: wk
INTEGER,DIMENSION(:),INTENT(IN) :: ngk
TYPE(k_points_IBZ_type),INTENT(IN) :: starting_kpoints
TYPE(occupations_type), INTENT(IN) :: occupations_kind
TYPE(smearing_type),OPTIONAL,INTENT(IN) :: smearing
LOGICAL,INTENT(IN) :: wf_collected
!
INTEGER :: ndim_ks_energies, ik
INTEGER,TARGET :: nbnd_, nbnd_up_, nbnd_dw_
INTEGER,POINTER :: nbnd_opt, nbnd_up_opt, nbnd_dw_opt
TYPE(k_point_type) :: kp_obj
TYPE(ks_energies_type),ALLOCATABLE :: ks_objs(:)
TYPE (k_points_IBZ_type) :: starting_k_points_
REAL(DP),DIMENSION(:),ALLOCATABLE :: eigenvalues, occupations
!
!
ndim_ks_energies=nks
!
NULLIFY( nbnd_opt, nbnd_up_opt, nbnd_dw_opt)
IF ( lsda ) THEN
ndim_ks_energies=ndim_ks_energies/2
nbnd_up_opt => nbnd_up_
nbnd_dw_opt => nbnd_dw_
IF ( PRESENT(nbnd_up) .AND. PRESENT(nbnd_dw) ) THEN
nbnd_ = nbnd_up+nbnd_dw
nbnd_up_ = nbnd_up
nbnd_dw_ = nbnd_dw
ELSE IF ( PRESENT (nbnd) ) THEN
nbnd_ = 2*nbnd
nbnd_up_ = nbnd
nbnd_dw_ = nbnd
ELSE
CALL errore ( "qexsd:qexsd_init_band_structure: ", &
"in case of lsda nbnd_up+nbnd_dw or nbnd must be givens as arguments", 10)
END IF
ELSE
IF (.NOT. PRESENT(nbnd) ) &
CALL errore ("qexsd:qexsd_init_band_structure:", "lsda is false but needed nbnd argument is missing", 10)
nbnd_=nbnd
nbnd_opt => nbnd_
END IF
!
!
ALLOCATE(eigenvalues(nbnd_),occupations(nbnd_))
ALLOCATE(ks_objs(ndim_ks_energies))
!
ks_objs%tagname="ks_energies"
DO ik=1,ndim_ks_energies
CALL qes_init(kp_obj,"k_point",WEIGHT = wk(ik), K_POINT = xk(:,ik))
IF ( lsda ) THEN
eigenvalues(1:nbnd_up_)=et(1:nbnd_up_,ik)/e2
eigenvalues(nbnd_up_+1:nbnd_)=et(1:nbnd_dw_,ndim_ks_energies+ik)/e2
ELSE
eigenvalues(1:nbnd_)= et(1:nbnd_,ik)/e2
END IF
!
!
IF (lsda) THEN
IF ( ABS(wk(ik)).GT.1.d-10) THEN
occupations(1:nbnd_up_)=wg(1:nbnd_up_,ik)/wk(ik)
occupations(nbnd_up_+1:nbnd_)=wg(1:nbnd_dw_,ndim_ks_energies+ik)/wk(ndim_ks_energies+ik)
ELSE
occupations(1:nbnd_up_)=wg(1:nbnd_up_,ik)
occupations(nbnd_up_+1:nbnd_)=wg(1:nbnd_dw_,ik)
END IF
ELSE
IF (ABS(wk(ik)).GT.1.d-10) THEN
occupations(1:nbnd_)=wg(1:nbnd_,ik)/wk(ik)
ELSE
occupations(1:nbnd_)=wg(1:nbnd_,ik)
END IF
END IF
!
!
ks_objs(ik)%k_point = kp_obj
ks_objs(ik)%npw = ngk(ik)
CALL qes_init(ks_objs(ik)%eigenvalues, "eigenvalues",eigenvalues)
CALL qes_init(ks_objs(ik)%occupations, "occupations",occupations)
!
eigenvalues=0.d0
occupations=0.d0
CALL qes_reset(kp_obj)
END DO
ks_objs%lwrite = .TRUE.
ks_objs%lread = .TRUE.
!
starting_k_points_ = starting_kpoints
starting_k_points_%tagname = "starting_k_points"
!
CALL qes_init (obj, TAGNAME, LSDA = lsda, NONCOLIN = noncolin, SPINORBIT = lspinorb, NBND = nbnd_opt, &
NELEC = nelec, STARTING_K_POINTS = starting_k_points_, &
NKS = ndim_ks_energies, OCCUPATIONS_KIND = occupations_kind, KS_ENERGIES = ks_objs, &
NBND_UP = nbnd_up_opt, NBND_DW = nbnd_dw_opt, &
FERMI_ENERGY = fermi_energy, HIGHESTOCCUPIEDLEVEL = homo, TWO_FERMI_ENERGIES = ef_updw, &
SMEARING = smearing, LOWESTUNOCCUPIEDLEVEL = lumo)
DO ik=1,ndim_ks_energies
CALL qes_reset(ks_objs(ik))
END DO
CALL qes_reset( starting_k_points_ )
DEALLOCATE (ks_objs,eigenvalues, occupations)
!
END SUBROUTINE qexsd_init_band_structure
!
!---------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_total_energy(obj, etot, eband, ehart, vtxc, etxc, ewald, degauss, demet, &
electric_field_corr, potentiostat_contr, gate_contribution, dispersion_contribution, &
esol, vsol)
!----------------------------------------------------------------------------------------
!
!
IMPLICIT NONE
!
TYPE (total_energy_type) :: obj
REAL(DP),INTENT(IN) :: etot, ehart,vtxc,etxc
REAL(DP),OPTIONAL,INTENT(IN) :: ewald,demet, eband, degauss
REAL(DP),OPTIONAL :: electric_field_corr
REAL(DP),OPTIONAL :: potentiostat_contr
REAL(DP),OPTIONAL :: gate_contribution
REAL(DP),OPTIONAL :: dispersion_contribution
REAL(DP),OPTIONAL :: esol, vsol
!
CHARACTER(LEN=*),PARAMETER :: TAGNAME="total_energy"
!
CALL qes_init (obj, TAGNAME, ETOT = etot, EBAND = eband, EHART = ehart, VTXC = vtxc, ETXC = etxc, &
EWALD = ewald, DEMET = demet, EFIELDCORR = electric_field_corr, POTENTIOSTAT_CONTR = potentiostat_contr, &
GATEFIELD_CONTR = gate_contribution, vdW_term = dispersion_contribution, ESOL = esol, &
levelshift_contr = vsol)
END SUBROUTINE qexsd_init_total_energy
!
!
!--------------------------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_forces(obj,nat,forces,tprnfor)
!--------------------------------------------------------------------------------------------------------
!
IMPLICIT NONE
!
TYPE(matrix_type) :: obj
INTEGER,INTENT(IN) :: nat
REAL(DP),DIMENSION(:,:),INTENT(IN) :: forces
LOGICAL,INTENT(IN) :: tprnfor
!
CHARACTER(LEN=*),PARAMETER :: TAGNAME="forces"
REAL(DP),DIMENSION(:,:),ALLOCATABLE :: forces_aux
!
IF (.NOT. tprnfor) THEN
obj%lwrite=.FALSE.
obj%lread =.FALSE.
RETURN
END IF
!
ALLOCATE (forces_aux(3,nat))
forces_aux(1:3,1:nat)=forces(1:3,1:nat)/e2
!
CALL qes_init(obj,TAGNAME,[3,nat],forces_aux )
!
DEALLOCATE (forces_aux)
!
END SUBROUTINE qexsd_init_forces
!
!
!---------------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_stress(obj,stress,tstress)
!---------------------------------------------------------------------------------------------
!
IMPLICIT NONE
TYPE( matrix_type) :: obj
REAL(DP),DIMENSION(3,3),INTENT(IN) :: stress
LOGICAL,INTENT(IN) :: tstress
!
CHARACTER(LEN=*),PARAMETER :: TAGNAME="stress"
REAL(DP),DIMENSION(3,3) :: stress_aux
IF ( .NOT. tstress ) THEN
obj%lwrite = .FALSE.
obj%lread = .FALSE.
stress_aux = 0.d0
RETURN
END IF
!
stress_aux=stress/e2
CALL qes_init(obj,TAGNAME,[3,3],stress_aux )
!
END SUBROUTINE qexsd_init_stress
!
!
!-----------------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_sawtooth_info(sawtooth_energy, efield_corr, edir, eamp, emaxpos, eopreg)
!------------------------------------------------------------------------------------------------
!
IMPLICIT NONE
TYPE(sawtoothEnergy_type), INTENT(OUT) :: sawtooth_energy
REAL(DP),INTENT(IN) :: efield_corr, eamp, emaxpos, eopreg
INTEGER :: edir
call qes_init(sawtooth_energy,TAGNAME="sawtoothEnergy", EDIR=edir, EAMP=eamp, EMAXPOS=emaxpos, &
EOPREG=eopreg, sawtoothEnergy=efield_corr)
END SUBROUTINE qexsd_init_sawtooth_info
!------------------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_dipole_info (dipole_info, el_dipole, ion_dipole, edir, eamp, emaxpos, eopreg)
!------------------------------------------------------------------------------------------------
!
USE constants, ONLY : fpi
USE cell_base, ONLY : alat, at, omega
!
IMPLICIT NONE
!
TYPE ( dipoleOutput_type ), INTENT(OUT) :: dipole_info
REAL(DP),INTENT(IN) :: el_dipole, ion_dipole, eamp, emaxpos, eopreg
INTEGER , INTENT(IN) :: edir
!
REAL(DP) :: tot_dipole, length, vamp, fac
TYPE ( scalarQuantity_type) :: temp_qobj
!
tot_dipole = -el_dipole+ion_dipole
!
dipole_info%idir = edir
fac=omega/fpi
dipole_info%tagname = "dipoleInfo"
dipole_info%lwrite = .TRUE.
dipole_info%lread = .TRUE.
CALL qes_init (dipole_info%ion_dipole, "ion_dipole" , units="Atomic Units", &
scalarQuantity= ion_dipole*fac)
CALL qes_init (dipole_info%elec_dipole,"elec_dipole" , units="Atomic Units",&
scalarQuantity= el_dipole*fac)
CALL qes_init (dipole_info%dipole,"dipole" , units="Atomic Units", &
scalarQuantity= tot_dipole*fac)
CALL qes_init (dipole_info%dipoleField,"dipoleField" , units="Atomic Units", &
scalarQuantity= tot_dipole)
!
length=(1._DP-eopreg)*(alat*SQRT(at(1,edir)**2+at(2,edir)**2+at(3,edir)**2))
vamp=e2*(eamp-tot_dipole)*length
!
CALL qes_init (dipole_info%potentialAmp,"potentialAmp" , units="Atomic Units",&
scalarQuantity= vamp)
CALL qes_init (dipole_info%totalLength, "totalLength", units = "Bohr",&
scalarQuantity = length )
END SUBROUTINE qexsd_init_dipole_info
!---------------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_outputElectricField(obj, lelfield, tefield, ldipole, lberry, bp_obj, el_pol, &
ion_pol, sawtooth_obj, dipole_obj , gateInfo)
!---------------------------------------------------------------------------------------------
!
IMPLICIT NONE
!
TYPE(outputElectricField_type) :: obj
!
LOGICAL,INTENT(IN) :: lberry, lelfield, tefield, ldipole
REAL(DP),OPTIONAL,INTENT(IN) :: el_pol(:), ion_pol(:)
TYPE ( berryPhaseOutput_type),OPTIONAL,INTENT(IN) :: bp_obj
TYPE ( sawtoothEnergy_type),OPTIONAL,INTENT(IN) :: sawtooth_obj
TYPE ( dipoleOutput_type ),OPTIONAL, INTENT(IN) :: dipole_obj
TYPE ( gateInfo_type),OPTIONAL,INTENT(IN) :: gateInfo
!
CHARACTER(LEN=*),PARAMETER :: TAGNAME="electric_field"
TYPE ( berryPhaseOutput_type ) :: bp_loc_obj
TYPE ( dipoleOutput_type ) :: dip_loc_obj
TYPE ( finiteFieldOut_type ) :: finiteField_obj
LOGICAL :: bp_is = .FALSE. , finfield_is = .FALSE. , &
dipo_is = .FALSE.
!
IF (lberry .AND. PRESENT ( bp_obj)) THEN
bp_is = .TRUE.
bp_loc_obj = bp_obj
END IF
IF ( lelfield .AND. PRESENT(el_pol) .AND. PRESENT (ion_pol ) ) THEN
finfield_is=.TRUE.
CALL qes_init (finiteField_obj, "finiteElectricFieldInfo", el_pol, ion_pol)
END IF
IF ( ldipole .AND. PRESENT( dipole_obj ) ) THEN
dipo_is = .TRUE.
dip_loc_obj=dipole_obj
END IF
CALL qes_init (obj, TAGNAME, BerryPhase = bp_obj, &
finiteElectricFieldInfo = finiteField_obj, &
sawtoothEnergy = sawtooth_obj, &
dipoleInfo = dipole_obj, &
GATEINFO = gateInfo )
IF ( finfield_is) CALL qes_reset ( finiteField_obj)
!
END SUBROUTINE qexsd_init_outputElectricField
!
!-------------------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_berryPhaseOutput( obj, gpar, gvec, nppstr, nkort, xk, pdl_ion, &
mod_ion, pdl_ion_tot, mod_ion_tot, nstring, pdl_elec, &
mod_elec, wstring, pdl_elec_up, mod_elec_up, pdl_elec_dw,&
mod_elec_dw, pdl_elec_tot,mod_elec_tot, pdl_tot, mod_tot,&
upol, rmod)
!---------------------------------------------------------------------------------------------------
!
USE ions_base, ONLY: nat, tau, atm, zv, ityp
USE cell_base, ONLY: omega
USE noncollin_module, ONLY: nspin_lsda
IMPLICIT NONE
!
TYPE (berryPhaseOutput_type) :: obj
REAL(DP),INTENT(IN) :: gpar(3), gvec, pdl_ion(nat), pdl_ion_tot, xk(3,*)
REAL(DP),INTENT(IN) :: pdl_elec(:), pdl_elec_up, pdl_elec_dw, pdl_elec_tot, &
pdl_tot, upol(3), rmod
!
INTEGER,INTENT(IN) :: mod_ion(nat), mod_ion_tot, mod_elec(:), mod_elec_up, &
mod_elec_dw, mod_elec_tot, mod_tot, nppstr, nkort, nstring
!
REAL(DP),INTENT(IN) :: wstring(nstring)
!
CHARACTER(LEN=*),PARAMETER :: TAGNAME = "BerryPhase"
TYPE ( polarization_type) :: tot_pol_obj
!
TYPE ( electronicPolarization_type),ALLOCATABLE :: str_pol_obj(:)
TYPE ( ionicPolarization_type ), ALLOCATABLE :: ion_pol_obj(:)
TYPE ( k_point_type ) :: kp_obj
TYPE ( phase_type) :: el_phase, ion_phase, tot_phase
TYPE ( atom_type ) :: atom_obj
TYPE ( scalarQuantity_type ) :: pol_val
INTEGER :: iat, istring, indstring
INTEGER,POINTER :: ispin
INTEGER, TARGET :: spin_val
CHARACTER(10) :: mod_string
LOGICAL :: spin_is = .FALSE.
!
ALLOCATE (ion_pol_obj(nat))
ALLOCATE (str_pol_obj(nstring))
NULLIFY(ispin)
DO iat =1, nat
WRITE(mod_string,'("(mod" ,I1,")")') mod_ion(iat)
CALL qes_init (ion_phase,"phase", modulus = TRIM(mod_string), phase = pdl_ion(iat) )
CALL qes_init (atom_obj,"ion",name=TRIM(atm(ityp(iat))),atom = tau(:,iat))
CALL qes_init (ion_pol_obj(iat), "ionicPolarization", atom_obj, zv(ityp(iat)), ion_phase )
CALL qes_reset (ion_phase)
CALL qes_reset (atom_obj)
END DO
!
IF ( nspin_lsda .EQ. 2 ) ispin => spin_val
DO istring= 1, nstring
indstring = 1+(istring-1)*nppstr
WRITE(mod_string,'("(mod ",I1,")")') mod_elec(istring)
CALL qes_init(el_phase, "phase", modulus = TRIM (mod_string), phase = pdl_elec(istring) )
IF ( istring .LE. nstring/nspin_lsda ) THEN
spin_val = 1
ELSE
spin_val = 2
END IF
CALL qes_init(kp_obj, "firstKeyPoint", WEIGHT = wstring(istring), K_POINT = xk(:,indstring))
CALL qes_init(str_pol_obj(istring),"electronicPolarization", kp_obj, el_phase, ispin )
CALL qes_reset( el_phase )
CALL qes_reset(kp_obj)
END DO
!
WRITE(mod_string,'("(mod ",I1,")")') mod_tot
CALL qes_init (tot_phase, "totalPhase", IONIC = pdl_ion_tot, ELECTRONIC = pdl_elec_tot, &
MODULUS = TRIM(mod_string), PHASE = pdl_tot)
!
CALL qes_init ( pol_val, "polarization", Units="e/bohr^2", scalarQuantity=(rmod/omega)*pdl_tot )
!
CALL qes_init (tot_pol_obj, "totalPolarization", pol_val, modulus = (rmod/omega)*dble(mod_tot), &
direction = upol )
!
CALL qes_init ( obj, TAGNAME, totalPolarization = tot_pol_obj, totalPhase = tot_phase, &
ionicPolarization = ion_pol_obj, electronicPolarization = str_pol_obj )
!
DO istring=1,nstring
CALL qes_reset (str_pol_obj(istring))
END DO
DEALLOCATE (str_pol_obj)
DO iat=1, nat
CALL qes_reset (ion_pol_obj(iat))
END DO
DEALLOCATE (ion_pol_obj)
CALL qes_reset (tot_pol_obj)
CALL qes_reset (pol_val)
CALL qes_reset (tot_phase)
!
END SUBROUTINE qexsd_init_berryPhaseOutput
!
!-----------------------------------------------------------------------------------
SUBROUTINE qexsd_init_gate_info(obj, tagname, gatefield_en, zgate_, nelec_, alat_, at_, bg_, zv_, ityp_)
!--------------------------------------------------------------------------------
USE constants, ONLY : tpi
!
IMPLICIT NONE
TYPE (gateInfo_type),INTENT(INOUT) :: obj;
CHARACTER(LEN=*) :: tagname
REAL(DP), INTENT(IN) :: gatefield_en, zgate_, alat_, at_(3,3), bg_(3,3), zv_(:), nelec_
INTEGER,INTENT(IN) :: ityp_(:)
!
REAL(DP) :: bmod, area, ionic_charge, gateamp, gate_gate_term
!
bmod=SQRT(bg_(1,3)**2+bg_(2,3)**2+bg_(3,3)**2)
ionic_charge = SUM( zv_(ityp_(:)) )
area = ABS((at_(1,1)*at_(2,2)-at_(2,1)*at_(1,2))*alat_**2)
gateamp = (-(nelec_-ionic_charge)/area*tpi)
gate_gate_term = (- (nelec_-ionic_charge) * gateamp * (alat_/bmod) / 6.0)
obj = gateInfo_type( TAGNAME = TRIM(tagname), lwrite = .TRUE., lread = .FALSE., POT_PREFACTOR = gateamp, &
GATE_ZPOS = zgate_, GATE_GATE_TERM = gate_gate_term, GATEFIELDENERGY = gatefield_en)
!
END SUBROUTINE qexsd_init_gate_info
!
!
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_rism3d(obj, nmol, slabel, molfile, dens1, dens2, ecutsolv)
!------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(rism3d_type) :: obj
INTEGER, INTENT(IN) :: nmol
CHARACTER(LEN=*), INTENT(IN) :: slabel(:)
CHARACTER(LEN=*), INTENT(IN) :: molfile(:)
REAL(DP), INTENT(IN) :: dens1(:)
REAL(DP), INTENT(IN) :: dens2(:)
REAL(DP), INTENT(IN) :: ecutsolv
!
TYPE(solvent_type), ALLOCATABLE :: solvents(:)
INTEGER :: i
!
ALLOCATE(solvents(nmol))
!
DO i = 1, nmol
CALL qes_init (solvents(i), "solvent", TRIM(slabel(i)), TRIM(molfile(i)), dens1(i), dens2(i))
ENDDO
!
CALL qes_init (obj, "rism3d", nmol, solvents, ecutsolv)
!
DO i = 1, nmol
CALL qes_reset (solvents(i))
ENDDO
!
DEALLOCATE(solvents)
!
END SUBROUTINE qexsd_init_rism3d
!
!
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_rismlaue(obj, both_hands, nfit, pot_ref, charge, &
right_start, right_expand, &
right_buffer, right_buffer_u, right_buffer_v, &
left_start, left_expand, &
left_buffer, left_buffer_u, left_buffer_v)
!------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(rismlaue_type) :: obj
LOGICAL, INTENT(IN) :: both_hands
INTEGER, INTENT(IN) :: nfit
INTEGER, INTENT(IN) :: pot_ref
REAL(DP), INTENT(IN) :: charge
REAL(DP), INTENT(IN) :: right_start
REAL(DP), INTENT(IN) :: right_expand
REAL(DP), INTENT(IN) :: right_buffer
REAL(DP), INTENT(IN) :: right_buffer_u
REAL(DP), INTENT(IN) :: right_buffer_v
REAL(DP), INTENT(IN) :: left_start
REAL(DP), INTENT(IN) :: left_expand
REAL(DP), INTENT(IN) :: left_buffer
REAL(DP), INTENT(IN) :: left_buffer_u
REAL(DP), INTENT(IN) :: left_buffer_v
!
CALL qes_init (obj, "rismlaue", both_hands, nfit, pot_ref, charge, &
right_start, right_expand, &
right_buffer, right_buffer_u, right_buffer_v, &
left_start, left_expand, &
left_buffer, left_buffer_u, left_buffer_v)
!
END SUBROUTINE qexsd_init_rismlaue
END MODULE qexsd_init