mirror of https://gitlab.com/QEF/q-e.git
118 lines
3.7 KiB
Fortran
118 lines
3.7 KiB
Fortran
!
|
|
! Copyright (C) 2001-2008 Quantum ESPRESSO group
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!
|
|
!-----------------------------------------------------------------------
|
|
subroutine mode_group &
|
|
(modenum, xq, at, bg, nat, nrot, s, irt, minus_q, rtau, sym)
|
|
!-----------------------------------------------------------------------
|
|
!
|
|
! This routine selects, among the symmetry matrices of the point group
|
|
! of a crystal, the symmetry operations which leave a given mode unchanged
|
|
! For the moment it assumes that the mode modenum displaces the atom
|
|
! modenum/3 in the direction mod(modenum,3)+1
|
|
!
|
|
USE kinds, ONLY : DP
|
|
USE constants, ONLY : tpi
|
|
implicit none
|
|
|
|
integer, intent(in) :: nat, s (3, 3, 48), irt (48, nat), nrot, modenum
|
|
! nat : the number of atoms of the system
|
|
! s : the symmetry matrices
|
|
! irt : the rotated atom
|
|
! nrot: number of symmetry operations
|
|
! modenum: which displacement pattern
|
|
|
|
real(DP), intent(in) :: xq (3), rtau (3, 48, nat), bg (3, 3), at (3, 3)
|
|
! xq : the q point
|
|
! rtau: the translations of each atom
|
|
! bg : the reciprocal lattice vectors
|
|
! at : the direct lattice vectors
|
|
logical, intent(in) :: minus_q
|
|
! if true Sq=>-q+G symmetry is used
|
|
logical, intent(inout) :: sym (48)
|
|
! on input: .true. if symm. op. has to be tested
|
|
! on output: .true. if symm. op. does not change mode modenum
|
|
!
|
|
integer :: isym, nas, ipols, na, sna, ipol, jpol
|
|
! counters
|
|
real(DP) :: arg
|
|
! auxiliary
|
|
complex(DP), allocatable :: u (:,:)
|
|
! the original pattern
|
|
complex(DP) :: fase, sum
|
|
! the phase of the mode
|
|
! check for orthogonality
|
|
complex(DP), allocatable :: work_u (:,:), work_ru (:,:)
|
|
! the working pattern
|
|
! the rotated working pattern
|
|
|
|
allocate(u(3, nat), work_u(3, nat), work_ru (3, nat))
|
|
|
|
if (modenum > 3*nat .or. modenum < 1) call errore ('mode_group', &
|
|
'wrong modenum', 1)
|
|
nas = (modenum - 1) / 3 + 1
|
|
ipols = mod (modenum - 1, 3) + 1
|
|
u (:,:) = (0.d0, 0.d0)
|
|
u (ipols, nas) = (1.d0, 0.d0)
|
|
do na = 1, nat
|
|
call trnvecc (u (1, na), at, bg, - 1)
|
|
enddo
|
|
do isym = 1, nrot
|
|
if (sym (isym) ) then
|
|
do na = 1, nat
|
|
do ipol = 1, 3
|
|
work_u (ipol, na) = u (ipol, na)
|
|
enddo
|
|
enddo
|
|
work_ru (:,:) = (0.d0, 0.d0)
|
|
do na = 1, nat
|
|
sna = irt (isym, na)
|
|
arg = 0.d0
|
|
do ipol = 1, 3
|
|
arg = arg + xq (ipol) * rtau (ipol, isym, na)
|
|
enddo
|
|
arg = arg * tpi
|
|
if (isym.eq.nrot.and.minus_q) then
|
|
fase = CMPLX(cos (arg), sin (arg) ,kind=DP)
|
|
else
|
|
fase = CMPLX(cos (arg), - sin (arg) ,kind=DP)
|
|
endif
|
|
do ipol = 1, 3
|
|
do jpol = 1, 3
|
|
work_ru (ipol, sna) = work_ru (ipol, sna) + s (jpol, ipol, &
|
|
isym) * work_u (jpol, na) * fase
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!
|
|
! Transform back the rotated pattern
|
|
!
|
|
do na = 1, nat
|
|
call trnvecc (work_ru (1, na), at, bg, 1)
|
|
call trnvecc (work_u (1, na), at, bg, 1)
|
|
enddo
|
|
!
|
|
! only if the pattern remain the same up to a phase we keep
|
|
! the symmetry
|
|
!
|
|
sum = (0.d0, 0.d0)
|
|
do na = 1, nat
|
|
do ipol = 1, 3
|
|
sum = sum + CONJG(work_u (ipol, na) ) * work_ru (ipol, na)
|
|
enddo
|
|
enddo
|
|
sum = abs (sum)
|
|
if (abs (sum - 1.d0) .gt.1.d-7) sym (isym) = .false.
|
|
endif
|
|
|
|
enddo
|
|
deallocate ( work_ru, work_u, u)
|
|
return
|
|
|
|
end subroutine mode_group
|
|
|