mirror of https://gitlab.com/QEF/q-e.git
803 lines
22 KiB
Fortran
803 lines
22 KiB
Fortran
!
|
|
! Copyright (C) 2001-2008 Quantum ESPRESSO group
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!
|
|
!
|
|
|
|
MODULE dspev_module
|
|
|
|
IMPLICIT NONE
|
|
SAVE
|
|
|
|
|
|
CONTAINS
|
|
|
|
|
|
SUBROUTINE ptredv( tv, a, lda, d, e, v, ldv, nrl, n, nproc, me, comm )
|
|
|
|
!
|
|
! Parallel version of the famous HOUSEHOLDER tridiagonalization
|
|
! Algorithm for simmetric matrix.
|
|
!
|
|
! AUTHOR : Carlo Cavazzoni - SISSA 1997
|
|
! comments and suggestions to : carlo.cavazzoni@cineca.it
|
|
!
|
|
! REFERENCES :
|
|
!
|
|
! NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING.
|
|
! W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, AND W.T. VETTERLING,
|
|
! CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE.
|
|
!
|
|
! PARALLEL NUMERICAL ALGORITHMS,
|
|
! T.L. FREEMAN AND C.PHILLIPS,
|
|
! PRENTICE HALL INTERNATIONAL (1992).
|
|
!
|
|
!
|
|
!
|
|
! INPUTS :
|
|
!
|
|
! TV if it is true compute eigrnvectors "v"
|
|
!
|
|
! A(NRL,N) Local part of the global matrix A(N,N) to be reduced,
|
|
! only the upper triangle is needed.
|
|
! The rows of the matrix are distributed among processors
|
|
! with blocking factor 1.
|
|
! Example for NPROC = 4 :
|
|
! ROW | PE
|
|
! 1 | 0
|
|
! 2 | 1
|
|
! 3 | 2
|
|
! 4 | 3
|
|
! 5 | 0
|
|
! 6 | 1
|
|
! .. | ..
|
|
!
|
|
! LDA LEADING DIMENSION OF MATRIX A.
|
|
!
|
|
! LDV LEADING DIMENSION OF MATRIX V.
|
|
!
|
|
! NRL NUMBER OF ROWS BELONGING TO THE LOCAL PROCESSOR.
|
|
!
|
|
! N DIMENSION OF THE GLOBAL MATRIX.
|
|
!
|
|
! NPROC NUMBER OF PROCESSORS.
|
|
!
|
|
! ME INDEX OF THE LOCAL PROCESSOR (Starting from 0).
|
|
!
|
|
!
|
|
! OUTPUTS :
|
|
!
|
|
! V(NRL,N) Orthogonal transformation that tridiagonalize A,
|
|
! this matrix is distributed among processor
|
|
! in the same way as A.
|
|
!
|
|
! D(N) Diagonal elements of the tridiagonal matrix
|
|
! this vector is equal on all processors.
|
|
!
|
|
! E(N) Subdiagonal elements of the tridiagonal matrix
|
|
! this vector is equal on all processors.
|
|
!
|
|
!
|
|
USE laxlib_parallel_include
|
|
|
|
IMPLICIT NONE
|
|
|
|
include 'laxlib_kinds.fh'
|
|
|
|
LOGICAL, INTENT(IN) :: tv
|
|
INTEGER, intent(in) :: N, NRL, LDA, LDV
|
|
INTEGER, intent(in) :: NPROC, ME, comm
|
|
REAL(DP) :: A(LDA,N), D(N), E(N), V(LDV,N)
|
|
!
|
|
REAL(DP), external ::ddot
|
|
!
|
|
REAL(DP) :: g, scalef, sigma, kappa, f, h, tmp
|
|
REAL(DP), ALLOCATABLE :: u(:)
|
|
REAL(DP), ALLOCATABLE :: p(:)
|
|
REAL(DP), ALLOCATABLE :: vtmp(:)
|
|
|
|
REAL(DP) :: tu, tp, one_over_h
|
|
REAL(DP) :: one_over_scale
|
|
REAL(DP) :: redin(3), redout(3)
|
|
REAL(DP), ALLOCATABLE :: ul(:)
|
|
REAL(DP), ALLOCATABLE :: pl(:)
|
|
integer :: l, i, j, k, t, tl, ierr
|
|
integer :: kl, jl, ks, lloc
|
|
integer, ALLOCATABLE :: is(:)
|
|
integer, ALLOCATABLE :: ri(:)
|
|
|
|
|
|
! .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
|
|
|
|
IF( N == 0 ) THEN
|
|
RETURN
|
|
END IF
|
|
|
|
ALLOCATE( u( n+2 ), p( n+1 ), vtmp( n+2 ), ul( n ), pl( n ), is( n ), ri( n ) )
|
|
|
|
DO I = N, 1, -1
|
|
IS(I) = (I-1)/NPROC
|
|
RI(I) = MOD((I-1),NPROC) ! owner of I-th row
|
|
IF(ME .le. RI(I) ) then
|
|
IS(I) = IS(I) + 1
|
|
END IF
|
|
END DO
|
|
|
|
DO I = N, 2, -1
|
|
|
|
L = I - 1 ! first element
|
|
H = 0.0_DP
|
|
|
|
IF ( L > 1 ) THEN
|
|
|
|
SCALEF = 0.0_DP
|
|
DO K = 1, is(l)
|
|
SCALEF = SCALEF + DABS( A(K,I) )
|
|
END DO
|
|
|
|
#if defined __MPI
|
|
CALL MPI_ALLREDUCE( MPI_IN_PLACE, scalef, 1, MPI_DOUBLE_PRECISION, MPI_SUM, comm, ierr )
|
|
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_allreduce 1', ierr )
|
|
#endif
|
|
|
|
IF ( SCALEF .EQ. 0.0_DP ) THEN
|
|
!
|
|
IF (RI(L).EQ.ME) THEN
|
|
E(I) = A(is(L),I)
|
|
END IF
|
|
!
|
|
ELSE
|
|
|
|
! ...... CALCULATION OF SIGMA AND H
|
|
|
|
ONE_OVER_SCALE = 1.0_DP/SCALEF
|
|
SIGMA = 0.0_DP
|
|
DO k = 1,is(L)
|
|
A(k,I) = A(k,I) * ONE_OVER_SCALE
|
|
SIGMA = SIGMA + A(k,I)**2
|
|
END DO
|
|
|
|
IF( ri(l) .eq. me ) THEN
|
|
F = A( is(l), i )
|
|
ELSE
|
|
F = 0.0_DP
|
|
END IF
|
|
|
|
! CONSTRUCTION OF VECTOR U
|
|
|
|
vtmp( 1:l ) = 0.0_DP
|
|
|
|
k = ME + 1
|
|
DO kl = 1,is(l)
|
|
vtmp(k) = A(kl,I)
|
|
k = k + NPROC
|
|
END DO
|
|
|
|
DO kl = 1,is(l)
|
|
UL(kl) = A(kl,I)
|
|
END DO
|
|
|
|
#if defined __MPI
|
|
vtmp( l + 1 ) = sigma
|
|
vtmp( l + 2 ) = f
|
|
|
|
CALL MPI_ALLREDUCE( vtmp, u, L+2, MPI_DOUBLE_PRECISION, MPI_SUM, comm, ierr )
|
|
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_allreduce 2', ierr )
|
|
|
|
sigma = u( l + 1 )
|
|
f = u( l + 2 )
|
|
#else
|
|
u(1:l) = vtmp(1:l)
|
|
#endif
|
|
|
|
G = -SIGN(SQRT(SIGMA),F)
|
|
H = SIGMA - F*G
|
|
ONE_OVER_H = 1.0_DP/H
|
|
E(I) = SCALEF*G
|
|
|
|
U(L) = F - G
|
|
|
|
IF( RI(L) == ME ) THEN
|
|
UL(is(l)) = F - G
|
|
A(is(l),I) = F - G
|
|
END IF
|
|
|
|
! CONSTRUCTION OF VECTOR P
|
|
|
|
DO J = 1,L
|
|
|
|
vtmp(j) = 0.0_DP
|
|
|
|
DO KL = 1, IS(J)
|
|
vtmp(J) = vtmp(J) + A(KL,J) * UL(KL)
|
|
END DO
|
|
|
|
IF( L > J .AND. ME == RI(J) ) then
|
|
DO K = J+1,L
|
|
vtmp(J) = vtmp(J) + A(IS(J),K) * U(K)
|
|
END DO
|
|
END IF
|
|
|
|
vtmp(J) = vtmp(J) * ONE_OVER_H
|
|
|
|
END DO
|
|
|
|
KAPPA = 0.5_DP * ONE_OVER_H * ddot( l, vtmp, 1, u, 1 )
|
|
|
|
#if defined __MPI
|
|
vtmp( l + 1 ) = kappa
|
|
CALL MPI_ALLREDUCE( vtmp, p, L+1, MPI_DOUBLE_PRECISION, MPI_SUM, comm, ierr )
|
|
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_allreduce 3', ierr )
|
|
kappa = p( l + 1 )
|
|
#else
|
|
p(1:l) = vtmp(1:l)
|
|
#endif
|
|
|
|
CALL daxpy( l, -kappa, u, 1, p, 1 )
|
|
CALL DGER( is(l), l, -1.0_DP, ul, 1, p, 1, a, lda )
|
|
CALL DGER( is(l), l, -1.0_DP, p( me + 1 ), nproc, u, 1, a, lda )
|
|
|
|
END IF
|
|
|
|
ELSE
|
|
|
|
IF(RI(L).EQ.ME) THEN
|
|
G = A(is(l),I)
|
|
END IF
|
|
|
|
#if defined __MPI
|
|
CALL MPI_BCAST( g, 1, MPI_DOUBLE_PRECISION, ri( L ), comm, ierr )
|
|
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_bcast 1', ierr )
|
|
#endif
|
|
E(I) = G
|
|
|
|
END IF
|
|
|
|
D(I) = H
|
|
|
|
END DO
|
|
|
|
E(1) = 0.0_DP
|
|
D(1) = 0.0_DP
|
|
|
|
IF( tv ) THEN
|
|
DO J = 1,N
|
|
V(1:nrl,J) = 0.0_DP
|
|
IF(RI(J).EQ.ME) THEN
|
|
V(IS(J),J) = 1.0_DP
|
|
END IF
|
|
END DO
|
|
|
|
DO I = 2,N
|
|
L = I - 1
|
|
LLOC = IS(L)
|
|
!
|
|
IF( D(I) .NE. 0.0_DP ) THEN
|
|
!
|
|
ONE_OVER_H = 1.0_DP/D(I)
|
|
!
|
|
IF( lloc > 0 ) THEN
|
|
CALL DGEMV( 't', lloc, l, 1.0d0, v(1,1), ldv, a(1,i), 1, 0.0d0, p(1), 1 )
|
|
ELSE
|
|
P(1:l) = 0.0d0
|
|
END IF
|
|
|
|
|
|
#if defined __MPI
|
|
CALL MPI_ALLREDUCE( p, vtmp, L, MPI_DOUBLE_PRECISION, MPI_SUM, comm, ierr )
|
|
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_allreduce 4', ierr )
|
|
#else
|
|
vtmp(1:l) = p(1:l)
|
|
#endif
|
|
|
|
IF( lloc > 0 ) THEN
|
|
CALL DGER( lloc, l, -ONE_OVER_H, a(1,i), 1, vtmp, 1, v, ldv )
|
|
END IF
|
|
|
|
END IF
|
|
|
|
END DO
|
|
|
|
END IF
|
|
|
|
|
|
DO I = 1,N
|
|
U(I) = 0.0_DP
|
|
IF(RI(I).eq.ME) then
|
|
U(I) = A(IS(I),I)
|
|
END IF
|
|
END DO
|
|
|
|
#if defined __MPI
|
|
CALL MPI_ALLREDUCE( u, d, n, MPI_DOUBLE_PRECISION, MPI_SUM, comm, ierr )
|
|
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_allreduce 5', ierr )
|
|
#else
|
|
D(1:N) = U(1:N)
|
|
#endif
|
|
|
|
DEALLOCATE( u, p, vtmp, ul, pl, is, ri )
|
|
|
|
RETURN
|
|
END SUBROUTINE ptredv
|
|
|
|
!==----------------------------------------------==!
|
|
|
|
SUBROUTINE ptqliv( tv, d, e, n, z, ldz, nrl, mpime, comm )
|
|
|
|
!
|
|
! Modified QL algorithm for CRAY T3E PARALLEL MACHINE
|
|
! calculate the eigenvectors and eigenvalues of a matrix reduced to
|
|
! tridiagonal form by PTREDV.
|
|
!
|
|
! AUTHOR : Carlo Cavazzoni - SISSA 1997
|
|
! comments and suggestions to : carlo.cavazzoni@cineca.it
|
|
!
|
|
! REFERENCES :
|
|
!
|
|
! NUMERICAL RECIPES, THE ART OF SCIENTIFIC COMPUTING.
|
|
! W.H. PRESS, B.P. FLANNERY, S.A. TEUKOLSKY, AND W.T. VETTERLING,
|
|
! CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE.
|
|
!
|
|
! PARALLEL NUMERICAL ALGORITHMS,
|
|
! T.L. FREEMAN AND C.PHILLIPS,
|
|
! PRENTICE HALL INTERNATIONAL (1992).
|
|
!
|
|
! NOTE : the algorithm that finds the eigenvalues is not parallelized
|
|
! ( it scales as O(N^2) ), I preferred to parallelize only the
|
|
! updating of the eigenvectors because it is the most costly
|
|
! part of the algorithm ( it scales as O(N^3) ).
|
|
! For large matrix in practice all the time is spent in the updating
|
|
! that in this routine scales linearly with the number of processors,
|
|
! in fact there is no communication at all.
|
|
!
|
|
!
|
|
! INPUTS :
|
|
!
|
|
! TV if it is true compute eigrnvectors "z"
|
|
!
|
|
! D(N) Diagonal elements of the tridiagonal matrix
|
|
! this vector is equal on all processors.
|
|
!
|
|
! E(N) Subdiagonal elements of the tridiagonal matrix
|
|
! this vector is equal on all processors.
|
|
!
|
|
! N DIMENSION OF THE GLOBAL MATRIX.
|
|
!
|
|
! NRL NUMBER OF ROWS OF Z BELONGING TO THE LOCAL PROCESSOR.
|
|
!
|
|
! LDZ LEADING DIMENSION OF MATRIX Z.
|
|
!
|
|
! Z(LDZ,N) Orthogonal transformation that tridiagonalizes the original
|
|
! matrix A.
|
|
! The rows of the matrix are distributed among processors
|
|
! with blocking factor 1.
|
|
! Example for NPROC = 4 :
|
|
! ROW | PE
|
|
! 1 | 0
|
|
! 2 | 1
|
|
! 3 | 2
|
|
! 4 | 3
|
|
! 5 | 0
|
|
! 6 | 1
|
|
! .. | ..
|
|
!
|
|
!
|
|
!
|
|
! OUTPUTS :
|
|
!
|
|
! Z(LDZ,N) EIGENVECTORS OF THE ORIGINAL MATRIX.
|
|
! THE Jth COLUMN of Z contains the eigenvectors associated
|
|
! with the jth eigenvalue.
|
|
! The eigenvectors are scattered among processors (4PE examp. )
|
|
! eigenvector | PE
|
|
! elements |
|
|
! V(1) | 0
|
|
! V(2) | 1
|
|
! V(3) | 2
|
|
! V(4) | 3
|
|
! V(5) | 0
|
|
! V(6) | 1
|
|
! .... ..
|
|
!
|
|
! D(N) Eigenvalues of the original matrix,
|
|
! this vector is equal on all processors.
|
|
!
|
|
!
|
|
!
|
|
!
|
|
USE laxlib_parallel_include
|
|
|
|
IMPLICIT NONE
|
|
|
|
include 'laxlib_kinds.fh'
|
|
|
|
LOGICAL, INTENT(IN) :: tv
|
|
INTEGER, INTENT(IN) :: n, nrl, ldz, mpime, comm
|
|
REAL(DP) :: d(n), e(n)
|
|
REAL(DP) :: z(ldz,n)
|
|
|
|
INTEGER :: i, iter, mk, k, l, m, ierr
|
|
REAL(DP) :: b, dd, f, g, p, r, c, s
|
|
REAL(DP), ALLOCATABLE :: cv(:,:)
|
|
REAL(DP), ALLOCATABLE :: fv1(:)
|
|
REAL(DP), ALLOCATABLE :: fv2(:)
|
|
|
|
ALLOCATE( cv( 2,n ) )
|
|
ALLOCATE( fv1( nrl ) )
|
|
ALLOCATE( fv2( nrl ) )
|
|
|
|
do l = 2,n
|
|
e(l-1) = e(l)
|
|
end do
|
|
do l=1,n
|
|
iter=0
|
|
1 do m=l,n-1
|
|
dd = abs(d(m))+abs(d(m+1))
|
|
if ( abs(e(m))+dd .eq. dd ) goto 2
|
|
end do
|
|
m=n
|
|
|
|
2 if ( m /= l ) then
|
|
if ( iter == 200 ) then
|
|
call lax_error__(' tqli ',' too many iterations ', iter)
|
|
end if
|
|
iter=iter+1
|
|
!
|
|
! iteration is performed on one processor and results broadcast
|
|
! to all others to prevent potential problems if all processors
|
|
! do not behave in exactly the same way (even with the same data!)
|
|
!
|
|
if ( mpime == 0 ) then
|
|
g=(d(l+1)-d(l))/(2.0_DP*e(l))
|
|
r=pythag(g,1.0_DP)
|
|
g=d(m)-d(l)+e(l)/(g+sign(r,g))
|
|
s=1.0_DP
|
|
c=1.0_DP
|
|
p=0.0_DP
|
|
do i=m-1,l,-1
|
|
f=s*e(i)
|
|
b=c*e(i)
|
|
r=pythag(f,g)
|
|
e(i+1)=r
|
|
if ( r == 0.0_DP) then
|
|
d(i+1)=d(i+1)-p
|
|
e(m)=0.0_DP
|
|
goto 1
|
|
endif
|
|
c=g/r
|
|
g=d(i+1)-p
|
|
s=f/r
|
|
r=(d(i)-g)*s+2.0_DP*c*b
|
|
p=s*r
|
|
d(i+1)=g+p
|
|
g=c*r-b
|
|
!
|
|
cv(1,i-l+1) = c
|
|
cv(2,i-l+1) = s
|
|
!cv(1,i) = c
|
|
!cv(2,i) = s
|
|
end do
|
|
!
|
|
d(l)=d(l)-p
|
|
e(l)=g
|
|
e(m)=0.0_DP
|
|
end if
|
|
#if defined __MPI
|
|
CALL MPI_BCAST( cv, 2*(m-l), MPI_DOUBLE_PRECISION, 0, comm, ierr )
|
|
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_bcast 2', ierr )
|
|
CALL MPI_BCAST( d(l), m-l+1, MPI_DOUBLE_PRECISION, 0, comm, ierr )
|
|
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_bcast 3', ierr )
|
|
CALL MPI_BCAST( e(l), m-l+1, MPI_DOUBLE_PRECISION, 0, comm, ierr )
|
|
IF( ierr /= 0 ) CALL lax_error__( ' ptredv ', 'error in mpi_bcast 4', ierr )
|
|
#endif
|
|
|
|
if( tv ) then
|
|
do i=m-1,l,-1
|
|
do k=1,nrl
|
|
fv2(k) =z(k,i+1)
|
|
end do
|
|
do k=1,nrl
|
|
fv1(k) =z(k,i)
|
|
end do
|
|
c = cv(1,i-l+1)
|
|
s = cv(2,i-l+1)
|
|
do k=1,nrl
|
|
z(k,i+1) =s*fv1(k) + c*fv2(k)
|
|
z(k,i) =c*fv1(k) - s*fv2(k)
|
|
end do
|
|
end do
|
|
end if
|
|
|
|
goto 1
|
|
|
|
endif
|
|
end do
|
|
|
|
DEALLOCATE( cv )
|
|
DEALLOCATE( fv1 )
|
|
DEALLOCATE( fv2 )
|
|
|
|
RETURN
|
|
END SUBROUTINE ptqliv
|
|
|
|
!==----------------------------------------------==!
|
|
|
|
|
|
SUBROUTINE peigsrtv(tv,d,v,ldv,n,nrl)
|
|
|
|
!
|
|
! This routine sorts eigenvalues and eigenvectors
|
|
! generated by PTREDV and PTQLIV.
|
|
!
|
|
! AUTHOR : Carlo Cavazzoni - SISSA 1997
|
|
! comments and suggestions to : carlo.cavazzoni@cineca.it
|
|
!
|
|
|
|
IMPLICIT NONE
|
|
include 'laxlib_kinds.fh'
|
|
LOGICAL, INTENT(IN) :: tv
|
|
INTEGER, INTENT (IN) :: n,ldv,nrl
|
|
REAL(DP), INTENT(INOUT) :: d(n),v(ldv,n)
|
|
|
|
INTEGER :: i,j,k
|
|
REAL(DP):: p
|
|
|
|
do 13 i=1,n-1
|
|
k=i
|
|
p=d(i)
|
|
do j=i+1,n
|
|
if(d(j).le.p)then
|
|
k=j
|
|
p=d(j)
|
|
endif
|
|
end do
|
|
if(k.ne.i)then
|
|
d(k)=d(i)
|
|
d(i)=p
|
|
!
|
|
! Exchange local elements of eigenvectors.
|
|
!
|
|
if( tv ) then
|
|
do j=1,nrl
|
|
p=v(j,i)
|
|
v(j,i)=v(j,k)
|
|
v(j,k)=p
|
|
END DO
|
|
end if
|
|
|
|
endif
|
|
13 continue
|
|
return
|
|
END SUBROUTINE peigsrtv
|
|
|
|
!
|
|
!-------------------------------------------------------------------------
|
|
FUNCTION pythag(a,b)
|
|
IMPLICIT NONE
|
|
include 'laxlib_kinds.fh'
|
|
REAL(DP) :: a, b, pythag
|
|
REAL(DP) :: absa, absb
|
|
absa=abs(a)
|
|
absb=abs(b)
|
|
if(absa.gt.absb)then
|
|
pythag=absa*sqrt(1.0_DP+(absb/absa)**2)
|
|
else
|
|
if(absb.eq.0.0_DP)then
|
|
pythag=0.0_DP
|
|
else
|
|
pythag=absb*sqrt(1.0_DP+(absa/absb)**2)
|
|
endif
|
|
endif
|
|
return
|
|
END FUNCTION pythag
|
|
!
|
|
!==----------------------------------------------==!
|
|
|
|
#if defined __SCALAPACK
|
|
|
|
SUBROUTINE pdsyevd_drv( tv, n, nb, s, lds, w, ortho_cntx, ortho_comm )
|
|
!
|
|
#if defined(__ELPA_2015) || defined(__ELPA_2016)
|
|
use elpa1
|
|
|
|
#elif defined(__ELPA)
|
|
use elpa
|
|
|
|
#endif
|
|
IMPLICIT NONE
|
|
!
|
|
include 'laxlib_kinds.fh'
|
|
!
|
|
LOGICAL, INTENT(IN) :: tv
|
|
! if tv is true compute eigenvalues and eigenvectors (not used)
|
|
INTEGER, INTENT(IN) :: nb, n, ortho_cntx, ortho_comm
|
|
! nb = block size, n = matrix size, ortho_cntx = BLACS context,
|
|
! ortho_comm = MPI communicator
|
|
INTEGER, INTENT(IN) :: lds
|
|
! lds = leading dim of s
|
|
REAL(DP) :: s(:,:), w(:)
|
|
! input: s = matrix to be diagonalized
|
|
! output: s = eigenvectors, w = eigenvalues
|
|
|
|
INTEGER :: desch( 10 )
|
|
REAL(DP) :: rtmp( 4 )
|
|
INTEGER :: itmp( 4 )
|
|
REAL(DP), ALLOCATABLE :: work(:)
|
|
REAL(DP), ALLOCATABLE :: vv(:,:)
|
|
INTEGER, ALLOCATABLE :: iwork(:)
|
|
INTEGER :: LWORK, LIWORK, info
|
|
CHARACTER :: jobv
|
|
INTEGER :: i, ierr
|
|
#if defined(__ELPA) || defined(__ELPA_2015) || defined(__ELPA_2016)
|
|
INTEGER :: nprow,npcol,my_prow,my_pcol,mpi_comm_rows,mpi_comm_cols
|
|
LOGICAL :: success
|
|
#endif
|
|
#if defined(__ELPA)
|
|
class(elpa_t), pointer :: elpa_s
|
|
#endif
|
|
|
|
IF( SIZE( s, 1 ) /= lds ) &
|
|
CALL lax_error__( ' pdsyevd_drv ', ' wrong matrix leading dimension ', 1 )
|
|
!
|
|
IF( tv ) THEN
|
|
ALLOCATE( vv( SIZE( s, 1 ), SIZE( s, 2 ) ) )
|
|
jobv = 'V'
|
|
ELSE
|
|
CALL lax_error__('pdsyevd_drv','PDSYEVD does not compute eigenvalue only',1)
|
|
END IF
|
|
|
|
CALL descinit( desch, n, n, nb, nb, 0, 0, ortho_cntx, SIZE( s, 1 ) , info )
|
|
|
|
IF( info /= 0 ) CALL lax_error__( ' pdsyevd_drv ', ' desckinit ', ABS( info ) )
|
|
|
|
lwork = -1
|
|
liwork = 1
|
|
itmp = 0
|
|
rtmp = 0.0_DP
|
|
|
|
#if defined(__ELPA) || defined(__ELPA_2015) || defined(__ELPA_2016)
|
|
CALL BLACS_Gridinfo(ortho_cntx,nprow, npcol, my_prow,my_pcol)
|
|
|
|
#if defined(__ELPA)
|
|
! => from elpa-2018.11.001 to 2019.xx.xx
|
|
if (elpa_init(20181101) /= ELPA_OK) then
|
|
print *, "ELPA API version in use not supported. Aborting ..."
|
|
stop
|
|
endif
|
|
elpa_s => elpa_allocate(ierr)
|
|
if (ierr /= ELPA_OK) then
|
|
print *, "Problem initializing ELPA. Aborting ..."
|
|
stop
|
|
endif
|
|
|
|
#if defined(__DEBUG)
|
|
call elpa_s%set("debug",1,ierr)
|
|
#endif
|
|
|
|
! set parameters describing the matrix and it's MPI distribution
|
|
call elpa_s%set("na", n, ierr)
|
|
call elpa_s%set("nev", n, ierr)
|
|
call elpa_s%set("nblk", SIZE(s,2), ierr)
|
|
call elpa_s%set("local_nrows", lds,ierr)
|
|
call elpa_s%set("local_ncols", nb,ierr)
|
|
call elpa_s%set("mpi_comm_parent", ortho_comm, ierr)
|
|
call elpa_s%set("process_row", my_prow, ierr)
|
|
call elpa_s%set("process_col", my_pcol, ierr)
|
|
|
|
ierr = elpa_s%setup()
|
|
if (ierr .ne. ELPA_OK) then
|
|
print *,"Problem setting up ELPA options. Aborting ..."
|
|
stop
|
|
endif
|
|
|
|
call elpa_s%set("solver", ELPA_SOLVER_1STAGE, ierr)
|
|
call elpa_s%eigenvectors(s, w, vv, ierr)
|
|
|
|
call elpa_deallocate(elpa_s, ierr)
|
|
call elpa_uninit(ierr)
|
|
|
|
#elif defined(__ELPA_2016)
|
|
! -> from ELPA 2016.11.001_pre thru 2017.XX.XX to elpa-2018.05.001
|
|
ierr = elpa_get_communicators(ortho_comm, my_prow, my_pcol,mpi_comm_rows, mpi_comm_cols)
|
|
success = solve_evp_real_1stage(n, n, s, lds, w, vv, lds,SIZE(s,2),nb ,mpi_comm_rows, mpi_comm_cols, ortho_comm)
|
|
! -> ELPA 2016.05.003
|
|
!ierr = get_elpa_row_col_comms(ortho_comm, my_prow, my_pcol,mpi_comm_rows, mpi_comm_cols)
|
|
!success = solve_evp_real_1stage(n, n, s, lds, w, vv, lds,SIZE(s,2),nb ,mpi_comm_rows, mpi_comm_cols)
|
|
#elif defined(__ELPA_2015)
|
|
ierr = get_elpa_row_col_comms(ortho_comm, my_prow, my_pcol,mpi_comm_rows, mpi_comm_cols)
|
|
ierr = solve_evp_real(n, n, s, lds, w, vv, lds,SIZE(s,2),nb ,mpi_comm_rows, mpi_comm_cols)
|
|
#endif
|
|
|
|
IF( tv ) s = vv
|
|
IF( ALLOCATED( vv ) ) DEALLOCATE( vv )
|
|
|
|
|
|
#if defined(__MPI) && (defined(__ELPA_2015) || defined(__ELPA_2016))
|
|
CALL mpi_comm_free( mpi_comm_rows, ierr )
|
|
CALL mpi_comm_free( mpi_comm_cols, ierr )
|
|
#endif
|
|
|
|
|
|
#else
|
|
CALL PDSYEVD( jobv, 'L', n, s, 1, 1, desch, w, vv, 1, 1, desch, rtmp, lwork, itmp, liwork, info )
|
|
|
|
IF( info /= 0 ) CALL lax_error__( ' pdsyevd_drv ', ' PDSYEVD ', ABS( info ) )
|
|
|
|
lwork = MAX( 131072, 2*INT( rtmp(1) ) + 1 )
|
|
liwork = MAX( 8*n , itmp(1) + 1 )
|
|
|
|
ALLOCATE( work( lwork ) )
|
|
ALLOCATE( iwork( liwork ) )
|
|
|
|
CALL PDSYEVD( jobv, 'L', n, s, 1, 1, desch, w, vv, 1, 1, desch, work, lwork, iwork, liwork, info )
|
|
|
|
IF( info /= 0 ) CALL lax_error__( ' pdsyevd_drv ', ' PDSYEVD ', ABS( info ) )
|
|
|
|
IF( tv ) s = vv
|
|
|
|
IF( ALLOCATED( vv ) ) DEALLOCATE( vv )
|
|
DEALLOCATE( work )
|
|
DEALLOCATE( iwork )
|
|
#endif
|
|
|
|
RETURN
|
|
END SUBROUTINE pdsyevd_drv
|
|
|
|
#endif
|
|
|
|
END MODULE dspev_module
|
|
|
|
!==----------------------------------------------==!
|
|
|
|
|
|
SUBROUTINE pdspev_drv_x ( jobz, ap, lda, w, z, ldz, nrl, n, nproc, mpime, comm )
|
|
use dspev_module
|
|
IMPLICIT NONE
|
|
include 'laxlib_kinds.fh'
|
|
CHARACTER, INTENT(IN) :: JOBZ
|
|
INTEGER, INTENT(IN) :: lda, ldz, nrl, n, nproc, mpime
|
|
INTEGER, INTENT(IN) :: comm
|
|
REAL(DP) :: ap( lda, * ), w( * ), z( ldz, * )
|
|
REAL(DP), ALLOCATABLE :: sd( : )
|
|
LOGICAL :: tv
|
|
!
|
|
IF( n < 1 ) RETURN
|
|
!
|
|
tv = .false.
|
|
IF( jobz == 'V' .OR. jobz == 'v' ) tv = .true.
|
|
|
|
ALLOCATE ( sd ( n ) )
|
|
CALL ptredv( tv, ap, lda, w, sd, z, ldz, nrl, n, nproc, mpime, comm)
|
|
CALL ptqliv( tv, w, sd, n, z, ldz, nrl, mpime, comm)
|
|
DEALLOCATE ( sd )
|
|
CALL peigsrtv( tv, w, z, ldz, n, nrl)
|
|
RETURN
|
|
END SUBROUTINE pdspev_drv_x
|
|
|
|
!==----------------------------------------------==!
|
|
|
|
SUBROUTINE dspev_drv_x( JOBZ, UPLO, N, AP, W, Z, LDZ )
|
|
use dspev_module
|
|
IMPLICIT NONE
|
|
include 'laxlib_kinds.fh'
|
|
CHARACTER :: JOBZ, UPLO
|
|
INTEGER :: IOPT, INFO, LDZ, N
|
|
REAL(DP) :: AP( * ), W( * ), Z( LDZ, * )
|
|
REAL(DP), ALLOCATABLE :: WORK(:)
|
|
|
|
IF( n < 1 ) RETURN
|
|
|
|
ALLOCATE( work( 3*n ) )
|
|
|
|
CALL DSPEV(jobz, uplo, n, ap(1), w(1), z(1,1), ldz, work, INFO)
|
|
IF( info .NE. 0 ) THEN
|
|
CALL lax_error__( ' dspev_drv ', ' diagonalization failed ',info )
|
|
END IF
|
|
DEALLOCATE( work )
|
|
RETURN
|
|
END SUBROUTINE dspev_drv_x
|
|
|